
Numbers, Representations, and Ranges 1

Numbers, Representations, and Ranges

Ivor Page1

2.1 Unsigned Numbers

A k digit unsigned system in radix r has range 0 to rk − 1.

For unsigned binary, the range is 0 to 2k − 1. The result of every
arithmetic operation on these numbers is within this range. So, for
example, if we perform the sum: 22 − 37 in a 6 bit unsigned binary
system, the result is as follows:

010110
− 100101

110001
1University of Texas at Dallas

Numbers, Representations, and Ranges 2

The result has value 49. It should be −15, but the representation
does not support negative values. As we shall see, the bit pattern of
the result is exactly what we would get if the two values were in 2’s
complement representation.

Even though the answer above is, in a sense, meaningless within the
representation (unsigned binary), if we add 41 to it, the result is correct:

110001
− 101001

011010

For any sequence of add and subtract operations in a k bit
unsigned system in which the result is positive, the result will
be correct in the k least significant digits of the result.

Numbers, Representations, and Ranges 3

When viewed as bit-patterns, the results obtained from arithmetic op-
erations on unsigned values are identical to those obtained when those
operations are performed on the same values in the 2’s complement
system. Indeed the operation of the ALU is almost identical in both
cases. The difference comes in how the overflow flag operates:

Unsigned operations do not set the overflow flag.

The programmer must understand this subtle difference and use these
representations appropriately.

To put it more bluntly, if we have a program that performs only integer
operations, there is no difference in the bit patterns of the results when
we change the declarations from int (2’s complement signed values)
to unsigned int or vice-versa. Indeed, we can mix these types freely
without changing the appearance of the results as binary bit patterns.

The difference comes in how the results are interpreted. If, for example,
we print the results using the cout stream, the C++ language’s run-
time-system will take into account the types of the variables.

Numbers, Representations, and Ranges 4

2.2 Signed Radix-Complement Systems

A Historical Example.

Early electro-mechanical calculators used decimal arithmetic. Punched
cards were the main input devices and printers the output devices. Val-
ues were represented by the positions of gears. In mathematical terms
these systems could represent decimal values of a certain number of
digits, depending on the size of the counters (numbers of gear wheels)
employed. Negative numbers were represented using the 10’s comple-
ment system. To negate the 8 digit 10’s complement value, 00,085,456,
subtract it from the 9 digit value, 100,000,000, giving 99,914,544. By
convention, any representation with a 9 in the left-most, or 107 position
is a negative value.

Numbers, Representations, and Ranges 5

If we add this representation of -85,456 to the representation of the
positive value 115,145, we get 100,029,689. The most significant digit
is beyond the range of the 8 digit number system. The answer that
remains is 29,689, which is the correct answer. If, on the other hand,
we add 71,103, the answer is 99,985,647. To see the magnitude of this
negative value, we negate it by subtracting it from 100,000,000, giving
14,353. The value obtained represents -14,353. These are the correct
answers.

There is an alternative way to negate a 10’s complement number. Sub-
tract each digit from 9 and write down the answer, digit at a time, then
add 1 to the result.

Numbers, Representations, and Ranges 6

What is going on here?

Any negative value with magnitude V is represented by 108−V . When
we add this negative value to the positive value W , we get 108−V +W .
If W > V the answer is the positive quantity W − V plus 108, which is
discarded since it is beyond the range of the 8 digit system. If W < V
the answer is the negative value obtained by subtracting the positive
value V − W from 108. Note here that V and W are magnitudes.

The system described above is known as a radix-complement system.
A 10’s complement system with N digits, including the sign digit, has
range −10k−1 to +10k−1 − 1.

Numbers, Representations, and Ranges 7

Here are some examples of the representation:

Value Representation in 8 digit 10’s complement
-10,000,000 90,000,000
-9,999,999 90,000,001
-1 99,999,999
0 00,000,000
1 00,000,001
9,999,999 09,999,999

Numbers, Representations, and Ranges 8

2.3 2’s Complement Representation

Here are some examples of a 16 bit 2’s complement system.

Value in Decimal Representation in 16 bit 2’s complement
-32768 1000,0000,0000,0000
-32767 1000,0000,0000,0001
-1 1111,1111,1111,1111
0 0000,0000,0000,0000
1 0000,0000,0000,0001
32766 0111,1111,1111,1110
32767 0111,1111,1111,1111

The range, for an N digit 2’s complement system is −2k−1 to +2k−1−1.

In any radix-complement system the most negative value is always one
larger in magnitude than the most positive value.

Numbers, Representations, and Ranges 9

2.3.1 Subtraction in 2’s complement systems

The 2’s complement system is the most widely used representation for
signed numbers. Almost all modern computers use it.

Subtraction is easily performed by pre-negating the operand to be sub-
tracted (the subtrahend) and adding it to the minuend. Negation re-
quires inversion of all the bits of the representation, followed by the
addition of ulp to the result. The term ulp means unit in the least sig-
nificant position, or just 1 × 20 for integers. In general, ulp may mean
1 × 2n, where the integer n < 0 for fractional systems. It is always, as
its name suggest, the smallest value of the representation.

At first sight, it would seem that subtraction should take twice as long
as addition because of the need to add ulp during the negation. This is
not the case. We can easily accommodate the addition of 1 by setting
the carry-in (of the least significant digit) of the adder to 1.

Numbers, Representations, and Ranges 10

The subtraction is described mathematically as A−B = A + Bcompl +
ulp, where Bcompl represents the 1’s complement of the bit-pattern of
B. The subtraction operation proceeds exactly the same, independent
of the sign of B.

2.3.2 2’s Complement More Formally

It is important to distinguish the value of a number from its represen-
tation. We shall normally write the value of a number using decimal
notation with a preceding plus or minus sign. The representation will
be dependent on the number system we are discussing. In binary sys-
tems, the representation will normally be a bit vector.

A k bit 2’s complement representation A has bits ak−1, ak−2, · · · , a1, a0,
where ak−1 is the sign bit and a0 is the least significant bit.

The negative of A, as we have seen, is obtained by inverting all its bits
and adding 1 to the result.

Numbers, Representations, and Ranges 11

Negative of A = Acompl + ulp.

There are two mathematical ways to obtain the value of a k digit 2’s
complement number A:

Value of A =

k−1∑
i=0

ai2
i : ak−1 = 0

−2k +
k−1∑
i=0

ai2
i : ak−1 = 1

Alternatively,

Value of A = −ak−12k−1 +
k−2∑
i=0

ai2
i

where ak−1 is the sign digit and ai is the digit in the 2i position.

These two forms are equivalent, independent of the sign of A.

Numbers, Representations, and Ranges 12

2.4 Overflow

In any number system, the result of an arithmetic operation may not
necessarily have a representation in that system. We saw an example
of this when the result of a subtraction of two unsigned values was
negative. Here is a table to show when overflow can occur with signed
values:

A + B
Sign of A
+ −

Sign of B
+ Yes No
− No Yes

A − B
Sign of A
+ −

Sign of B
+ No Yes
− Yes No

Numbers, Representations, and Ranges 13

Consider the following example using a 4 bit 2’s complement represen-
tation:

0101
+ 0011

1000

Here we are adding +5 and +3, but the answer is -8. Note that the bit
pattern of the answer is the same as that of the correct answer in its 4
least significant bits. The correct answer is obtained by extending the
representation to five bits by concatenating a zero (in this example) to
the left of the above answer. This zero would become the new sign bit.
In practice we cannot simply extend the representation of a number
system by one bit, but see the module on multi-precision working.

Numbers, Representations, and Ranges 14

In this example, it is easy to see that overflow has occurred because
we have added two positive values and obtained a negative result. It
would be equally simple if we added two negative values and got a
positive result, or subtracted a negative value from a positive one and
got a negative result. In any example where the sign of the result is
independent of the magnitudes of the values concerned, overflow is easy
to detect and these are the only cases where overflow can occur.

A much simpler way has been developed for detecting overflow in the 2’s
complement representation. Notice what happens to the carry into and
out of the sign bit during these operations. If the values of those carries
differ, then overflow has occurred. A simple EX-OR gate is suffucient to
detect overflow in 2’s complement addition. For subtraction, overflow
cannot occur while complementing each bit of the subtrahend. Overflow
can occur during the addition step, but the EX-OR gate is sufficient to
detect all such cases.

Numbers, Representations, and Ranges 15

Theorem: An overflow has occurred in the addition of two 2’s com-
plement values iff the carry into and out of the sign digit differ.

Proof:

By cases.

If we are adding two positive values, the two sign digits are zero, so the
carry-out of the sign is always zero. The carry-into the sign digit is 1
iff the sum of the two values exceeds the range of the representation.
Clearly this condition should generate overflow. If the carry-into the
sign digit is zero, then the sum of the two values is within the range of
the representation and overflow is not indicated.

If we are adding two negative values, the two sign digits are 1 and
therefore there is always a carry-out from the sign digit. The carry-
in to the sign digit is zero iff the result is beyond the range of the
representation. Overflow must then be generated. The carry-in to the
sign digit is 1 when the result is within the range of the representation.
✷

Numbers, Representations, and Ranges 16

Note also that the simple operation of negating a value can cause over-
flow in any radix-complement system, since the negative range is always
one larger than the positive range. If we try to negate the most negative
value, the answer will not fit into the representation.

2.5 1’s Complement Representation

The 1’s complement system has rarely been used. It was used in the
CDC 6600, but is not used in any modern computer systems. It is
an example of a Diminished Radix system due to the way that the
complement is formed:

To negate a number represented in 1’s complement, we simply invert
each bit:

Negative of A = Acompl = 2k − 1 − A.

Numbers, Representations, and Ranges 17

As with 2’s complement, the most significant bit is the sign bit. Its
value is 1 for negative numbers and zero for positive numbers. The
value of a number in this representation has 2 mathematical forms:

Value of A =

k−1∑
i=0

ai2
i : ak−1 = 0

−2k + 1 +
k−1∑
i=0

ai2
i : ak−1 = 1

Alternatively,

Value of A = −ak−1[2k−1 + 1] +
k−2∑
i=0

ai2
i

The range of a k bit 1’s complements system is symmetrical: −2k − 1
to +2k − 1.

Numbers, Representations, and Ranges 18

Here are some examples of 16 bit 1’s complement numbers.

Value in Decimal Representation in 16 bit 2’s complement
-32767 1000,0000,0000,0000
-1 1111,1111,1111,1110
0 1111,1111,1111,1111
0 0000,0000,0000,0000
1 0000,0000,0000,0001
32766 0111,1111,1111,1110
32767 0111,1111,1111,1111

Numbers, Representations, and Ranges 19

There are two representations of zero, often denoted 0− and 0+ (or −0
and +0). This anomaly creates a small problem for detection of zero,
but also for the case where 1 is added to 0− or 1 is subtracted from
0+. One solution is to pass the result of every arithmetic operation
through a simple logic filter that would change any occurrence of 0− to
the all-zeros pattern of 0+.

A further complication in the 1’s complement scheme arises during
arithmetic. Since subtraction is performed by pre-negating the sub-
trahend, and adding the result to the minuend, we need only consider
addition.

The sum of two 1’s complement positive values proceeds as for unsigned
numbers. If there is a carry into the sign digit, overflow has occurred.
Consider the example below in a 6 bit 1’s complement system:

Numbers, Representations, and Ranges 20

5 + 9
000101

+ 001001
001110

The result is correct since the representations and the steps performed
are exactly as for unsigned or 2’s complement numbers. Now consider
an example where both arguments are negative. We shall add the 1’s
complements of the values above:

−5 + −9
111010

+ 110110
110000

There is a carry-out of 1 from the most significant digit, which will be
discarded since it cannot fit into the 6 bit number system. The 6 bits
of the answer represent -15, not the value -14 expected.

Numbers, Representations, and Ranges 21

To understand this, start with two positive values, A and B.

Next, we form −A and −B.

−A is represented by 2k − 1 − A, and

−B is represented by 2k − 1 − B.

The sum of these is represented by 2k − 1 − A + 2k − 1 − B = 2k+1 −
2 − (A + B)

The correct representation is 2k − 1 − (A + B).

Since the values 2k and 2k+1 are outside the range of the system, they
do not show up in the answer. The only visible problem is the fact that
the answer is a ulp smaller than it should be. The correction is simple.

Whenever there is a carry-out of 1 from the most significant
position in 1’s complement addition, ulp is added to the result.

Numbers, Representations, and Ranges 22

This scheme is known as end-around carry. The carry-out of the most-
significant digit of the adder is connected to the carry-in of the least
significant digit.

As with any representational system, there is more than one way to
ascribe meaning to values within the system. For example, if we think
of the values in a k bit 1’s complement system as representing positive
numbers, their range would be [0, 2k−2] (recall that there are 2 versions
of zero, 000...0, and 111...1). The k bit 1’s complement adder is then a
mod (2k − 1) unsigned adder.

Consider the above examples again where the 1’s complement bit pat-
terns are interpreted as representing positive values. In the second
example, (-5)+(-9), the sum would be interpreted as 58 + 54 and the
bit pattern of the result, 110001, would represent 49, which is (58 +
54) mod 63.

A k bit 1’s complement adder with end-around carry is a
mod (2k−1) adder of unsigned values that have range [0, 2k−2].

Numbers, Representations, and Ranges 23

Question: Since the end-around carry causes a cycle amongst the logic
gates of a ripple-carry 1’s complement adder, is there any potential for
an add operation to continue for ever?

Answer: It is easy to show that the worst case time for addition is
the same as for the 2’s complement system if a ripple-carry adder is
employed.

Negation of any value in the 1’s complement system is faster than in
2’s complement since the operation only requires inversion of all the
bits of the number. Overflow cannot occur during negation.

	2.1 Unsigned Numbers
	2.2 Signed Radix-Complement Systems
	2.3 2’s Complement Representation
	2.3.1 Subtraction in 2’s complement systems
	2.3.2 2’s Complement More Formally

	2.4 Overflow
	2.5 1’s Complement Representation

