Object-Oriented Analysis and Design
Ivor Page
University of Texas at Dallas.

1 Design Objectives

Let’s summarize the rules of thumb for good object-oriented design. The programmer is
concerned with writing class definitions, while at run time, it is appropriate to talk of objects
and their interactions:

1. Each class should be self-contained, providing a complete service of some kind.

2. Each should have a simple and small interface couched in the language of the appli-
cation domain. If this is so, users of the class are able to ignore the details of its
internal structure and implementation and concentrate on the interface. We call this
abstraction. See Fig. 3.

3. Classes should hide their data, we call this encapsulation, only providing a small
number of controlled methods or functions in the interface for accessing that data.
These factors taken together enable separation of interface from implementa-
tion. The actual designs of the algorithms employed inside the classes can be changed
as better, more efficient algorithms are found. After a design is complete, changes in
a class implementation must not affect its interface. The effect on current and future
users is then only in terms of efficiency: their applications need not be recoded to take
advantage of the new class implementation. The advantages of separation of interface
from implementation include rapid prototyping and graceful refinement. See Fig. 3.

4. The majority of the work at run time should be within objects, not in between objects.
5. The complexity of the system should be evenly spread amongst the objects.

6. Classes should be written with reuse in mind. This requirement impacts the inter-
faces, and may cause us to spend more time on design that we otherwise would.

7. Systems of classes should be written to solve a wide range of problems from the
domain of the actual task at hand. We do not set out to write a program to solve a
single problem, but a system of classes that solves a wide range of problems of similar
type. The code that tailors the system to solve the specific problem at hand should
be localized to a small number of classes.

8. Our designs should be easy to extend. We should ask how easy it is to add new data
types and functionality. For example, in a 3D graphics program that deals with a
small set of graphical objects, how easy is it to add graphical objects? If the program
doesn’t implement shadows, how easy will it be to add them (assuming the math is
not too complex)?

9. We should try to minimize the number of classes in a design. This requirement
may be subordinate to those of keeping the class interfaces small and simple, and of
minimizing the inter-object communication.

2 Advantages and Disadvantages of OOP

If we follow the current OOP methodologies, what benefits and pitfalls can we expect?

e Probably the most vitally important benefit to strive for is reuse. It is here that the
financial gains will be the greatest. Being able to select fully proven classes from a
library and plug them into a new application is likely to revolutionize the software

business.

e Although we can expect an increase in analysis and design time, testing should become
easier and less time consuming. Many logical errors will be found by the compiler

because of the strongly typed nature of classes.

e If decomposition is successful, classes become so independent of each other that their
implementation can be carried out by individuals who do not need to interact at all.
Each part of the design is tightly specified in terms of its interface before implemen-

tation takes place.

e Some will argue that OOP languages are complex and take longer to learn. This
is so if you compare C++ with C, for example. Assuming we can teach these new
languages thoroughly, and teach software engineering discipline along with them, the
gains in having a better educated programming community surely far outweigh the

extra cost of education.

e Some say that programmers are less able to predict the execution time of their code
when using OOP languages. This indicates lack of education. It is just as possible to
estimate run time with C++ as with C. Smalltalk may present greater problems than

C++ in speed estimation.

e Some say that their programs are larger and slower when OOP languages are used than
when traditional procedural languages are used. There are good reasons why programs
could be smaller at run time with OOP languages. Again, these are symptoms of lack

of knowledge.

e Some say that OOP languages are moving targets. “Let’s wait until there is a standard
for C++.” Why not assume that what we have now in C++ is unlikely to change

radically, at least for a while, and try to take advantage of its benefits right now?

3 Analysis

3.1 Discovering the Classes

We start with the requirements specification, listing all the noun phrases. Our first example

will be the solitaire card game.

Brief Specification:

There are multiple piles of cards, as shown below. The draw pile is face down unordered,
while the discard pile is face up unordered. The game begins with pile p; containing 6 cards,

p2 containing 5 cards, and so on, each P pile is unordered, face down. Each @ pile initially
contains one card face up. The four S piles begin empty. The game is played in rounds.
FEach round begins with the player turning over a stack of three cards from the draw pile onto
the discard pile, so that only the top card of the three is visible. If fewer than three cards are
present on the draw pile, then all of them are turned over. A wvariety of subsequent actions
can take place. A card can be moved from the discard pile to one of the Q piles, assuming
each @ pile remains ordered, in decreasing order, with color alternating. A card can be
moved from the discard pile, or from a @ pile, to a S pile, assuming each S pile remains
ordered in increasing order, strictly starting at the Ace, with each S pile containing cards
from just one suite. An entire Q pile can be moved to another @ pile assuming each Q pile
adheres to the Q pile rule above. When a @ pile is empty, the top card of the corresponding
P pile may be turned over, replacing the empty @Q pile. Alternatively, if a there is a @
pile beginning with a King, or the top card of the discard pile is a King, it may be moved,
replacing an empty Q pile. These card movements may continue until no further moves are
possible, then the round is over.

The game is won when all the cards have been transferred to the four S piles. The game
is lost when no movement of cards can be found during a sequence of rounds that cycles
through the draw pile. At any time the player may resign.

Draw Discard
face up, suite & — > S1 S2 S3 S4
number ordered

face down, unordered — > P1 P2 P3 P4 P5 P6
face up — > Q1 Q2 Q3 Q4 Q5 Q6 Q7
alternating colors

number orered

Figure 1: Card Game Layout

First pick out all the nouns and noun phrases appearing in the requirements spec:
Assume we came up with the following:

Card suite color number face_up

face_down Pile Discard_pile Draw_pile S_pile
P_pile Q-pile Deck User Screen
Window Player Mouse Red_card Black_card
move_l_card flip-3_cards resign Game_won File_pile
Position flip_card King Ace

S_pile

Now reduce this set according to simple rules:

e Remove vague names. If they are needed, we can reintroduce them later: File_pile,
Position

o Resolve names with identical meanings: User = Player

e Remove names of things outside of the environment of the program: User, Screen,
Mouse

e Remove names that are really attributes of other classes: Color, Number, Suite,
Face_up, Face_down

e Remove names that are really functions or system inputs: Move_1_card, flip_3_cards,
resign, flip_card, move_1_card

e Remove names that refer to states of the system. These may become attributes:
Game_won

e Consider adjectival names carefully. Do they represent separate classes, or can the
differences be managed by attributes? : There are several pile classes. Are they really
different? We will assume for the moment that they are. But Red_card and Black_card
are really just cards with different color attributes. Similarly King and Ace are really
just cards with specific values for their number attribute.

This leaves:

Card Pile Discard_pile Draw_pile S_pile
P_pile Q_pile Deck Window

It is not clear at this stage that we have all the classes we need. We will discover missing
classes later.

Now use 4x6 cards to describe each class that remains. If we cannot describe it, then
maybe it shouldn’t be a class. We have a subset of classes that have similar names: all
the piles of cards. They differ so far only in their adjectival prefix. We need to consider if
these classes really are different in some way. If not, redundant names can be removed. In
our case, let’s assume these piles are different. In fact, on closer examination, the Deck is
another kind of pile. An obvious inheritance structure appears likely amongst these classes,
where the kinds of piles all inherit a base class called Pile. This structure will be investigated
later.

Here are some of the 4x6 cards:

Class: Card: a playing card

Attributes:

suite enum of Hearts, Clubs, Diamonds, Spades
number 1..13

face_up Boolean

color red or black

Member functions:

Class: Deck: 52 playing cards, all face down, random order
Attributes:
deck_data a data structure for holding Cards

Member functions:

Class: Q-pile: face up, alternating color, reducing order
Attributes:

number_of_cards gives how many Cards are in the pile

first_card suggest a linked list structure

Member functions:

As you can see, we have left the member functions blank for now.

After writing out all the classes with as much detail as we can, we should run scenarios
from the game to see that our classes and their attributes are sufficient and are efficient.
For example, do we want to have the attribute face_up within the Card class, or should it
be an attribute of each of the card pile classes? In this game, all cards within one pile have
the same value for this attribute, so the latter seems the most sensible. Perhaps there are
card games, however, where piles have some cards that are face up and others that are face
down. We will choose to make face_up an attribute of the card pile classes for now.

We also have color as an attribute of the Card class, but the color of a card can easily
be derived from its suite, so color can be replaced by a function that computes the color.
In fact it is only necessary to have a single integer, say value, 0<value<51, to cover the
suite, number, and color. The designer must choose the best arrangement of variables and
functions to meet the needs of the project. If we use the single value idea, then we will need
functions to compute color and suite. We will stick with two fields, number and suite.

In the Q_pile, we see the attribute first_card, which suggests a linked list structure for
the pile. This is going too far at this stage. We should restrict our attention to the problem
domain semantics and not worry about implementation details, so we remove this attribute
for now.

We notice that there is no class that accepts the user’s mouse clicks and interprets them.
Clearly a user request, given as a sequence of mouse clicks, will result in a sequence of calls
to the member functions of several objects at run time. We also notice that there is no
obvious place to store the rules of the game. If we have functions such as flip_three_cards,
then at least some of the rules will be distributed amongst the classes. We might elect to
concentrate all the rules within one class in order to promote reuse of the rest of the game.

The remaining classes would form a framework for all similar card games; only the class
containing the rules need change for different games.

We also note that, so far, no object is capable of declaring the game won or deadlocked. It
may be that we will need an object that actually monitors the flow of the game, performing
these checks and testing for a win or deadlock.

It might be worthwhile to combine the user interface class with the rules class, and
the flow control class, since their functions are all inherently related to the user. For the
moment, we will call this class the GUI class, for “graphical user interface.” An alternative
is to break out the rules functionality into a separate class, and send to it each user request.
In many projects, the rules checker is implemented as a state machine, which holds a state
transition table, and keeps the current system state. Each request is checked against the
table to see if the corresponding transition is legal. In the card game, the state of the system
is bound up in the states of all the card piles. It would be foolish to try to construct a
complete state transition table for the entire game, since the number of possible states is
extremely large.

However, we could still have a separate class for checking the rules. Each user request
would be sent to this class, and it would send inquiry messages to the card piles implicated
in the request to see if a legal move was being attempted. Object interactions for each user
request would then become a two stage process, one to check for legality, and a second to
implement the changes. Every pile object would need functions to answer both kinds of
calls. We will keep to the one GUI object for now in the hope that in some cases a user
request can be implemented with a single set of calls to the card piles.

A merger appears possible between Draw _pile and Discard_pile. There are some actions
that take place between these two piles that can be hidden from the outside world. This
merger simplifies the interface of the aggregate class. The remaining parts of the program
need not know when the draw pile becomes empty and the discard pile is flipped over to
make a new draw pile. There is a small snag here, however, since detection of a lost game
is partly based on knowing when the draw pile is reestablished. Perhaps the flip_3_cards
function can return a boolean to indicate that the entire draw/discard pile has been cycled
without a single card being removed from the discard pile.

One further possible merger occurs between P _pile and Q_pile. If we expect more inter-
action between corresponding P and Q piles, than in between other piles, then the merger
makes sense. Again, the interface to the aggregate of P_pile and Q_pile is simpler than the
combination of the two separate interfaces.

Then we note that at run time there will be four S piles, six P piles and seven Q
piles. How shall we address them? One possibility is to collect each of these three sets of
objects into an array type container. We would then have S_pile[i], P_pile[i], and Q_pile]i].
This seems a satisfactory arrangement, somewhat along the lines of the problem domain,
however, there is some confusion here because we wanted to aggregate corresponding pairs
of P and Q piles. Let’s make the container an array of Table piles. We'll call the container
classes S_array, and Table_array. The S_array holds S piles, while the Table_array holds
Table piles. Since the objects being held are different, we would use a template for the
Array class, the parameter being the type of object to be held.

Good analysis and design comes from fleshing out all the choices available and selecting

the best combination we can find. Having arrays of S piles and Table piles seems to lack
homogeneity. Perhaps the idea of having three array objects, one for each of the P piles,
Q piles, and the S piles, is preferable. If so, the aggregation of P and Q piles is at best
awkward and should be dropped. Since all three kinds of objects to be held in the arrays
are kinds of piles (derived from the Pile class), there is no need for a template. Only one
Array class is needed.

Given the desire to make the program framework cover as many card games as possible,
we might need to consider making all card movements very trivial. For example, there could
be just one basic card movement function that could move exactly one card from one pile
to another. The flip_3_cards function would have to be written as a sequence of one card
movements. The mergers of classes, as discussed above, might also have to be scrapped in
the most generic version.

At this stage it may not be possible to estimate the cost of making the entire game
completely generic. We would most likely continue the analysis phase keeping all options
as open as possible, and make the decision later as to how generic we can afford to go.
Decisions that increase the reuse potential of individual classes may run counter to those
that make the entire program the most generic possible. A satisfactory compromise can
usually be found, although it is important to document all the choices as they arise.

Here are the 4x6 cards with the changes:

Class: Card: a playing card

Attributes:

suite enum of Hearts, Clubs, Diamonds, Spades
number 1..13

Member functions:

Class: Deck: 52 playing cards, all face down, random order
Attributes:
data a data structure for holding Cards

Member functions:

Class: Draw_pile: face down, unordered

Attributes:

position position in window of top left corner of first card
number_of_cards gives how many Cards are in the pile

data a data structure for holding Cards

Member functions:

Class: Discard_pile: face up, unordered
Attributes:
position position in window of top left corner of first card

number_of_cards
data

gives how many Cards are in the pile
a data structure for holding Cards

Member functions:

Class:

Source_pile: aggregation of draw and discard piles

Attributes:

Member functions:

Class: S_pile: face up, single suite, increasing order
Attributes:

position position in window of top left corner of first card
suite enum of Hearts, Clubs, Diamonds, Spades

number_of_cards
data

gives how many Cards are in the pile
a data structure for holding the cards

Member functions:

Class: S_array: container for 4 S_pile objects
Attributes:

S name of array holding the objects
how_many number of S piles currently occupied

Member functions:

operator][] overload of [] for this container

Class: P_pile: face down, unordered

Attributes:

position position in window of top left corner of first card

number_of_cards
data

gives how many Cards are in the pile
a data structure for holding the cards

Member functions:

Class: Q_pile: face up, alternating color, reducing order
Attributes:
position position in window of top left corner of first card

number_of_cards
data

gives how many Cards are in the pile
a data structure for holding the cards

Member functions:

Class: Table_pile: aggregation of p pile and q pile
Attributes:

Member functions:

Class: Table_array: container for Table_pile objects

Attributes:

t name of array holding the objects

Member functions:

operator|] overload of [] for this container

Class: GUI: graphical user interface, gets user inputs, validates them
according to the game rules, checks for game over or deadlock

Attributes:

state enum of initial, game_in_progress, deadlock, game_over

Member functions:

3.2 Architecture

Now that we have discovered the classes in our model, we might reflect on the architectural
model that we have accidentally stumbled across. We have three kinds of classes, interface
classes (GUI), control classes (combined into the GUI to check rules and control flow), and
entity classes (those that support data structures closely related to the problem domain.)
This division into three kinds of objects has been noted by many researchers. See Jacobson,
Chapter 6. The classes which are usually the most stable are the entity classes (our pile
classes). Designers will tend to agree about the designs of these classes. They closely model
problem domain objects. The least stable classes relate to user interfaces.

The control structure tends to be the place where designers will differ the most. For
example, in the card game, the rules checking functionality may be spread out amongst
the classes in many different ways. We have chosen to lump all the rules in one place for
ease of reuse. This is precisely the reasoning behind picking the three dimensions, interface,
control, and entity. In any OOP a class can be considered as a point in this 3-space
coordinate system. Each class will exhibit a certain amount of each of these traits. Some
designers try to keep all their classes on just one of these axes:

O

Behavior
@ Q Entity Object

Presentation

O Control Object

}—Q Interface Object

Information

O

Figure 2: The Three Dimensions of Object Space

Jacobson suggests that designers should try to keep to these three basic types of classes,
since they group the main types of behavior. All systems change. It is best to design
systems such that changes are concentrated in one, hopefully small, space. By keeping all
interface behavior in one set of classes, changes are localized to those classes, and since
these classes only deal with interface behavior, there should be no complex web of code to
untangle amongst code sections that are unrelated to interface matters. Experience with
real projects suggest these three dimensions create systems which are easy to comprehend
and simple to change. In order to conform to this model, our GUI class would have to be
split into its interface and control components. This split may be worthwhile in order to
evenly spread the amount of work amongst run time objects.

3.3 The System Interface

The next step is to discover all the system level operations (sysops): those operations or
messages that come from the outside environment. In our case, we are mainly concerned
about user inputs, although in a windows environment we would have to take care of resize,
repaint, and many other messages. The list of sysops is usually inspired by the verbs
appearing in the requirements specification.

Coleman advocates using 4x6 cards for what he calls the interface schema:

Operation new_game
Description empty all piles, make new deck and shuffle it, then deal.

Reads state of game

Changes all piles

Sends prompt or cursor to user
Assumes

Results all piles left in new game situation

10

Operation turn_3
Description turn over top 3 (or all if less than three) from Draw to Discard.
Reads Draw_pile
Changes Draw and Discard piles
Sends prompt, cursor, or error message if Draw is empty
Assumes Draw pile is not empty
Results top 3 (or all if less than three) from Draw are face up on top of Discard.
Operation move_from_Discard
Description take top from Discard and place on Q[i].
Reads i, or infers it from mouse position, Discard, Qi]
Changes Discard and Qi
Sends prompt, cursor, or error message if top of Discard does not go on Q[i]
Assumes top of Discard is opposite color and 1 value lower than top of Qi
Results top of Discard now face up on Q[i].
Operation flip_Discard
Description turn Discard face down and make it Draw, then empty Discard.
Reads Draw, Discard
Changes Draw and Discard
Sends prompt, cursor, or error message if Draw isn’t empty
Assumes Draw is empty
Results Discard is now empty and Draw is the inverted old Discard pile
Operation move_to_S(i,j)
Description Move top card of Q[i] to pile S[j]
Reads i,j, or infers them from mouse positions, Q[i], S[j]
Changes Q[i] and S[j] piles
Sends prompt, cursor, or error message if top of Q[i] does not go on Suite][j]
Assumes top of Q[i] is same suite and 1 value higher than top of S[j]
Results old top of Q[i] is now face up on SJ[jl.
Operation move_Pile(i,j)
Description entire Q pile Q[i] moved to the top of Q[j].
Reads L, Q[i}, Qlj]
Changes Qli] and Q[j] piles
Sends prompt, cursor, or error message if bottom of Q[i] does not go on top of Q]j]
Assumes bottom of Q[i] is opposite color and one less in value than top
of Q[j], OR, Qj is empty
Results Pile Q[i] has been moved to top of Q[j] and Q[i] is now empty

11

Operation flip_P _Top(i)
Description top of P[i] is flipped over and becomes Q][i].

Reads i, P[i], Q[i]

Changes P[i] and Q[i] piles

Sends prompt, cursor, or error message if P[i] is empty or Qi] is not empty
Assumes P[i] is not empty and Q[i] is empty

Results top of Pile Q[i] has become the only member of Q[i]

There are some assumptions missing. In most of the user events it is assumed that a
game is under way. In the case of a new_game command, if a game is under way, we might
ask if the user wishes to abandon the current game before trashing it.

The “Reads” field includes any input data contained in the sysop and any objects that
must be read. The “Changes” field lists the objects that must be altered in some way to
complete the sysop. These fields are useful in the design phase when deciding which objects
are involved in completing a sysop.

Coleman suggests that the sysop descriptions should be expanded into what he calls life
cycle models, or run time sequences of events. Each sysop leads to a sequence of calls to
run time objects. The exact sequence often depends on the system state. He advocates a
formal language for the life cycle models. It may be that pseudo code would be a better
choice here, although it seems important to note that this part of the analysis should not
be rushed, since bad choices here can lead to lots of unnecessary work later. Here are some
of the sysops in Coleman’s formal language:

turn_.3 = Draw_pile_not_empty.
(get_top_of_Draw.flip_over.place_on_Discard)? o7 !,

flip_Discard = Draw_pile_empty.

(get_top_of_Discard.flip_over.place_on_Draw)!.

The period implies sequencing, x.y means do x, then y. There is also the alternation
operator, x—y, meaning x or y, and the concurrency operator, x——y. The repetition
operator, (actions)”, shows how many times a certain sequence is to be repeated.

Notice that the life cycle model simply explains the sequences of actions that need to
take place on the run time objects. It does not assign responsibilities to particular objects
for carrying out these actions. This takes place during the design phase.

4 The Design Phase

Next we move into the design phase. The first consideration is the object interactions.

This involves identifying the subsets of objects needed to complete each sysop, or user
request in the case of the solitaire game, and determining which object will be the controller,
and which others will be collaborators.

Let’s consider just a couple of the system operations. In the case of turn_3, only the

12

draw and discard piles are involved, but a check is necessary to determine if a game is under
way. The same check is necessary in all but one of the user commands. It seems that the
GUI object is the most likely choice for the controller here. After checking that a game is
in progress, it simply sends a call to the Source_pile.

Consider the move_to_S(i,j) operation. The assumptions here require bringing data from
2 objects together in order to carry out the necessary checks. Shall we have the Q pile be the
controller and the S pile be the collaborator, or the other way round? Why not give control
to the GUI object? The idea is to make the object interactions somewhat like those of a
client - server system. The controller object is a client, and the collaborators are servers.
The servers supply relatively simple chunks of service (at least, they look simple in terms
of the calls we make to them.)

For the Solitaire game, the desire for reuse is so great that we would likely assign control
to the GUI object for all user commands. This object serves the role of supplying the user
command and user display interface.

Yet another way of thinking about the interface is to consider the actor/use case model.
An actor is not a person, but an external stimulus that the system must respond to. A
single user can create multiple actors, one for each kind of user request. A use case is a
course of events initiated by an actor specifying the interaction that takes place between
the actor and the system. The complete collection of use cases forms the user interface
specification. See Jacobson Chapter 7.

peek_top_card (1)

card returned (2)
delete_top (5)

Move_to_Suite(i,])]
GUI peek_top_card (3

card returned (4) S[j]
[add_to_top (6)

Figure 3: Object Interaction Diagram with Sequence Numbers

Clearly the interfaces between the objects need some careful work. At this point we can
think about whether to take a copy of the 2 top cards into the GUI object with one call
to each of the pile objects, or to get the necessary attributes of these cards, possibly with
several calls (number and suite in each case). Another alternative is to have the 2 piles
return pointers to the 2 top cards. Choices of whether to move pointers or objects should
probably be left to the implementation phase, but alternatives should be noted whenever
they arise. If the rules of the game were distributed amongst the objects, we could send the
details of the top card of the Q pile to the S pile and ask if the card fits. If the reply was
“yes,” then the S pile would have already added the new card and the only remaining duty
would be to send a delete_top_card message to the Q pile.

13

We would need an object interaction graph for each sysop. In this example there are
few interactions that involve multiple objects in a complex way. The new_game sysop calls
for action in every object, but it is a simple action, and there is little reason to worry about
the ordering of these actions. We will see some other examples where the decisions are not
so straightforward.

After finalizing the object interaction graphs, it should be possible to choose the class
member functions. We will know the names of the functions, their arguments, and be able
to specify the actions they perform, at least in terms of the problem domain. For the
container classes, piles, and array type classes, at this point we would begin to consider the
availability of classes from a class library. There is no point in designing yet another linked
list class.

How can the GUI object declare that the game is won? We first have to decide whether
to make the user move all cards individually to the S piles, or to have the system declare a
win at the first opportunity and move the remaining cards from the Q piles to the S piles.
In the former case, the GUI object could just count how many kings it had moved to the
S piles. In the latter case, an algorithm for detecting a win would be written into the GUI
object. This algorithm may imply some that extra functions be placed in the pile classes.

4.1 Inheritance

Finally we consider inheritance relationships. All the six card piles ARE piles, and so a
highly general Pile class is clearly suggested. What do all the six piles have in common?
They are just containers for sequences of cards. In each case, there can never be more
than 52 cards in a pile. In some piles, there can never be more than 13, or some lower
number. Inevitably we have the choice between a linked list and an array (although we
should defer the decision until the implementation phase.) We should determine all the
member functions (methods) of the classes in the design phase.

The objective in discovering inheritance relationships is to factor out the common fea-
tures of the most derived classes and to move these up to parent classes. Opportunities for
polymorphism depend on the problem domain. Here, a function, get_top_card() appears to
be common to several classes. In this problem, this function is likely to be a member of
the base class since it is needed by almost all the derived classes, and really has identical
meaning in each case (it isn’t needed in the S_pile class.)

The best way to arrive at the inheritance scheme is to consider all similar classes at the
same (lowest) level, and then to factor out the commonality amongst both data attributes
and the responsibilities (member functions) by building a tree from the bottom up. Say we
have the following classes and attributes/respounsibilities:

Class | Attributes | Responsibilities
A v

B W v

C w v, X

D W v,y

E z v

14

v
B E
W 7
v v
| |
C D

w w

v v

X Yy

Figure 4: Inheritance Example

In this diagram, all the non-leaf nodes of the tree represent classes that are not needed.
We will never make objects of their types. We call such classes abstract and can ensure in
C++ that programs cannot make objects of their type.

Inheritance should nest properly:

Class | Attributes | Responsibilities
A a, b

B a’, b, c

C a, b, d

Assume class A is abstract. That is, we have no need of objects of this class.

Here the base class function “a” is overridden in class B and inherited in class C. It is
better to move “a” out of class A, as follows:

15

b BAD GOOD

Figure 5: Good and Bad Inheritance Structures

It is also important that at each level of the inheritance tree, all classes at that level add
the same kind of features to those at the previous level. Then, as each path is traced from
the root to the leaves, the same kinds of developments take place level to level. This rule of
thumb usually makes it very easy to add new classes. The appropriate level and position
in the tree for the new class should be quite easy to find.

4.2 Invariants

Invariants are in a sense the rules of the operation of each object and of collections of
objects, including, at the highest level, the entire program. We can write a large number
for the solitaire game. For example, a card must not be in two places at once. There must
always be exactly 52 (different) cards, each conforming to the rules for cards, i.e.

suite € {Hearts, Clubs, Diamonds, Spades}, 1 < number < 13. Each kind of pile has its
own rules, as enumerated earlier.

There may also be other kinds of predicates that could be checked. For example, certain
functions have preconditions: a square root function requires that its argument’s value
be greater than zero, a matrix inversion function requires that the matrix is not singular,
many graph theoretic operations require that the graph is acyclic. Which of these should we
provide checks for? In the card game, we can ensure a certain invariant is met by making
sure that each operation performed by the program follows a simple rule. If we create the
Deck object correctly, and make sure that on every “movement” of a card, a deletion AND
an addition takes place, and these operations are on the correct container objects, then we
can neither create additional cards, nor drop cards.

In some cases, a check of the invariant will be at least as costly in time as the function
to be performed (graph acyclicity for example), so it is important not to over-do these
checks. However, some invariants lend themselves to simple predicates that can easily be
programmed in as assertions. Most C and C++4 compilers allow all assertions to be disabled
when testing is complete. We should test everything that is easy to test, and document

16

those invariants that we chose not to test, just in case a simple test can be developed later.

5 Implementation

The actual process of implementation depends heavily on the choice of OOP language. We
will briefly consider some general principles as related to C+—+.

When objects are on the move, i.e. passed as parameters to functions, it is usually
faster to use “call by reference,” which does not copy the values of the object’s data onto
the stack, but only places the address of the object on the stack. The general philosophy
is, make them once, keep them in one place until they aren’t needed any more, then delete
them. In the card game, we would make the card objects once, placing them in the Deck
object, then use pointers to the cards in the various data structures that hold cards (the
other piles). The danger in this approach is that a bug could cause a card to be referred
to by more than one container object (be present in more than one pile). Carefully placed
assertions can check for this kind of error.

At this stage we discover that the Deck class has functionality that implies a different
data structure from those of the other pile classes. The shuffle function is much simpler
and faster to perform in an array than a linked list. The difference is so great as to force
an array implementation for the Deck class. In the Deck class we do not need to add cards
or add piles, and get_top_card is only needed during a deal sysop. The Deck class will hold
all the cards throughout the game. Given the Deck class’ interface, an array of pointers to
cards seems appropriate.

Speed at run time is often critical and many believe that OOPs tend to be slower than
procedural programs. There are some areas where speed can be lost in C++ if care isn’t
taken. For example, parameters ought to be passed by reference whenever possible. All
short member functions should be inline, unless there are many independent calls to them.
Care must be taken with inheritance structures when derived objects are frequently created
and destroyed. Deep inheritance structures can lead to chaining of calls to constructors and
destructors.

The way data structures are implemented depends on the above philosophy. Do data
structures (containers) hold actual objects that are copied into and out of the structure,
or do they hold pointers to them? The answer will mostly be to use pointers for reasons
given above. In some cases, classes will declare constant or variable objects of some user
defined classes. Since these member objects cannot be destroyed until the parent object
itself is destroyed, it must be clear from the requirements specification that the lifetimes of
the objects and their parent be identical.

There are some specific constraints in C++ (and all languages) that enforce a certain
kind of implementation. For example, in C++4, an array of objects of class X is created by
(implicitly) calling X’s constructor once for each element of the array. Unfortunately each
element of the array is instantiated with identical initial values. If you want the elemental
objects to begin life with different values, then it is necessary to use an array of pointers to
X, rather than an array of X’s. Then the program explicitly runs down the array of pointers
making the elements as needed.

17

For many well known data structures, the programmer is advised to consider using a
class library. Containers form the major part of such libraries and tend to conform to a
certain style. It is common for such classes to come in two parts, the container, which has
almost no public interface, and an iterator that the user declares to access the container’s
contents. This style enables multiple iterators to be declared for the same container. Data
can be inserted, deleted, and searched via such iterators.

In the case of the card game, the Pile class could either be implemented as an array or a
linked list. The largest Pile is the Deck, containing 52 pointers to cards. There are a total
of twenty piles in the game and it doesn’t seem too wasteful to have 20*52 pointers in total.
The alternative is to use linked lists (for all but Deck). It need only be singly linked, and
we only do insertions and deletions on one end of the list. If a linked list is chosen, should
we include a “next” pointer within the card class, or should the container class handle all
the pointers? If the latter, then the container will maintain a linked list of “link” objects,
each link holding both a next pointer, pointing to the next link object, and a pointer to
a card. A container class of this type will usually be implemented as a class to hold the
objects, and another to act as an iterator. The user declares one iterator for each “pointer”
needed into the data structure:

Pile class
linky card;
Iterator
The link nodes links cardy
are internal to peek_top_card
the container get_top_card @
class) add_pile_to_top
Links cards add_card_to_top
make_empty
linky cardy

Figure 6: Linked List Container with Internal Links

Apart from memory space considerations, the advantage of the linked list over the array
is in the speed of moving one Q pile onto another. With the list, it is only necessary to
copy the head pointer of the list being moved into the tail of the receiving list.

We therefore end up with Deck being an array of pointers to cards, and the rest of the
piles all inheriting a base class “Pile” which defines a linked list.

18

It is at this stage that reuse must be carefully considered. Each class, especially the
containers, could be embellished in order to increase its reuse potential. For the linked list
class, although our needs are quite trivial, we could add extra member functions to our class
so that it becomes more attractive for reuse. The minimal requirement for reuse is that each
class present a single coherent interface. We do not want to combine disperate operations
that should be supported by two classes. In digital logic terms, an ALU combined with a
large decoder would not be of use in very many projects. Most designers would need only
one part of its functionality. In our case, the Pile class would have a very simple interface. If
another project needs a similar class, it can inherit our Pile and add functions as necessary
to build up the interface. We will say more about reuse in a later section.

6 Bibliography

1. Booch, G. Object-Oriented Design with Applications. Redwood City, Bengamin/Cummings.
2. Coleman, D. et.al. Object-Oriented Development, The Fusion Method. Prentice Hall.

3. Rumbaugh, J. et.al. Object-Oriented Modeling and Design. Englewood Cliffs, NJ.
Prentice Hall.

4. Wirfs Brock, R., et.al. Designing Object-Oriented Software. Englewood Cliffs, NJ.
Prentice Hall.

5. Jacobson, 1. et.al. Object-Oriented Softwre Engineering. Addison Wesley.

19

