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Abstract 
We investigate the preservation of quality of service 
guarantees to a flow of packets in the presence of flow 
aggregation. For efficiency, multiple flows, known as the 
constituent flows, are merged together resulting in a sin-
gle aggregate flow. Packet schedulers located after the 
network point where the aggregation occurred are aware 
of the aggregate flow, but are unaware of its constituent 
flows. In spite of this, we show that quality of service 
guarantees may still be offered to the constituent flows 
provided the aggregation is performed fairly. In earlier 
work, we showed that the end-to-end delay is preserved 
(and in some cases improved) under flow aggregation, 
when the packet delay is coupled with the reserved rate of 
the flow. We go beyond these results by showing that, 
even when the delay is de-coupled from the reserved rate, 
the end-to-end delay is preserved under flow aggregation. 

1. Introduction 
Consider the problem of delivering packets from a 

real-time application across a computer network. This 
problem has been studied extensively, resulting in the de-
velopment of guaranteed-rate schedulers. That is, sched-
uling protocols which guarantee a minimum bandwidth 
and a maximum packet delay to each application. Exam-
ples of these scheduling protocols can be found in 
[14][15].  

In guaranteed-rate schedulers, resources, such as 
bandwidth and buffer space, are reserved for each appli-
cation along the entire path to its destination. If not 
enough resources are available, the application's request 
for a network connection is denied. Due to the reservation 
of resources, the network can provide service guarantees 
to each application, provided the rate of the application 
does not exceed the agreed-upon rate. These service guar-
antees are of paramount importance to real-time applica-
tions, such as interactive audio and video [7]. 

Let us denote by flow the sequence of packets gener-
ated by a single application. In this paper, we investigate 
the effects of aggregating multiple flows, known as the 
constituent flows, into a single aggregate flow. Once the 
aggregation is done, the remaining schedulers along the 
path have no knowledge of the constituent flows of the 
aggregate flow. They simply treat the aggregate flow as a 

single flow whose rate is the sum of the reserved rates of 
the constituent flows. 

One of many possible implementations of flow aggre-
gation is virtual paths in virtual circuit networks. Multi-
ple virtual circuits may be combined into a single virtual 
path. Schedulers are aware of the virtual path, but are un-
aware of the virtual circuits constituting the virtual path. 
Thus, a virtual circuit may be viewed as a constituent 
flow, and a virtual path may be viewed as an aggregate 
flow. 

The purpose of flow aggregation is to improve the effi-
ciency of the schedulers and to simplify the management 
of flows. For example, buffer management is simplified, 
because only one queue per aggregate flow is required, 
rather than one queue per constituent flow. Scheduling ef-
ficiency is improved, because the number of flows is re-
duced. Finally, rerouting an aggregate flow in the event of 
a failed channel along its path is much more efficient 
than rerouting each of the constituent flows individually. 

In this paper, we examine if it is possible to provide 
quality of service guarantees to the constituent flows, even 
though schedulers are not aware of them. In particular, 
we consider end-to-end delay guarantees. In an earlier 
work [1], we investigated flow aggregation in a network 
where the per-hop delay of a flow is coupled with the 
flow's reserved rate. We showed that, if the aggregation of 
flows is performed fairly, then the same (and sometimes a 
better) upper bound on end-to-end delay is obtained with 
flow aggregation as compared to no flow aggregation. In 
this paper, we investigate end-to-end delays under flow 
aggregation, where the per-hop delay is not coupled with 
the reserved rate of the flow. We show that, even when 
the delay is de-coupled from the reserved rate, the end-to-
end delay is preserved under flow aggregation.  

Due to space restrictions, only selected proofs are pre-
sented. The remaining may be found at [2]. 

2. Network Model 
A network consists of a set of computers connected via 

point-to-point communication channels. A flow in a com-
puter network is a sequence of packets generated by a sin-
gle application.  

Each output channel of a computer is equipped with a 
scheduler. From the input channels, the scheduler re-
ceives packets from flows whose next hop to the destina-



 

tion is the output channel of the scheduler. The scheduler 
maintains a first-in-first-out queue for each flow. When-
ever its output channel becomes idle, the scheduler 
chooses a received packet and forwards the packet to the 
output channel. The rate at which the scheduler forwards 
the packets of a flow must be at least the reserved rate of 
the flow.  

We say a packet is forwarded to the output channel 
when the first bit of the packet is being transmitted by the 
channel. A packet exits the scheduler when the last bit of 
the packet is transmitted by the output channel. A packet 
is in the output channel if it has been forwarded to the 
output channel but has not yet exited the output channel. 
The path of flow f is the sequence of schedulers traversed 
by f from its source to its destination. 

We adopt the following notation for each flow f and 
each scheduler s along the path of f: 

• R.f forwarding rate (bytes/sec.) reserved for f. 
• p.f.i ith packet from flow f, i ≥ 1. 
• L.f.i packet length (bytes) of packet p.f.i. 
• A.s.f.i arrival time to scheduler s of packet p.f.i. 
• E.s.f.i exit time of packet p.f.i from scheduler s. 
• Lmax.f upper bound on packet length for flow f. 
• Lmin.f lower bound on packet length for flow f. 
• Lmax.s upper bound on packet length for all flows at 

scheduler s. 
• C.s capacity in bytes/sec. of the output channel 

of scheduler s. 

3. Measuring Packet Delay 
Before discussing flow aggregation, we begin by defin-

ing packet delays at a scheduler. In this section, we pre-
sent how packet delays are assigned in our model, and the 
conditions under which the calculated delays can be guar-
anteed to each flow. 

3.1.   Start-Time and Finish-Time 
Consider a scheduler s, an input flow f of s, and packet 

p.f.i. We define the start-time S.s.f.i and finish-time F.s.f.i 
as follows. Assume s were to forward the packets of f at 
exactly the rate R.f, as if f were its only input flow and 
C.s were equal to R.f. Then, S.s.f.i is the time at which 
p.f.i is forwarded to the output channel of s, and F.s.f.i is 
the time at which p.f.i exits scheduler s. 
Definition 1 
Let f be an input flow of scheduler s.  
a) S.s.f.1 = A.s.f.1. 
b) S.s.f.i = max(A.s.f.i, F.s.f.(i-1)), for every i, i > 1. 
c) F.s.f.i = S.s.f.i + L.f.i/R.f, for every i, i ≥ 1. 
♦ 

Since flow f reserves a rate R.f from scheduler s, one 
way to define delay is for s to forward each packet p.f.i no 
later than F.s.f.i plus a small constant α.s (usually α.s = 
Lmax.f/C.s). That is, s forwards the packets of f at least as 
fast as a constant-rate server. We refer to this delay as 

rate-proportional delay.  
With rate-proportional delay, the per-hop delay of each 

packet of f is Lmax.f/R.f + α.s = Lmax.f/R.f + Lmax.f/C.s 
[3][8]. This delay is coupled with the reserved rate of the 
flow. To decrease the per-hop delay, a greater rate must 
be reserved by the flow.  

Another approach of assigning delays to packets is the 
real-time channel model [16]. Here, each flow is assigned 
a pair of values, (δ.f, T). Packets from flow f are assumed 
to arrive with an inter-packet separation time of at least T 
seconds, and the scheduler guarantees their per-hop delay 
to be at most δ.f. This delay is flexible, since each flow 
chooses its δ.f value, as opposed to rate-proportional de-
lay, where the delay is coupled with the reserved rate. 
However, a schedulability test must performed to deter-
mine if the scheduler can satisfy the delay chosen by each 
flow, and the packet size is fixed. Necessary and sufficient 
conditions for the schedulability of this model may be 
found in [16]. 

In this paper, we choose a more flexible packet dead-
line based on the packet's start-time (similar to the delay 
chosen in [6]). That is, the exit time of a packet p.f.i from 
a scheduler s should be at most S.s.f.i + δ.s.f.i for some 
constant δ.s.f.i. 
Definition 2 
A scheduler s is a start-time scheduler iff, for every input 
flow f of s and every i, i ≥ 1,  

 E.s.f.i ≤ S.s.f.i + δ.s.f.i 

for some constant δ.s.f.i.  
♦ 

We always assume schedulers are start-time schedulers.  
Start-time delay is flexible enough to represent both 

rate-proportional delay and real-time channel delay. If we 
choose δ.s.f.i = Lmax.f + α.s, start-time delay equals rate-
proportional delay. Real-time channel delay is obtained 
from start-time delay by making packets of constant size, 
setting T = L.f/R.f, and preventing packet p.f.i from being 
considered for scheduling until clock ≥ S.s.f.i. 

Since the start-time of a packet determines its exit time 
from a scheduler, we must examine how the start-time of 
a packet changes from one scheduler to the next. 
Theorem 1  
Let s and t be two consecutive schedulers in the path of 
flow f. For all i,  

  S.t.f.i ≤ S.s.f.i + ∆.s.f.i 

where ∆.s.f.i = }x.f.s.{max
ix0

δ
≤≤

. 

♦ 
A theorem similar to Theorem 1 was proven in [6]. 

From this bound on the start-time increase, we obtain a 
bound on end-to-end packet delay. 
Theorem 2 
Let t1, t2, … , tk be a sequence of start-time schedulers 
traversed by flow f. For all i,  



 

  S.tk.f.i ≤ S.t1.f.i +
� −

=
∆

1k

0x
x i.ft.  

  E.tk.f.i ≤ S.tk.f.i + δ.tk.f.i 
♦ 

The first part of the Theorem follows from induction 
on the length k of the sequence of schedulers. The second 
part follows from the definition of a start-time scheduler. 

Since rate-proportional delay can be represented using 
start-time delay, the end-to-end theorems using rate-
proportional delay reported in [3] and [8] are a corollary 
of Theorem 2. 

3.2.   Schedulability Tests 
With start-time delay, each flow chooses its desired 

per-hop delay δ.s.f.i at each scheduler s.  Obviously, if all 
flows choose a very small delay, the scheduler will not be 
able to satisfy these delays. Therefore, a schedulability 
test is required to determine if it is possible to satisfy the 
deadlines required by each flow. 

For the  case of rate-proportional delay, where δ.s.f.i = 
Lmax.f/R.f + Lmax.f/C.s, a necessary and sufficient condi-
tion for schedulability is the sum of the rates of the input 
flows must be at most the capacity of the output channel 
[12].  

For start-time delay in general, we assume that δ.s.f.i is 
equal for all packets of f, so we refer to it simply as δ.s.f. 
Otherwise, a schedulability condition is difficult (if not 
impossible) to find. 

We begin with the case in which all packets from the 
same flow are of the same size, i.e., Lmin.f = Lmax.f for all 
f. The theorem and its proof is very similar to the real-
time channel proof of [16], but not identical, since we as-
sume no rate control on the input flows. 
Theorem 3 
Let f1, f2, … , fn be the input flows of a scheduler s. Also, 
let 0 < Lmin.fx = Lmax.fx, 1 ≤ x ≤ n. Flows f1, f2, … , fn are 
schedulable iff, for all t, t > 0, 
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♦ 
In Theorem 3, we test for all values of t, t > 0, for an 

unbounded number of tests. However, a test with a finite 

number of values of t can be obtained in the same way as 
done in [16]. 

We next consider the case of variable packet size, un-
der the assumption that the maximum packet size of each 
flow is at least twice its minimum packet size.  
Theorem 4 
Let f1, f2, … , fn be the input flows of a scheduler s, and 
the sum of the rates of these flows is at most C.s. Also, let 
0 < 2⋅Lmin.fx ≤ Lmax.fx, 1 ≤ x ≤ n.  Finally, let S1 = { δ.s.f1, 
δ.s.f2, … , δ.s.fn} , and S2 = { δ.s.f1+Lmin.f1, δ.s.f2+Lmin.f2, 
… , δ.s.fn+Lmin.fn} . Flows f1, f2, … , fn are schedulable iff, 
for all t, t ∈ S1 U S2, 
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♦ 

4. Flow Aggregation 
We next describe the aggregation of multiple flows 

into a single flow. In the next section, we show the end-
to-end delay achievable under flow aggregation.  

A simple flow is a potentially infinite sequence of 
packets generated by an application. That is, the flows 
considered in earlier sections were simple flows. 

A flow f is a constituent of flow g if the packets of f are 
a subset of the packets of g.  

A scheduler that receives as inputs a set of flows f0, f1, 
… , fn, and produces as output a single aggregate flow g, 
by merging the packets of the input flows, is called an 
aggregator. Flows f0, f1, … , fn are said to be the immedi-
ate constituents of flow g. Note that any constituents of 
flows f0, f1, … , fn are also constituents of g. The reserved 
rate, R.g, of aggregate flow g is the sum of the reserved 
rates of the immediate constituent flows of g. 

A scheduler whose set of input flows is the same as its 
set output flows is called a non-aggregating scheduler. 

For each input flow g of a scheduler, the scheduler is 
unaware of the constituent flows contained by g (or sim-
ply chooses to ignore them). It thus schedules the packets 
of g as if g were a simple flow with reserved rate R.g, i.e., 
the start and finishing times of each packet of g are de-
fined as if g were a simple flow with rate R.g.  

We assume all aggregators are start-time schedulers. 
That is, every input packet p.f.i will exit an aggregator s 
no later than time S.s.f.i + δ.s.f.i.  

A separator is a process that receives as input an ag-
gregate flow, and produces as output the set of immediate 
constituents of the input flow. We assume a separator 
causes no packet delay. Separators are the only processes 
aware of the immediate constituents of a flow. 

scheduler

separator

aggregator

fg

h

d

e
c

f

e

 
Figure 1 Example of flow aggregation 



 

We say that flow g is the root of flow f at some point in 
the network if f is a constituent of g, and g is not a 
constituent of any other flow at this network point.  

Consider for example the computer with four in-
put/output channels depicted in Figure 1. Here, flows f 
and g are the immediate constituents of h, and they are 
separated from h through a separator. Input flows c and d 
are aggregated together to form flow e. I.e., c and d are 
the immediate constituents of e. Flows e and f are sched-
uled by a non-aggregating scheduler and sent to an output 
channel without being aggregated together.  

Note that the root of a flow may change as it traverses 
the network The root of flow f before entering the com-
puter is h, and after exiting the computer is f itself. 

Also, note that the aggregator and the scheduler are in 
the same computer, and hence, the aggregator may for-
ward packets to the scheduler without delay. In this case, 
we view the output channel of the aggregator as having 
infinite capacity.  

5. Fair Flow Aggregation  
In this section, we investigate the end-to-end delay of a 

flow f as it traverses a network containing flow aggrega-
tors and separators. In order to guarantee a low end-to-
end delay to each flow, the behavior of flow aggregators 
must be restricted. We begin by exploring this restriction. 

5.1.   Fair Aggregators 
Consider Figure 2. Scheduler t is not aware that its in-

put flow g is the aggregation of two flows, f and h. Hence, 
scheduler t only guarantees the exit time of each packet 
p.g.j to be at most S.t.g.j + δ.t.g.j, and makes no guaran-
tees about the exit times of packets from f and h. 

Since the exit time at scheduler t depends on the start-
time of each packet, we would like to bound the start-time 
of flow g at scheduler t as if no aggregation had occurred. 
For example, assume instead that s is a non-aggregating 
scheduler, and thus, f, h, and d are individual input flows 
of scheduler t. Then, from Theorem 1, and s being a start-
time scheduler, 

 S.t.f.i ≤ S.s.f.i + ∆.s.f.i 
Let p.g.j = p.f.i, i.e., the jth packet from g is the i th 

packet from f. We would like to obtain a similar relation-
ship between S.t.g.j and S.s.f.i as the one above between 
S.t.f.i and S.s.f.i. This will bound the exit time from t of 
p.f.i as a function of S.s.f.i. 

We choose the bound as follows. 

(i)  S.t.g.j  ≤  S.s.f.i + β.s.f.i  

for some constant β.s.f.i, β.s.f.i ≥ 0. From (i), t being a 
start-time scheduler, and p.f.i = p.g.j, we conclude, 

 E.t.f.i = E.t.g.j ≤ S.t.g.j + δ.t.g.j ≤ S.s.f.i + β.s.f.i + δ.t.g.j 
= S.s.f.i + β.s.f.i + δ.t.f.i 

Therefore, the bound of (i) above can be used to com-
pute the exit time of p.f.i at scheduler t even though 
scheduler t is not aware of flow f. We formalize this defi-
nition next. 
Definition 3 
1. An aggregator s is fair, iff, for every immediate con-

stituent f of its output flow g, there exists a constant 
β.s.f.i such that 

 S.t.g.j ≤ S.s.f.i + β.s.f.i 
where t is the next scheduler of g, and p.g.j = p.f.i.  

2. A non-aggregating scheduler s is fair, iff, for every 
input flow f, there exists a constant β.s.f.i, such that  

 S.t.f.i ≤ S.s.f.i + β.s.f.i 
where t is the next scheduler of f. 

3. For a scheduler s (aggregating or non-aggregating), 
we define  

 Β.s.f.i = max
ik≤ { β.s.f.k}  

♦ 
Note that for a non-aggregating scheduler s, if s is a 

start-time scheduler, then from Theorem 1, 
∆.s.f.i = β.s.f.i. In Section 5.4, we show how fair aggrega-
tors can be constructed.  

As mentioned in Section 3, all aggregators are as-
sumed to be start-time schedulers. However, this does not 
imply that the aggregator is fair, as we show next. 

Consider Figure 2, and assume that both f and h are 
generating packets at a rate greater than their reserved 
rate. The aggregator forwards packets from f at exactly 
the rate R.f, but it forwards the packets from h at a rate 
greater than R.h. Notice that the aggregator satisfies the 
definition of a start-time scheduler, since the packets of f 
will exit the aggregator close to their start-times.  

However, it is possible that the queue of g will grow 
without bound at scheduler t, since packets of g arrive at a 
rate greater than R.g = R.f + R.h. Thus, the packets of f 
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Figure 2: Fair Aggregators 
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Figure 3: Induction Scenarios 



 

will be delayed excessively at scheduler t, because in the 
queue of g there is an excessive number of packets of h in 
between any two packets of f. 

To prevent the above, the aggregator should be fair. 
That is, it should forward packets from f and h in a man-
ner that ensures relation (i) holds, and also ensures a 
similar relation between h and g. We will see below that, 
by restricting all aggregators to be fair, an upper bound 
on the end-to-end delay of each flow, similar to the bound 
of Theorem 2, holds in the presence of flow aggregation. 

5.2.   End-to-End Delay 
We next examine the end-to-end delay of a flow in the 

presence of aggregation. 
Theorem 5 
Let t1, t2, … , tk be the path of fair schedulers traversed by 
flow f. Define rp.(s,f,i) to be the triplet s.g.j, where g is 
the root flow of f at scheduler s, and p.g.j = p.f.i. Then, 

 S.rp(tk.f.i) ≤ S.t1.f.i + �
−

=

1k

0x
x )i,f,t(rp.B  

 E.tk.f.i ≤ S.rp(tk.f.i) + δ.rp(tk,f,i) 
Proof 

Let depth.f be the maximum number of aggregations f 
goes through to obtain any of f's roots along the path of f. 
Let length.f be the number of schedulers in the path trav-
ersed by f. The proof is based on induction over the pair 
(depth.f, length.f). 

For the base case, we consider pair (d, 1), i.e., a flow of 
any depth d through only one scheduler. In this case, 
Theorem 5 reduces simply to S.t1.f.i ≤ S.t1.f.i and E.t1.f.i 
≤ S.t1.f.i + δ.t1.f.i, which follows from the definition of a 
start-time scheduler. 

For the induction case, we assume that Theorem 5 
holds for all flows of depth less than depth.f, and for all 
flows at depth depth.f (including f) for the first k-1 
schedulers along the path of the flow. 

Consider Figure 3, which gives us three scenarios for 
the induction step. In scenario (a), the input to tk-1 is f, 
and the input to tk is also f. From the induction hypothe-
sis, 

 S.tk-1.f.i ≤ S.t1.f.i + �
−

=
Β

2k

0x
x )i,f,t(rp.  

Since tk-1 is a fair scheduler, then  

 S.tk.f.i ≤ S.tk-1.f.i + Β.tk-1.f.i 
Combining the above two relations, and noting that  

rp(tk-1,f.i) = f.i, we obtain the desired result. The value of 
E.tk.f.i follows from tk being a start-time scheduler. 

Consider now case (b). Here, the input to tk-1 is a flow 
whose depth is less than the depth of f (i.e., it contains f 
as a constituent flow). Let tm be the last aggregator in the 
path of f whose input is f. Thus, g goes through tm+1 up to 
tk-1. Let p.g.j = p.f.i. Note that the root flow of g is the 
same as that of f. Since the length of the path of g is less 
than k, then by the induction hypothesis, 

(ii)  S.rp(tk-1.g.j)  ≤  S.tm+1.g.j + �
−

+=
Β

2k

1mx
x )j,g,t(rp.  

            = S.tm+1.g.j + �
−

+=
Β

2k

1mx
x )i,f,t(rp.   

Also, from the induction hypothesis, 

(iii) S.tm.f.i = S.rp(tm.f.i) ≤ S.t1.f.i + �
−

=
Β

1m

0x
x )i,f,t(rp.   

Since tm is a fair aggregator, 

(iv)  S.tm+1.g.j ≤ S.tm.f.i + Β.tm.f.i  
Since tk-1 is a start-time scheduler, we have from (ii) 

E.rp(tk-1.g.j) ≤ S.tm+1.g.j + �
−

+=
Β

2k

1mx
x )i,f,t(rp.  + δ.rp(tk-1,g,j) 

Combining this with relation (iv), and E.tk-1.f.i =    
E.tk-1.g.j, 

E.rp(tk-1.f.i)≤S.tm.f.i+Β.tm.f.i+ �
−

+=
Β

2k

1mx
x )i,f,t(rp. +δ.rp(tk-1,g,j) 

Note that rp(tk-1,g,j) = rp(tk-1,f,i) and rp(tm,f,i) = f.i. 
Thus, 

 E.tk-1.f.i ≤ S.tm.f.i + �
−

=
Β

2k

mx
x )i,f,t(rp.  + δ.rp(tk-1,f,i) 

Thus, the whole path from tm up to tk-1 can be viewed 
as a single start-time scheduler P, whose δ.P.f.i value 
equals, 

 �
−

=
Β

2k

mx
x )i,f,t(rp.   + δ.rp(tk-1,f,i) 

Note that B is an increasing function with each succes-
sive packet, and thus, the maximum of δ.P.f over all 
packets of f up to and including i, is at most 

 �
−

=
Β

2k

mx
x )i,f,t(rp.   + Β.rp(tk-1,f,i) 

Hence, from Theorem 1 

 S.tk.f.i ≤ S.tm.f.i + �
−

=
Β

1k

mx
x )i,f,t(rp.  

Combining the above with (iii), 

 S.rp(tk.f.i) = S.tk.f.i ≤ S.t1.f.i + �
−

=
Β

1k

0x
x )i,f,t(rp.  

which is the desired result. The value of E.tk.f.i follows 
from tk being a start-time scheduler. 

Case (c) in Figure 3 is similar (actually, simpler) than 
case (b), and is not presented due to space restrictions.  
♦ 

By comparing Theorem 2 and Theorem 5, we see that 
the end-to-end delay obtained via flow aggregation is 
similar to the end-to-end delay obtained without flow ag-



 

gregation. The following points about this theorem must 
be stressed.  

Consider a pair of flows f and h that are aggregated to 
form flow g. Since each scheduler cannot distinguish be-
tween f and h, both flows will experience the same per-
hop delay throughout the entire path of g. Therefore, f 
and h should be aggregated together only if they have 
similar delay requirements. This restriction is not too 
rigid, since it is unlikely that the per-hop delay require-
ments of flows will be diverse.  

In [1], we presented a theorem for the end-to-end delay 
of a flow in the presence of aggregation. Here, the sched-
ulers were rate-proportional schedulers. That, is, each 
packet p.g.j of an input flow g would exit scheduler s no 
later than F.s.g.j + α.s, where α.s is a constant, usually 
equal to Lmax.s/C.s. Examples of this type of schedulers 
are Virtual Clock [12][13], PGPS [9], and Time-Shift 
Scheduling [4][10]. The per-hop delay at scheduler s is 
Lmax.g/R.g + Lmax.s/C.s. Notice that if f is a constituent 
flow of g, then R.f < R.g, and this delay with aggregation 
is smaller than the delay without aggregation, i.e., smaller 
than Lmax.f/R.f + Lmax.s/C.s, provided Lmax.g ≈ Lmax.f. 
Thus, for rate-proportional schedulers, aggregation not 
only improves efficiency, but also decreases end-to-end 
delay. 

The admission control test for rate-proportional sched-
ulers is simply that the sum of the rates of the input flows 
must be at most the rate of the output channel. Hence, if 
the flows are schedulable without flow aggregation, then 
they are also schedulable under flow aggregation.  

In the case start-time schedulers, as shown in previous 
sections, a more complex schedulability test is required to 
check if the requested deadline bounds can be satisfied. 
Note that Theorem 5 requires each scheduler to be fair, so 
we assume that each scheduler has passed its schedulabil-
ity test. However, the question that must be answered is 
the following. Assume each flow has a per-hop delay re-
quirement, and assume that all the flows are schedulable 
in a network without aggregation. Then, if we perform 
aggregation by aggregating together flows with the same 
per-hop delay requirement, would the schedulability test 
still be satisfied? We address this question in the next sec-
tion. 

5.3.   Schedulability Tests 
In this section, we examine whether the schedulability 

of flows is hindered by flow aggregation. We begin with 
the case when all packets of the same flow have the same 
packet size. 
Theorem 6 

Let f1, …, fn, h1, …, hm be the input flows to a sched-
uler s. Let each flow have a constant packet size. Fur-
thermore, let the packet sizes of flows f1, …, fn be equal. 
We refer to the packet size of these flows as L.f. Let δ.s.fx 
be also equal for every fx, 1 ≤ x ≤ n. If flows f1, … fn, h1, 
… , hm are schedulable at s, then so are flows g, h1, … , 

hm, where R.g = �
=

n

1x
xf.R , L.g = L.f, and δ.s.g = δ.s.f.   

Corollary 1 
Let g1, …, gn, be a set of aggregate flows, where all the 

constituent flows of gx, 1 ≤ x ≤ n, have the same constant 
packet size as gx, and the same per-hop delay as gx. Then, 
if the constituent flows of flows g1, …, gn are schedulable 
at a scheduler s, then flows g1, …, gn  are also schedulable 
at s. 
Proof 

We have to show that for each time interval [0, t] of 
size t, the number of bytes from g whose start time is at 
least 0, and deadline is at most t, is at most the number of 
bytes from f1, …, fn. Since we will not be referring to the 
h1, …, hm flows, and the deadlines and packet sizes of f1, 
…, fn, and g are the same, we drop the subscripts and re-
fer to them as L and δ. 

From the proof of Theorem 3 [2], the number of bytes 
with the deadline at most t from g are at most 

 L1
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The number of bytes with deadline at most t from all 
flows fx is at most 
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Define (t - δ)⋅R.fx to be Xx, and define  
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Then the number of bytes from g becomes 
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and the number of bytes from each fx becomes 
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Therefore, we simply have to show that 
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Simplifying, we need to show that 
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In general, 
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That is, the number of times L fits into X is at most the 
number of times it fits into each of the Xx values, plus the 
number of times L fits into the sum of the "leftovers" from 
each of the Xx.  

Note also that,  

 LnL
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That is, each term in the sum is at least zero and less 
than L. Hence,  

  L

L
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X
X

n

1x

x
x
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  ≤  n - 1 

Thus, (v) follows from above and (vi). Corollary 1 fol-
lows from a simple induction over the aggregation level.  
♦ 

Not only does flow aggregation improve the efficiency 
of scheduling and signaling in a network, but from 
Theorem 6, we are still capable of obtaining the same per-
hop delay as in the case with no flow aggregation. How-
ever, we do have the restriction that only flows having the 
same per-hop delay can be aggregated together, and fur-
thermore, all flows aggregated together must have the 
same packet size. 

Currently, we are working on an analysis of the case 
where each individual flow has a constant packet size, but 
flows with different packet sizes are aggregated together. 

We next consider the case when the packet size is not 
constant for each flow. 
Theorem 7 

Let f1, …, fn, h1, …, hm, be the input flows to  a sched-
uler s. Let each of f1, …, fn, have the same maximum and 
minimum packet size, denoted Lmax.f and Lmin.f, respec-
tively, where Lmax.f ≥ 2⋅Lmin.f > 0. Furthermore, the per-
hop delay of each of f1, …, fn, at s is equal, and denoted 
by δ.s.f. Lastly, Lmax.hx ≥ 2⋅Lmin.hx > 0, for every x, 1 ≤ x 
≤ n. Then, if flows f1, … , fn, h1, … , hm are schedulable 
at s, then so are flows g, h1, … , hm, where R.g = �

=

n

1x
xf.R , Lmax.g = Lmax.f, Lmin.g = Lmin.f, and δ.s.g = δ.s.f.   

Corollary 2 
Let g1, …, gn, be a set of aggregate flows, where all the 

constituent flows of gx, 1 ≤ x ≤ n, have the same maxi-
mum and minimum packet size as gx, and also the same 
per-hop delay at s as gx. Also, Lmax.gx ≥ 2⋅Lmin.gx > 0, for 
every x, 1 ≤ x ≤ n. Then, if the constituent flows of flows 
g1, …, gn are schedulable at scheduler s, then flows g1, 
…, gn  are also schedulable at s. 
Proof 

We have to show that for each time interval [0, t] of 
size t, the number of bytes from g whose start time is at 
least 0, and deadline is at most t, is at most the number of 
bytes from f1, …, fn. Since each f flow and g have the 

same per-hop delay δ.s.f, we only need to consider values 
of t at least δ.s.f. 

From the proof of Theorem 4, the number of bytes 
from flow g are at most 
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Recall the each flow f and flow g have the same packet 
sizes and same per-hop delay. Thus, the number of bytes 
from a flow fx are at most 
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Thus, our objective is to show that (vii) is at most the 
sum over all x of (viii). 

Note that the left-hand-side of (vii) is Lmax.g, and left-
hand-side of (viii), over all x, is n⋅Lmax.g. Therefore, the 
left-hand-side of (viii) is at least 2⋅(n-1)⋅Lmin.g greater 
than the left-hand-side of (vii). Note that 2⋅(n-1)⋅Lmin.g is 
at least n⋅Lmin.g for all n, n ≥ 2.  

Consider any fx. Note that the maximum value of the 
right-hand-side of (viii) equals (t - δ.s.g)⋅R.fx. Then, the 
sum of these over all x equals (t - δ.s.g) ⋅R.g, which in 
turn is the maximum of the right-hand-side of (viii). 

However, consider an fx such that the right-hand-side 
of (viii) is 0. In this case, t < δ.s.g + Lmin.g/R.fx, which 
implies that (t - δ.s.g) ⋅R.fx is less than Lmin.g. Thus, 
summing over all n, the right-hand-side of (viii) is at 
most n⋅Lmin.g smaller than the right-hand-side of (vii). 
However, as discussed two paragraphs above, the left-
hand-side of (viii) is at least n⋅Lmin.g greater than the left-
hand-side of (vii). Hence, (vii) is at most (viii), as desired. 

The Corollary follows by a straightforward induction 
over the aggregation level. 
♦ 

Theorem 7 is similar to Theorem 6, but for the case 
when packet sizes are not constant. Thus, as long as the 
constituents of a flow have the same upper and lower 
bounds on message sizes, and also the same per-hop delay 
requirements, then aggregating flows does not hinder the 
schedulability of packets. 

5.4.   Implementing Fair Aggregators 
Thus far, we have considered the end-to-end packet de-

lay under flow aggregation, and the schedulability tests 
required to ensure this delay. However, we have not ad-
dressed how a fair aggregator may be implemented.  

Let g be the output flow of an aggregator s, and the 
channel capacity of the aggregator be C.s. A simple tech-
nique to construct an aggregator is the following. Con-
sider a fictitious start-time scheduler v whose output 
channel has capacity R.g and has the same input flows as 



 

aggregator s. Aggregator s forwards the packets in the 
same order as the fictitious scheduler v. However, after 
the aggregator forwards a packet of length L, the aggrega-
tor does not forward another packet until L/R.g seconds 
later, even though the packet takes only L/C.s seconds to 
transmit.  

We call a fair aggregator constructed from the above 
technique a basic fair-aggregator. Note that the above ac-
tually defines a whole family of basic fair aggregators, 
one family member for each possible type of start-time 
scheduler emulated. 
Theorem 8 
Let s be a basic fair-aggregator, f be one of its input flows, 
and g its output flow. Furthermore, let v be the fictitious 
scheduler emulated by the basic fair-aggregator. Then, 

S.t.g.j ≤  S.s.f.i + δ.v.f.i - L.f.i/R.g + L.f.i/C.s + Lmax.g/C.s 
where t is the scheduler after s, and p.g.j = p.f.i. 
Proof 

First, it is easy to show by induction that for all j, 
A.t.g.j ≥ F.t.g.(j-1) - Lmax.g/C.s (a proof may be found in 
[1]). Thus, from Definition 1, S.t.g.j  ≤ A.t.g.j + 
Lmax.g/C.s. 

Furthermore, since v is a start-time scheduler, and the 
output channel rate of s is C.s, then A.t.g.j ≤ S.s.f.i + 
δ.v.f.i - L.f.i/R.g + L.f.i/C.s. Hence, 

S.t.g.j  ≤ S.s.f.i + δ.v.f.i - L.f.i/R.g + L.f.i/C.s + Lmax.g/C.s 
♦ 

Thus, we can construct a fair aggregator from a start-
time scheduler using the technique above. Notice that if 
the start-time scheduler v being emulated is work-
conserving, then an input flow f of the aggregator s will 
be allowed to forward packets at a rate greater than R.f, 
but not at a rate greater than R.g. Thus, if the scheduler v 
distributes unused bandwidth in a fair manner among its 
input flows, then aggregator s will also distribute unused 
bandwidth (up to rate R.g) among its input flows.  

6. Concluding Remarks 
In this paper, we have defined the aggregation of mul-

tiple flows into a single flow, and how the end-to-end de-
lay bound is preserved in spite of flow aggregation. The 
advantages of the scheme is simplified scheduling and 
signaling due to the reduction in the number of input 
flows to a scheduler. The disadvantage is that flow aggre-
gation has to be performed by a non-work conserving 
scheduler. 

In [5], a different approach is taken for the aggregation 
of flows. The delay-jitter of a flow f that is aggregated 
with other flows to form flow g is set to zero. Thus, the 
characteristics of f once it is separated from g are identi-
cal to its characteristics when it was aggregated into g 
(modulo an equal delay applied to all packets). The dis-
advantage of this approach is that f cannot take advantage 
of unused bandwidth and temporarily exceed its reserved 
rate R.f. In our approach, a flow f can exceed its reserved 
rate R.f up to the reserved rate R.g of its parent flow, al-

lowing for a better use of network bandwidth. 
In [10], a rate-proportional protocol is presented for a 

network core without per-flow state. This is advanta-
geous, since no flow state needs to be maintained. How-
ever, the packet delay is the same as with per-flow state 
techniques, and hence higher than the delay with flow 
aggregation. 
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