

An In-Depth Look at Flow Aggregation for Efficient
Quality of Service

Jorge A. Cobb
Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083-0688

Abstract
We investigate the preservation of quality of service
guarantees to a flow of packets in the presence of flow
aggregation. For efficiency, multiple flows, known as the
constituent flows, are merged together resulting in a sin-
gle aggregate flow. Packet schedulers located after the
network point where the aggregation occurred are aware
of the aggregate flow, but are unaware of its constituent
flows. In spite of this, we show that quality of service
guarantees may still be offered to the constituent flows
provided the aggregation is performed fairly. In earlier
work, we showed that the end-to-end delay is preserved
(and in some cases improved) under flow aggregation,
when the packet delay is coupled with the reserved rate of
the flow. We go beyond these results by showing that,
even when the delay is de-coupled from the reserved rate,
the end-to-end delay is preserved under flow aggregation.

1. Introduction
Consider the problem of delivering packets from a

real-time application across a computer network. This
problem has been studied extensively, resulting in the de-
velopment of guaranteed-rate schedulers. That is, sched-
uling protocols which guarantee a minimum bandwidth
and a maximum packet delay to each application. Exam-
ples of these scheduling protocols can be found in
[14][15].

In guaranteed-rate schedulers, resources, such as
bandwidth and buffer space, are reserved for each appli-
cation along the entire path to its destination. If not
enough resources are available, the application's request
for a network connection is denied. Due to the reservation
of resources, the network can provide service guarantees
to each application, provided the rate of the application
does not exceed the agreed-upon rate. These service guar-
antees are of paramount importance to real-time applica-
tions, such as interactive audio and video [7].

Let us denote by flow the sequence of packets gener-
ated by a single application. In this paper, we investigate
the effects of aggregating multiple flows, known as the
constituent flows, into a single aggregate flow. Once the
aggregation is done, the remaining schedulers along the
path have no knowledge of the constituent flows of the
aggregate flow. They simply treat the aggregate flow as a

single flow whose rate is the sum of the reserved rates of
the constituent flows.

One of many possible implementations of flow aggre-
gation is virtual paths in virtual circuit networks. Multi-
ple virtual circuits may be combined into a single virtual
path. Schedulers are aware of the virtual path, but are un-
aware of the virtual circuits constituting the virtual path.
Thus, a virtual circuit may be viewed as a constituent
flow, and a virtual path may be viewed as an aggregate
flow.

The purpose of flow aggregation is to improve the effi-
ciency of the schedulers and to simplify the management
of flows. For example, buffer management is simplified,
because only one queue per aggregate flow is required,
rather than one queue per constituent flow. Scheduling ef-
ficiency is improved, because the number of flows is re-
duced. Finally, rerouting an aggregate flow in the event of
a failed channel along its path is much more efficient
than rerouting each of the constituent flows individually.

In this paper, we examine if it is possible to provide
quality of service guarantees to the constituent flows, even
though schedulers are not aware of them. In particular,
we consider end-to-end delay guarantees. In an earlier
work [1], we investigated flow aggregation in a network
where the per-hop delay of a flow is coupled with the
flow's reserved rate. We showed that, if the aggregation of
flows is performed fairly, then the same (and sometimes a
better) upper bound on end-to-end delay is obtained with
flow aggregation as compared to no flow aggregation. In
this paper, we investigate end-to-end delays under flow
aggregation, where the per-hop delay is not coupled with
the reserved rate of the flow. We show that, even when
the delay is de-coupled from the reserved rate, the end-to-
end delay is preserved under flow aggregation.

Due to space restrictions, only selected proofs are pre-
sented. The remaining may be found at [2].

2. Network Model
A network consists of a set of computers connected via

point-to-point communication channels. A flow in a com-
puter network is a sequence of packets generated by a sin-
gle application.

Each output channel of a computer is equipped with a
scheduler. From the input channels, the scheduler re-
ceives packets from flows whose next hop to the destina-

tion is the output channel of the scheduler. The scheduler
maintains a first-in-first-out queue for each flow. When-
ever its output channel becomes idle, the scheduler
chooses a received packet and forwards the packet to the
output channel. The rate at which the scheduler forwards
the packets of a flow must be at least the reserved rate of
the flow.

We say a packet is forwarded to the output channel
when the first bit of the packet is being transmitted by the
channel. A packet exits the scheduler when the last bit of
the packet is transmitted by the output channel. A packet
is in the output channel if it has been forwarded to the
output channel but has not yet exited the output channel.
The path of flow f is the sequence of schedulers traversed
by f from its source to its destination.

We adopt the following notation for each flow f and
each scheduler s along the path of f:

• R.f forwarding rate (bytes/sec.) reserved for f.
• p.f.i ith packet from flow f, i ≥ 1.
• L.f.i packet length (bytes) of packet p.f.i.
• A.s.f.i arrival time to scheduler s of packet p.f.i.
• E.s.f.i exit time of packet p.f.i from scheduler s.
• Lmax.f upper bound on packet length for flow f.
• Lmin.f lower bound on packet length for flow f.
• Lmax.s upper bound on packet length for all flows at

scheduler s.
• C.s capacity in bytes/sec. of the output channel

of scheduler s.

3. Measuring Packet Delay
Before discussing flow aggregation, we begin by defin-

ing packet delays at a scheduler. In this section, we pre-
sent how packet delays are assigned in our model, and the
conditions under which the calculated delays can be guar-
anteed to each flow.

3.1. Start-Time and Finish-Time
Consider a scheduler s, an input flow f of s, and packet

p.f.i. We define the start-time S.s.f.i and finish-time F.s.f.i
as follows. Assume s were to forward the packets of f at
exactly the rate R.f, as if f were its only input flow and
C.s were equal to R.f. Then, S.s.f.i is the time at which
p.f.i is forwarded to the output channel of s, and F.s.f.i is
the time at which p.f.i exits scheduler s.
Definition 1
Let f be an input flow of scheduler s.
a) S.s.f.1 = A.s.f.1.
b) S.s.f.i = max(A.s.f.i, F.s.f.(i-1)), for every i, i > 1.
c) F.s.f.i = S.s.f.i + L.f.i/R.f, for every i, i ≥ 1.
♦

Since flow f reserves a rate R.f from scheduler s, one
way to define delay is for s to forward each packet p.f.i no
later than F.s.f.i plus a small constant α.s (usually α.s =
Lmax.f/C.s). That is, s forwards the packets of f at least as
fast as a constant-rate server. We refer to this delay as

rate-proportional delay.
With rate-proportional delay, the per-hop delay of each

packet of f is Lmax.f/R.f + α.s = Lmax.f/R.f + Lmax.f/C.s
[3][8]. This delay is coupled with the reserved rate of the
flow. To decrease the per-hop delay, a greater rate must
be reserved by the flow.

Another approach of assigning delays to packets is the
real-time channel model [16]. Here, each flow is assigned
a pair of values, (δ.f, T). Packets from flow f are assumed
to arrive with an inter-packet separation time of at least T
seconds, and the scheduler guarantees their per-hop delay
to be at most δ.f. This delay is flexible, since each flow
chooses its δ.f value, as opposed to rate-proportional de-
lay, where the delay is coupled with the reserved rate.
However, a schedulability test must performed to deter-
mine if the scheduler can satisfy the delay chosen by each
flow, and the packet size is fixed. Necessary and sufficient
conditions for the schedulability of this model may be
found in [16].

In this paper, we choose a more flexible packet dead-
line based on the packet's start-time (similar to the delay
chosen in [6]). That is, the exit time of a packet p.f.i from
a scheduler s should be at most S.s.f.i + δ.s.f.i for some
constant δ.s.f.i.
Definition 2
A scheduler s is a start-time scheduler iff, for every input
flow f of s and every i, i ≥ 1,

 E.s.f.i ≤ S.s.f.i + δ.s.f.i

for some constant δ.s.f.i.
♦

We always assume schedulers are start-time schedulers.
Start-time delay is flexible enough to represent both

rate-proportional delay and real-time channel delay. If we
choose δ.s.f.i = Lmax.f + α.s, start-time delay equals rate-
proportional delay. Real-time channel delay is obtained
from start-time delay by making packets of constant size,
setting T = L.f/R.f, and preventing packet p.f.i from being
considered for scheduling until clock ≥ S.s.f.i.

Since the start-time of a packet determines its exit time
from a scheduler, we must examine how the start-time of
a packet changes from one scheduler to the next.
Theorem 1
Let s and t be two consecutive schedulers in the path of
flow f. For all i,

 S.t.f.i ≤ S.s.f.i + ∆.s.f.i

where ∆.s.f.i = }x.f.s.{max
ix0

δ
≤≤

.

♦
A theorem similar to Theorem 1 was proven in [6].

From this bound on the start-time increase, we obtain a
bound on end-to-end packet delay.
Theorem 2
Let t1, t2, … , tk be a sequence of start-time schedulers
traversed by flow f. For all i,

 S.tk.f.i ≤ S.t1.f.i +
� −

=
∆

1k

0x
x i.ft.

 E.tk.f.i ≤ S.tk.f.i + δ.tk.f.i
♦

The first part of the Theorem follows from induction
on the length k of the sequence of schedulers. The second
part follows from the definition of a start-time scheduler.

Since rate-proportional delay can be represented using
start-time delay, the end-to-end theorems using rate-
proportional delay reported in [3] and [8] are a corollary
of Theorem 2.

3.2. Schedulability Tests
With start-time delay, each flow chooses its desired

per-hop delay δ.s.f.i at each scheduler s. Obviously, if all
flows choose a very small delay, the scheduler will not be
able to satisfy these delays. Therefore, a schedulability
test is required to determine if it is possible to satisfy the
deadlines required by each flow.

For the case of rate-proportional delay, where δ.s.f.i =
Lmax.f/R.f + Lmax.f/C.s, a necessary and sufficient condi-
tion for schedulability is the sum of the rates of the input
flows must be at most the capacity of the output channel
[12].

For start-time delay in general, we assume that δ.s.f.i is
equal for all packets of f, so we refer to it simply as δ.s.f.
Otherwise, a schedulability condition is difficult (if not
impossible) to find.

We begin with the case in which all packets from the
same flow are of the same size, i.e., Lmin.f = Lmax.f for all
f. The theorem and its proof is very similar to the real-
time channel proof of [16], but not identical, since we as-
sume no rate control on the input flows.
Theorem 3
Let f1, f2, … , fn be the input flows of a scheduler s. Also,
let 0 < Lmin.fx = Lmax.fx, 1 ≤ x ≤ n. Flows f1, f2, … , fn are
schedulable iff, for all t, t > 0,

)f.L1
f.L

f.R)f.s.t(
,tf.s.,x(xmax

xmax

xx
x ⋅���

����� +
��
�	
	 ⋅δ−≤δΣ

♦
In Theorem 3, we test for all values of t, t > 0, for an

unbounded number of tests. However, a test with a finite

number of values of t can be obtained in the same way as
done in [16].

We next consider the case of variable packet size, un-
der the assumption that the maximum packet size of each
flow is at least twice its minimum packet size.
Theorem 4
Let f1, f2, … , fn be the input flows of a scheduler s, and
the sum of the rates of these flows is at most C.s. Also, let
0 < 2⋅Lmin.fx ≤ Lmax.fx, 1 ≤ x ≤ n. Finally, let S1 = { δ.s.f1,
δ.s.f2, … , δ.s.fn} , and S2 = { δ.s.f1+Lmin.f1, δ.s.f2+Lmin.f2,
… , δ.s.fn+Lmin.fn} . Flows f1, f2, … , fn are schedulable iff,
for all t, t ∈ S1 U S2,

s.C

s.L
ts.C

)

f.R

f.L
f.s.tifxf.R)xf.s.t(

f.R

f.L
f.s.tif0

f.L

,tf.s.,x(

max

x

xmin
x

x

xmin
x

xmax

x

−⋅≤

�� �
��

�
+δ≥⋅δ−

+δ<
+

≤δΣ

♦

4. Flow Aggregation
We next describe the aggregation of multiple flows

into a single flow. In the next section, we show the end-
to-end delay achievable under flow aggregation.

A simple flow is a potentially infinite sequence of
packets generated by an application. That is, the flows
considered in earlier sections were simple flows.

A flow f is a constituent of flow g if the packets of f are
a subset of the packets of g.

A scheduler that receives as inputs a set of flows f0, f1,
… , fn, and produces as output a single aggregate flow g,
by merging the packets of the input flows, is called an
aggregator. Flows f0, f1, … , fn are said to be the immedi-
ate constituents of flow g. Note that any constituents of
flows f0, f1, … , fn are also constituents of g. The reserved
rate, R.g, of aggregate flow g is the sum of the reserved
rates of the immediate constituent flows of g.

A scheduler whose set of input flows is the same as its
set output flows is called a non-aggregating scheduler.

For each input flow g of a scheduler, the scheduler is
unaware of the constituent flows contained by g (or sim-
ply chooses to ignore them). It thus schedules the packets
of g as if g were a simple flow with reserved rate R.g, i.e.,
the start and finishing times of each packet of g are de-
fined as if g were a simple flow with rate R.g.

We assume all aggregators are start-time schedulers.
That is, every input packet p.f.i will exit an aggregator s
no later than time S.s.f.i + δ.s.f.i.

A separator is a process that receives as input an ag-
gregate flow, and produces as output the set of immediate
constituents of the input flow. We assume a separator
causes no packet delay. Separators are the only processes
aware of the immediate constituents of a flow.

scheduler

separator

aggregator

fg

h

d

e
c

f

e

Figure 1 Example of flow aggregation

We say that flow g is the root of flow f at some point in
the network if f is a constituent of g, and g is not a
constituent of any other flow at this network point.

Consider for example the computer with four in-
put/output channels depicted in Figure 1. Here, flows f
and g are the immediate constituents of h, and they are
separated from h through a separator. Input flows c and d
are aggregated together to form flow e. I.e., c and d are
the immediate constituents of e. Flows e and f are sched-
uled by a non-aggregating scheduler and sent to an output
channel without being aggregated together.

Note that the root of a flow may change as it traverses
the network The root of flow f before entering the com-
puter is h, and after exiting the computer is f itself.

Also, note that the aggregator and the scheduler are in
the same computer, and hence, the aggregator may for-
ward packets to the scheduler without delay. In this case,
we view the output channel of the aggregator as having
infinite capacity.

5. Fair Flow Aggregation
In this section, we investigate the end-to-end delay of a

flow f as it traverses a network containing flow aggrega-
tors and separators. In order to guarantee a low end-to-
end delay to each flow, the behavior of flow aggregators
must be restricted. We begin by exploring this restriction.

5.1. Fair Aggregators
Consider Figure 2. Scheduler t is not aware that its in-

put flow g is the aggregation of two flows, f and h. Hence,
scheduler t only guarantees the exit time of each packet
p.g.j to be at most S.t.g.j + δ.t.g.j, and makes no guaran-
tees about the exit times of packets from f and h.

Since the exit time at scheduler t depends on the start-
time of each packet, we would like to bound the start-time
of flow g at scheduler t as if no aggregation had occurred.
For example, assume instead that s is a non-aggregating
scheduler, and thus, f, h, and d are individual input flows
of scheduler t. Then, from Theorem 1, and s being a start-
time scheduler,

 S.t.f.i ≤ S.s.f.i + ∆.s.f.i
Let p.g.j = p.f.i, i.e., the jth packet from g is the i th

packet from f. We would like to obtain a similar relation-
ship between S.t.g.j and S.s.f.i as the one above between
S.t.f.i and S.s.f.i. This will bound the exit time from t of
p.f.i as a function of S.s.f.i.

We choose the bound as follows.

(i) S.t.g.j ≤ S.s.f.i + β.s.f.i

for some constant β.s.f.i, β.s.f.i ≥ 0. From (i), t being a
start-time scheduler, and p.f.i = p.g.j, we conclude,

 E.t.f.i = E.t.g.j ≤ S.t.g.j + δ.t.g.j ≤ S.s.f.i + β.s.f.i + δ.t.g.j
= S.s.f.i + β.s.f.i + δ.t.f.i

Therefore, the bound of (i) above can be used to com-
pute the exit time of p.f.i at scheduler t even though
scheduler t is not aware of flow f. We formalize this defi-
nition next.
Definition 3
1. An aggregator s is fair, iff, for every immediate con-

stituent f of its output flow g, there exists a constant
β.s.f.i such that

 S.t.g.j ≤ S.s.f.i + β.s.f.i
where t is the next scheduler of g, and p.g.j = p.f.i.

2. A non-aggregating scheduler s is fair, iff, for every
input flow f, there exists a constant β.s.f.i, such that

 S.t.f.i ≤ S.s.f.i + β.s.f.i
where t is the next scheduler of f.

3. For a scheduler s (aggregating or non-aggregating),
we define

 Β.s.f.i = max
ik≤ { β.s.f.k}

♦
Note that for a non-aggregating scheduler s, if s is a

start-time scheduler, then from Theorem 1,
∆.s.f.i = β.s.f.i. In Section 5.4, we show how fair aggrega-
tors can be constructed.

As mentioned in Section 3, all aggregators are as-
sumed to be start-time schedulers. However, this does not
imply that the aggregator is fair, as we show next.

Consider Figure 2, and assume that both f and h are
generating packets at a rate greater than their reserved
rate. The aggregator forwards packets from f at exactly
the rate R.f, but it forwards the packets from h at a rate
greater than R.h. Notice that the aggregator satisfies the
definition of a start-time scheduler, since the packets of f
will exit the aggregator close to their start-times.

However, it is possible that the queue of g will grow
without bound at scheduler t, since packets of g arrive at a
rate greater than R.g = R.f + R.h. Thus, the packets of f

scheduler t

g

 f

h

d

g

d

aggregator s

Figure 2: Fair Aggregators

�

�
� �

�����

�
� ���� � �

�
� �

�����

� ���� � �

��
� �

�����
	�

�

�

�
���

�
�����

� ���� � �
���

���
�

�����

Figure 3: Induction Scenarios

will be delayed excessively at scheduler t, because in the
queue of g there is an excessive number of packets of h in
between any two packets of f.

To prevent the above, the aggregator should be fair.
That is, it should forward packets from f and h in a man-
ner that ensures relation (i) holds, and also ensures a
similar relation between h and g. We will see below that,
by restricting all aggregators to be fair, an upper bound
on the end-to-end delay of each flow, similar to the bound
of Theorem 2, holds in the presence of flow aggregation.

5.2. End-to-End Delay
We next examine the end-to-end delay of a flow in the

presence of aggregation.
Theorem 5
Let t1, t2, … , tk be the path of fair schedulers traversed by
flow f. Define rp.(s,f,i) to be the triplet s.g.j, where g is
the root flow of f at scheduler s, and p.g.j = p.f.i. Then,

 S.rp(tk.f.i) ≤ S.t1.f.i + �
−

=

1k

0x
x)i,f,t(rp.B

 E.tk.f.i ≤ S.rp(tk.f.i) + δ.rp(tk,f,i)
Proof

Let depth.f be the maximum number of aggregations f
goes through to obtain any of f's roots along the path of f.
Let length.f be the number of schedulers in the path trav-
ersed by f. The proof is based on induction over the pair
(depth.f, length.f).

For the base case, we consider pair (d, 1), i.e., a flow of
any depth d through only one scheduler. In this case,
Theorem 5 reduces simply to S.t1.f.i ≤ S.t1.f.i and E.t1.f.i
≤ S.t1.f.i + δ.t1.f.i, which follows from the definition of a
start-time scheduler.

For the induction case, we assume that Theorem 5
holds for all flows of depth less than depth.f, and for all
flows at depth depth.f (including f) for the first k-1
schedulers along the path of the flow.

Consider Figure 3, which gives us three scenarios for
the induction step. In scenario (a), the input to tk-1 is f,
and the input to tk is also f. From the induction hypothe-
sis,

 S.tk-1.f.i ≤ S.t1.f.i + �
−

=
Β

2k

0x
x)i,f,t(rp.

Since tk-1 is a fair scheduler, then

 S.tk.f.i ≤ S.tk-1.f.i + Β.tk-1.f.i
Combining the above two relations, and noting that

rp(tk-1,f.i) = f.i, we obtain the desired result. The value of
E.tk.f.i follows from tk being a start-time scheduler.

Consider now case (b). Here, the input to tk-1 is a flow
whose depth is less than the depth of f (i.e., it contains f
as a constituent flow). Let tm be the last aggregator in the
path of f whose input is f. Thus, g goes through tm+1 up to
tk-1. Let p.g.j = p.f.i. Note that the root flow of g is the
same as that of f. Since the length of the path of g is less
than k, then by the induction hypothesis,

(ii) S.rp(tk-1.g.j) ≤ S.tm+1.g.j + �
−

+=
Β

2k

1mx
x)j,g,t(rp.

 = S.tm+1.g.j + �
−

+=
Β

2k

1mx
x)i,f,t(rp.

Also, from the induction hypothesis,

(iii) S.tm.f.i = S.rp(tm.f.i) ≤ S.t1.f.i + �
−

=
Β

1m

0x
x)i,f,t(rp.

Since tm is a fair aggregator,

(iv) S.tm+1.g.j ≤ S.tm.f.i + Β.tm.f.i
Since tk-1 is a start-time scheduler, we have from (ii)

E.rp(tk-1.g.j) ≤ S.tm+1.g.j + �
−

+=
Β

2k

1mx
x)i,f,t(rp. + δ.rp(tk-1,g,j)

Combining this with relation (iv), and E.tk-1.f.i =
E.tk-1.g.j,

E.rp(tk-1.f.i)≤S.tm.f.i+Β.tm.f.i+ �
−

+=
Β

2k

1mx
x)i,f,t(rp. +δ.rp(tk-1,g,j)

Note that rp(tk-1,g,j) = rp(tk-1,f,i) and rp(tm,f,i) = f.i.
Thus,

 E.tk-1.f.i ≤ S.tm.f.i + �
−

=
Β

2k

mx
x)i,f,t(rp. + δ.rp(tk-1,f,i)

Thus, the whole path from tm up to tk-1 can be viewed
as a single start-time scheduler P, whose δ.P.f.i value
equals,

 �
−

=
Β

2k

mx
x)i,f,t(rp. + δ.rp(tk-1,f,i)

Note that B is an increasing function with each succes-
sive packet, and thus, the maximum of δ.P.f over all
packets of f up to and including i, is at most

 �
−

=
Β

2k

mx
x)i,f,t(rp. + Β.rp(tk-1,f,i)

Hence, from Theorem 1

 S.tk.f.i ≤ S.tm.f.i + �
−

=
Β

1k

mx
x)i,f,t(rp.

Combining the above with (iii),

 S.rp(tk.f.i) = S.tk.f.i ≤ S.t1.f.i + �
−

=
Β

1k

0x
x)i,f,t(rp.

which is the desired result. The value of E.tk.f.i follows
from tk being a start-time scheduler.

Case (c) in Figure 3 is similar (actually, simpler) than
case (b), and is not presented due to space restrictions.
♦

By comparing Theorem 2 and Theorem 5, we see that
the end-to-end delay obtained via flow aggregation is
similar to the end-to-end delay obtained without flow ag-

gregation. The following points about this theorem must
be stressed.

Consider a pair of flows f and h that are aggregated to
form flow g. Since each scheduler cannot distinguish be-
tween f and h, both flows will experience the same per-
hop delay throughout the entire path of g. Therefore, f
and h should be aggregated together only if they have
similar delay requirements. This restriction is not too
rigid, since it is unlikely that the per-hop delay require-
ments of flows will be diverse.

In [1], we presented a theorem for the end-to-end delay
of a flow in the presence of aggregation. Here, the sched-
ulers were rate-proportional schedulers. That, is, each
packet p.g.j of an input flow g would exit scheduler s no
later than F.s.g.j + α.s, where α.s is a constant, usually
equal to Lmax.s/C.s. Examples of this type of schedulers
are Virtual Clock [12][13], PGPS [9], and Time-Shift
Scheduling [4][10]. The per-hop delay at scheduler s is
Lmax.g/R.g + Lmax.s/C.s. Notice that if f is a constituent
flow of g, then R.f < R.g, and this delay with aggregation
is smaller than the delay without aggregation, i.e., smaller
than Lmax.f/R.f + Lmax.s/C.s, provided Lmax.g ≈ Lmax.f.
Thus, for rate-proportional schedulers, aggregation not
only improves efficiency, but also decreases end-to-end
delay.

The admission control test for rate-proportional sched-
ulers is simply that the sum of the rates of the input flows
must be at most the rate of the output channel. Hence, if
the flows are schedulable without flow aggregation, then
they are also schedulable under flow aggregation.

In the case start-time schedulers, as shown in previous
sections, a more complex schedulability test is required to
check if the requested deadline bounds can be satisfied.
Note that Theorem 5 requires each scheduler to be fair, so
we assume that each scheduler has passed its schedulabil-
ity test. However, the question that must be answered is
the following. Assume each flow has a per-hop delay re-
quirement, and assume that all the flows are schedulable
in a network without aggregation. Then, if we perform
aggregation by aggregating together flows with the same
per-hop delay requirement, would the schedulability test
still be satisfied? We address this question in the next sec-
tion.

5.3. Schedulability Tests
In this section, we examine whether the schedulability

of flows is hindered by flow aggregation. We begin with
the case when all packets of the same flow have the same
packet size.
Theorem 6

Let f1, …, fn, h1, …, hm be the input flows to a sched-
uler s. Let each flow have a constant packet size. Fur-
thermore, let the packet sizes of flows f1, …, fn be equal.
We refer to the packet size of these flows as L.f. Let δ.s.fx
be also equal for every fx, 1 ≤ x ≤ n. If flows f1, … fn, h1,
… , hm are schedulable at s, then so are flows g, h1, … ,

hm, where R.g = �
=

n

1x
xf.R , L.g = L.f, and δ.s.g = δ.s.f.

Corollary 1
Let g1, …, gn, be a set of aggregate flows, where all the

constituent flows of gx, 1 ≤ x ≤ n, have the same constant
packet size as gx, and the same per-hop delay as gx. Then,
if the constituent flows of flows g1, …, gn are schedulable
at a scheduler s, then flows g1, …, gn are also schedulable
at s.
Proof

We have to show that for each time interval [0, t] of
size t, the number of bytes from g whose start time is at
least 0, and deadline is at most t, is at most the number of
bytes from f1, …, fn. Since we will not be referring to the
h1, …, hm flows, and the deadlines and packet sizes of f1,
…, fn, and g are the same, we drop the subscripts and re-
fer to them as L and δ.

From the proof of Theorem 3 [2], the number of bytes
with the deadline at most t from g are at most

 L1
.L

g.R)t(⋅�������� +�� �	
	 ⋅δ−

The number of bytes with deadline at most t from all
flows fx is at most

 �
=

⋅������� +�� ���� ⋅δ−n

1x

x L1
L

f.R)t(

Define (t - δ)⋅R.fx to be Xx, and define

 �
=

=
n

1x
xXX

Then the number of bytes from g becomes

 L1
L

X ⋅�������� +
�� �� �

and the number of bytes from each fx becomes

 L1
L

Xx ⋅!!"#$$%& +'(')*)

Therefore, we simply have to show that

 +
=

⋅,- ,./.+⋅≤⋅00123345 +
,- ,./. n

1x

x L
L

X
LnL1

L

X

Simplifying, we need to show that

(v) 6
=

78 79:9+−≤
78 79:9 n

1x

x

L

X
1n

L

X

In general,

(vi)

;
=

+<= <>?>≤
<= <>?> n

1x

x

L

X

L

X

 L

L
L

X
X

n

1x

x
x

@
= AABCDDEF ⋅GH GIJI−

That is, the number of times L fits into X is at most the
number of times it fits into each of the Xx values, plus the
number of times L fits into the sum of the "leftovers" from
each of the Xx.

Note also that,

 LnL
L

X
X

n

1x

x
x ⋅<�������� ⋅�� ��	�−

=

That is, each term in the sum is at least zero and less
than L. Hence,

 L

L
L

X
X

n

1x

x
x

�
= ������� ⋅�� ����−

 ≤ n - 1

Thus, (v) follows from above and (vi). Corollary 1 fol-
lows from a simple induction over the aggregation level.
♦

Not only does flow aggregation improve the efficiency
of scheduling and signaling in a network, but from
Theorem 6, we are still capable of obtaining the same per-
hop delay as in the case with no flow aggregation. How-
ever, we do have the restriction that only flows having the
same per-hop delay can be aggregated together, and fur-
thermore, all flows aggregated together must have the
same packet size.

Currently, we are working on an analysis of the case
where each individual flow has a constant packet size, but
flows with different packet sizes are aggregated together.

We next consider the case when the packet size is not
constant for each flow.
Theorem 7

Let f1, …, fn, h1, …, hm, be the input flows to a sched-
uler s. Let each of f1, …, fn, have the same maximum and
minimum packet size, denoted Lmax.f and Lmin.f, respec-
tively, where Lmax.f ≥ 2⋅Lmin.f > 0. Furthermore, the per-
hop delay of each of f1, …, fn, at s is equal, and denoted
by δ.s.f. Lastly, Lmax.hx ≥ 2⋅Lmin.hx > 0, for every x, 1 ≤ x
≤ n. Then, if flows f1, … , fn, h1, … , hm are schedulable
at s, then so are flows g, h1, … , hm, where R.g = �

=

n

1x
xf.R , Lmax.g = Lmax.f, Lmin.g = Lmin.f, and δ.s.g = δ.s.f.

Corollary 2
Let g1, …, gn, be a set of aggregate flows, where all the

constituent flows of gx, 1 ≤ x ≤ n, have the same maxi-
mum and minimum packet size as gx, and also the same
per-hop delay at s as gx. Also, Lmax.gx ≥ 2⋅Lmin.gx > 0, for
every x, 1 ≤ x ≤ n. Then, if the constituent flows of flows
g1, …, gn are schedulable at scheduler s, then flows g1,
…, gn are also schedulable at s.
Proof

We have to show that for each time interval [0, t] of
size t, the number of bytes from g whose start time is at
least 0, and deadline is at most t, is at most the number of
bytes from f1, …, fn. Since each f flow and g have the

same per-hop delay δ.s.f, we only need to consider values
of t at least δ.s.f.

From the proof of Theorem 4, the number of bytes
from flow g are at most

(vii) �� �
���

�
+δ≥⋅δ−

+δ<
+ g.R

g.L
g.s.tifg.R)g.s.t(

g.R

g.L
g.s.tif0

g.L

min

min
max

Recall the each flow f and flow g have the same packet
sizes and same per-hop delay. Thus, the number of bytes
from a flow fx are at most

(viii) �� �
���

�
+δ≥⋅δ−

+δ<
+ x

min
x

x

min
max

f.R

g.L
g.s.tiff.R)g.s.t(

f.R

g.L
g.s.tif0

g.L

Thus, our objective is to show that (vii) is at most the
sum over all x of (viii).

Note that the left-hand-side of (vii) is Lmax.g, and left-
hand-side of (viii), over all x, is n⋅Lmax.g. Therefore, the
left-hand-side of (viii) is at least 2⋅(n-1)⋅Lmin.g greater
than the left-hand-side of (vii). Note that 2⋅(n-1)⋅Lmin.g is
at least n⋅Lmin.g for all n, n ≥ 2.

Consider any fx. Note that the maximum value of the
right-hand-side of (viii) equals (t - δ.s.g)⋅R.fx. Then, the
sum of these over all x equals (t - δ.s.g) ⋅R.g, which in
turn is the maximum of the right-hand-side of (viii).

However, consider an fx such that the right-hand-side
of (viii) is 0. In this case, t < δ.s.g + Lmin.g/R.fx, which
implies that (t - δ.s.g) ⋅R.fx is less than Lmin.g. Thus,
summing over all n, the right-hand-side of (viii) is at
most n⋅Lmin.g smaller than the right-hand-side of (vii).
However, as discussed two paragraphs above, the left-
hand-side of (viii) is at least n⋅Lmin.g greater than the left-
hand-side of (vii). Hence, (vii) is at most (viii), as desired.

The Corollary follows by a straightforward induction
over the aggregation level.
♦

Theorem 7 is similar to Theorem 6, but for the case
when packet sizes are not constant. Thus, as long as the
constituents of a flow have the same upper and lower
bounds on message sizes, and also the same per-hop delay
requirements, then aggregating flows does not hinder the
schedulability of packets.

5.4. Implementing Fair Aggregators
Thus far, we have considered the end-to-end packet de-

lay under flow aggregation, and the schedulability tests
required to ensure this delay. However, we have not ad-
dressed how a fair aggregator may be implemented.

Let g be the output flow of an aggregator s, and the
channel capacity of the aggregator be C.s. A simple tech-
nique to construct an aggregator is the following. Con-
sider a fictitious start-time scheduler v whose output
channel has capacity R.g and has the same input flows as

aggregator s. Aggregator s forwards the packets in the
same order as the fictitious scheduler v. However, after
the aggregator forwards a packet of length L, the aggrega-
tor does not forward another packet until L/R.g seconds
later, even though the packet takes only L/C.s seconds to
transmit.

We call a fair aggregator constructed from the above
technique a basic fair-aggregator. Note that the above ac-
tually defines a whole family of basic fair aggregators,
one family member for each possible type of start-time
scheduler emulated.
Theorem 8
Let s be a basic fair-aggregator, f be one of its input flows,
and g its output flow. Furthermore, let v be the fictitious
scheduler emulated by the basic fair-aggregator. Then,

S.t.g.j ≤ S.s.f.i + δ.v.f.i - L.f.i/R.g + L.f.i/C.s + Lmax.g/C.s
where t is the scheduler after s, and p.g.j = p.f.i.
Proof

First, it is easy to show by induction that for all j,
A.t.g.j ≥ F.t.g.(j-1) - Lmax.g/C.s (a proof may be found in
[1]). Thus, from Definition 1, S.t.g.j ≤ A.t.g.j +
Lmax.g/C.s.

Furthermore, since v is a start-time scheduler, and the
output channel rate of s is C.s, then A.t.g.j ≤ S.s.f.i +
δ.v.f.i - L.f.i/R.g + L.f.i/C.s. Hence,

S.t.g.j ≤ S.s.f.i + δ.v.f.i - L.f.i/R.g + L.f.i/C.s + Lmax.g/C.s
♦

Thus, we can construct a fair aggregator from a start-
time scheduler using the technique above. Notice that if
the start-time scheduler v being emulated is work-
conserving, then an input flow f of the aggregator s will
be allowed to forward packets at a rate greater than R.f,
but not at a rate greater than R.g. Thus, if the scheduler v
distributes unused bandwidth in a fair manner among its
input flows, then aggregator s will also distribute unused
bandwidth (up to rate R.g) among its input flows.

6. Concluding Remarks
In this paper, we have defined the aggregation of mul-

tiple flows into a single flow, and how the end-to-end de-
lay bound is preserved in spite of flow aggregation. The
advantages of the scheme is simplified scheduling and
signaling due to the reduction in the number of input
flows to a scheduler. The disadvantage is that flow aggre-
gation has to be performed by a non-work conserving
scheduler.

In [5], a different approach is taken for the aggregation
of flows. The delay-jitter of a flow f that is aggregated
with other flows to form flow g is set to zero. Thus, the
characteristics of f once it is separated from g are identi-
cal to its characteristics when it was aggregated into g
(modulo an equal delay applied to all packets). The dis-
advantage of this approach is that f cannot take advantage
of unused bandwidth and temporarily exceed its reserved
rate R.f. In our approach, a flow f can exceed its reserved
rate R.f up to the reserved rate R.g of its parent flow, al-

lowing for a better use of network bandwidth.
In [10], a rate-proportional protocol is presented for a

network core without per-flow state. This is advanta-
geous, since no flow state needs to be maintained. How-
ever, the packet delay is the same as with per-flow state
techniques, and hence higher than the delay with flow
aggregation.

References
[1] Cobb J, "Preserving Quality of Service Guarantees In-Spite

of Flow Aggregation", IEEE ICNP 1998
[2] Cobb J., "An In-Depth Look at Flow Aggregation", avail-

able from www.utdallas.edu/~jcobb.
[3] Cobb J., Gouda M., "Flow Theory", IEEE/ACM Transac-

tions on Communications, January 1998.
[4] Cobb J., Gouda M., El-Nahas A., "Time-Shift Scheduling:

Fair Scheduling of Flows in High-Speed Networks",
IEEE/ACM Transactions on Communications, June 1998.

[5] Cruz R. L., "SCED+: Efficient Management of Quality of
Service Guarantees", INFOCOM 1998.

[6] Figueira N., Pasquale J., "Leave-in-Time: A New Service
Discipline for Real-Time Communications in a Packet-
Switching Data Network", SIGCOMM 1995.

[7] Gall D., "A Video Compression Standard for Multimedia
Applications", Com. of the ACM, 34(4), April 1991.

[8] Goyal P, Lam S., Vin H., "Determining End-to-End Delay
Bounds in Heterogeneous Networks", NOSSDAV, 1995.

[9] Parekh A. K. J., Gallager R., "A generalized Processor
Sharing Approach to Flow Control in Integrated Services
Networks: The Single Node Case", IEEE/ACM Transac-
tions on Networking, 1(3):344-357, June 1993.

[10] Stoica I, Zhang H, Providing Guaranteed Services without
Per-Flow Management, ACM SIGCOMM '99.

[11] Suri S., Varghese G., "Leap-Forward Virtual Clock: A
New Fair Queuing Scheme with Guaranteed Delays and
Throughput Fairness", INFOCOM 1997.

[12] Xie G., Lam S., "Delay Guarantee of Virtual Clock
Server", IEEE/ACM Trans. on Networking, Dec. 1995.

[13] Zhang L., "Virtual Clock: A New Traffic Control Algo-
rithm for Packet-Switched Networks", ACM Transactions
on Computer Systems, Vol. 9, No. 2, May 1991.

[14] Zhang H., Keshav S., "Comparison of Rate-Based Service
Disciplines", ACM SIGCOMM Conference, 1991.

[15] Zhang H., "Service Disciplines for Guaranteed Perform-
ance Service in Packet-Switching Networks", Proceedings
of the IEEE, Vol. 83, No. 10, Oct. 1995.

[16] Zheng Q., Shin K.G., "On the Ability of Establishing Real-
Time Channels in Point-to-Point Packet-Switched Net-
works", IEEE Trans. on Comm., Vol 42, No. 2/3/4, 1994.

