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Abstract

A computer network consists of a set of computing nodes interconnected via
communication channels. Itis commonly assumed that, for each pair of net-
work nodes: andwv, there is at most one channel frammo v. However, it is

often desirable to have multiple channels between nodes. That is, for every
pair of network nodes andwv, there may be multiple channels fromto

v. In this paper, we consider the problem of providing deterministic quality
of service guarantees when there are multiple channels between nodes. We
show that any packet scheduling protocol that operates over a single channel
can be modified to operate over multiple channels. In addition, this transfor-
mation increases the packet delay through the node by only a small amount.
However, having multiple channels between nodes may cause packet re-
order. This reorder significantly increases the upper bound on end-to-end
delay. We show how this increase in delay is avoided through the use of
efficient sorting techniques.

1 Introduction

A computer network provides quality of service if there is an upper bound on
the delay of packets through the network. This delay bound can be either prob-
abilistic or deterministic. In this paper, we focus on deterministic delay bounds.



Research on packet scheduling protocols that provide deterministic delay bounds
flourished in the previous decade (for a survey, see [27]). Many of these protocols
are based, one way or another, on earlier work on task scheduling. In particular,
they are based on the techniques given in the landmark paper of Liu and Layland
on periodic task scheduling [19].

In [19], all tasks share a single resource. However, in the last few years, there
have been breakthroughs in the scheduling of tasksrowdiple resources [1, 2,

20]. Even though task scheduling over multiple resources has been successful,
there has been little work on packet scheduling over multiple channels between
network nodes. This is due in part to the belief that multiple channels between

nodes is either impractical or uncommon. However, there is significant evidence

to the contrary.

In a recent paper [3], it was argued that packet reordering is not a “patho-
logical” problem, but rather a normal occurrence. That is, packets are reordered
not only due to route changes (which are rare), but also due to parallelism in the
network. One reason for this parallelism is the aggressive deployment of paral-
lel channels between nodes. As stated in [3], in a survey of 38 major service
providers in 1997, only two had no parallel channels between their nodes. One
reason for parallel channels is that they often reduce equipment and trunk costs.
That is, it is often more cost effective to use two components in parallel than to
use one component with twice the capacity. In addition, parallel channels improve
fault-tolerance.

Another technology that provides multiple channels between nodes is the es-
tablishment of light-paths in wave-division multiplexed (WDM) optical networks.
Although the establishment of light-paths is usually semi-permanent, recent work
allows the establishment of light-paths on-demand [14]. If there is a significant
load between two nodes in the network, it is possible that a single light-path may
not provide enough capacity between these nodes. In this case, additional light-
paths may be established between them (for more examples of multi-channel sys-
tems, see [4].)

Based on the evidence presented above, it is likely that multiple channels be-
tween nodes will continue to exist. Therefore, if quality of service is deployed
on a global scale, it will likely encounter network nodes with multiple channels
between them. Hence, the problem of scheduling packets over multiple channels
must be studied.

The first packet scheduling protocol that provides deterministic quality of ser-
vice over multiple channels is presented in [4]. The scheduling protocol assigns
timestamps to packets in the same manner as weighted-fair-queuing [18, 21], and
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packets are forwarded to channels in order of increasing timestamp. However,
no other scheduling protocols were considered, and the end-to-end delay over a
series of nodes was not determined.

In [10], we presented general techniques to develop scheduling protocols for
nodes with multiple channels. However, the techniques were restricted to the case
where all channels of a node have equal capacity. In this paper, we generalize the
techniques to allow channels of different capacity. In particular, we present two
techniques to transform a scheduling protocol that operates over a single channel
into a scheduling protocol that operates over multiple channels. In addition, we
consider the end-to-end delay of packets through a series of nodes with multiple
channels. We observe that the packet reorder caused by multiple channels may
significantly increase the end-to-end delay. We show how this increase in delay
can be prevented through the use of efficient sorting techniques.

2 Multi-Channel Schedulers

In this section, we define our network model and protocol notation. We begin with
the usual network model where there is only a single channel between nodes. We
then extend our model to multiple channels between nodes.

A networkis a set of computers interconnected by point-to-point communica-
tion channels. The network may be viewed as a graph, where each computer is
a node in the graph and each channel is a directed edge in the graph. Thus, we
use the terms computer and node interchangeably. A networkiigke-channel
networkiff, for every pair of nodes: andv, there is at most one channel fram
to v. Nodesu andv areneighborsiff there is a channel from to v or there is a
channel fromv to u.

A flowis a sequence of packets that traverse the network, starting at the source
node of the flow and ending at the destination node of the flow. A network may
be traversed by multiple flows. The network path of each flow is fixed, and net-
work resources are reserved for each flow. This reservation of resources ensures a
bounded end-to-end packet delay.

In a single-channel network, every output channel in a node is equipped with
a scheduler. From the input channels of the node, each scheduler receives packets
from flows that traverse the output channel of the scheduler. The scheduler then
chooses the transmission order and transmission time of these packets over its
output channel.

As an example, consider Figure 1. Figure 1(a) shows a network with five



nodes. There are four flows in the network, g, x, andy. Each channel is
labelled with the flows that traverse it. Figure 1(b) shows the center node in detail,
including the scheduler of each of its output channels, and the path through the
node taken by each of the four flows.

We say a packet iforwardedto the output channel when its first bit is trans-
mitted over the output channel. We say a paekatisa scheduler when the last bit
of the packet is transmitted by the output channel, and hence, the output channel
becomes idle at this moment. To simplify our discussion, we ignore channel prop-
agation delays, since they simply add a constant delay to each packet. We say a
scheduler isvork-conservingf it does not allow its output channel to remain idle
while its queue is hon-empty.

We adopt the following notation for each flofvand each scheduleralong
the path off.

R, rate (bits/sec.) reserved for flofv

pri i packet off,i > 1.

Ly, length of packepy; (bits).
Lyee maximum ofLy ;, wherel < j <.
L maximum packet length of all flows at
A, i arrival time ofp;; at schedules.
E;; exittime ofp;; froms.

Cs output channel capacity (bits/sec.) of scheduler

We next enhance the network model to include multiple channels between
nodes.

A multi-channel networks a network in which there exists a pair of nodes,
u andw, such that the number of channels framo v is greater than one. An
example of a multi-channel network is shown in Figure 2(a). It is similar to the
network in Figure 1(a), except that there are two channels between each pair of
nodes. Figure 2(b) shows the center node in detalil.

All output channels that lead to the same neighboring node are managed by
a single scheduler. Therefore, all packets with a common next-hop node have a
common scheduler. Because all output channels of a scheduler lead to the same
node, the scheduler distributes the packets of each flow among all its output chan-
nels.

A scheduler is said to beraulti-channel schedulef it manages multiple out-
put channels, or aingle-channel scheduldrit manages a single output channel.

For a multi-channel scheduleywe adopt the following notation.
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Figure 1. Output channels and their schedulers.
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Figure 2. Multiple output channels per node.
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N, number of output channels managedsby

cs; capacity ofi’* output channel of, 1 <i < N.,.

c™m  minimum channel capacity of i.e.,min{cs; |1 < i < N,}.

e maximum channel capacity of i.e.,maz{cs; |1 <i < Ng}.
C, total capacity of schedule i.e., ZZN; Cs.i

We assume that each scheduler forwards the packets of each flow in the order
in which they are received. However, note that packets from a flow may be re-
ordered along their path to the destination. To illustrate this, assume that multiple
output channels of a scheduler are idle. In addition, assume that pag¢ketsd
Py i+1) are forwarded to a pair of idle channels at the same timg; f> Ly ;11),
thenpy ;1) will arrive to the next node earlier thary;, and hence, these two
packets become reordered.

Due to reorder, we say a flowis derivedfrom flow f if both flows have the
same set of packets. That isgiind f differ, then they differ only in the order of
their packets.

When the packets of a flow are received at a node, the node has two options
before transferring the packets to their scheduler. The node may simply transfer
the packets in the order in which they are received, or the node may sort the
packets back into their original order. We will consider both of these cases in later
sections.

3 Single-Channel Emulation

Single-channel schedulers have been studied extensively in the literature, and a
large number of these schedulers have been developed [27]. The obvious ques-
tion to ask is if existing single-channel schedulers can be transformed into multi-
channel schedulers. In this section, we present a simple technique by ahich
single-channel schedulers can be transformed into multi-channel schedulers.

Consider Figure 3. In this figure we have three schedulers. Schedsler
single-channel scheduler. Schedules a single-channel scheduler whose output
channel has infinite capacity and whose input flows are the same as thase of
Scheduler is a multi-channel scheduler whose output capacity equals the output
capacity oft.

The behavior of these schedulers is as follows. Scheduferwards each
packet at exactly the same time at which the same packet is forwardeBey
cause the capacity ofis infinite, oncer forwards a packet, the packet is received
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Figure 3: Multi-channel emulation of a single-channel scheduler.
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immediately bys. Notice that after forwards a packet of sizé to s, it may
not forward the next packet until at leastC; seconds later. Therefore,is not
work-conserving. Finallys is work-conserving. It simply queues the packets re-
ceived fromr, and it forwards these packets in FCFS order to its output channels.
Schedulers treats all its output channels alike, even though their capacity may
not be equal. Thus, if a channel becomes idle, and the quesésafot empty,
then the next packet from the queue is forwarded over this channel. In a sense,
schedulerg ands emulate the behavior of scheduteexcept that the packets are
distributed over multiple channels.

We next compare the behavior of these two systems.

Theorem 1 Let ¢t be a single-channel scheduler with capaadity. Assume a
single-channel scheduler has an output channel with infinite capacity, and
has the same input flows asLetr forward packets in the same order dand at
exactly the same time @s Assumes is a work-conserving, FCFS, multi-channel
scheduler such that’, = C;. Let the input ofs be the output of. Then, for all
input flowsf and for all s,

(Ng—1)- L7 — Lg; Ly
Cs cmin

Egri— Ei i <

Proof:

Thechannel backlogf a scheduler is the sum of the number of bits that remain
to be transmitted from packets currently in a channel. el backlogis the
channel backlog plus the queue size.

8



If packetp,, arrives ats and is sentimmediately to a channel, (i.e., no queuing
at s), then the extra delay sufferedats at most
Li; Ly,
anin Ct
The desired result follows fromy, = C,.

Assume now that whep;,; arrives ats, all channels are busy (i.epy; is
queued at). Letp,; be the latest packet befoge; such thaty, ; suffered no
gueuing at (i.e., there was one empty channel at the tppearrives ats). Thus,
all channels are busy during the time interjl , ;, A 7.;).

Let 3 be the channel backlog efat time A, ;. Note that there is one empty
channel at timed_ .. Thus, the queue of i is empty, and the total backlog is
also equal ta5. Note also thatp < (N, — 1) - L™, because there is one empty
channel, and each channel can have at mgst bits.

Let \ be the total number of bits in the sequence of packets arrivingating
the time interval A, , ;, A ;). Thatis, we start withp, ; and end with the packet
previous topy ;.

Since packets arrive atat a rate of at most;, which equalg’, the length of
the time interval A, , ;, As 7.i) is as follows.

A
Also, during the time intervdl4, , ;, A ), Since aII channels are busy, the num-
ber of bits forwarded is equal to

Cs - (As,fvi - A&QJ‘)

From the above two relations, the total number of bits forwarded during the
interval [As , ;, As r;) iS at least\. That is, it is at least the total number of bits
arriving during the interval. Therefore, the total backlog at tife ; is at most
the total backlog at timel_ , ;, i.e., at mos}3.

The total backlog of3 blts prevenp;,; from being forwarded into a channel.
We next consider the length of time befqrg; is forwarded. Note that the worst
delay forp, occurs when all channels finish clearing the backlog at the same time.
This is because if a channel finishes earlier than others jtheis forwarded via
the idle channel. Because all channels are busy piptik forwarded, and because
the backlog is cleared by all channels at time same tigpebegins transmission
no later than time 5

As 1+ ~
7f» Cs
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In the worst case, the slowest channel is assigned; o Hence,E; ;;, is as

follows. 5 I
fii
Egpi < Agypi+ . + omin
The additional delay compared to a single channel scheduler is as follows.
B Ly Ly,
Espi—Eigi <Aspit =+ —=—(As i + =
1f7 tuf: —_— Svfu CS C;m'n ( 57f) CS )
Thus,

B Lpi Ly,
Espi—Evgi < —+————~
7f7 t7f7 Cs + CSWL’LTL CS
We argued that < (N, — 1) - L7**. Therefore,
(Ns = 1) - L3 | Lpi _ Ly
Cs cmin (O

Esfi— Erpi <

Reducing the above,

(Ng—1)- L7 — Lg; Ly
Cs cmin

Egri— Eipi <

Corollary 1 Under the same assumptions as those in Theorem 1, plus the ad-
ditional restriction that all output channels of have the same capacity, i.e.,
AT = cmin — J(j— then, for all input flowsf and for all4,

S S

(Ns - 1) ’ L:mz (Ns — 1) ’ Lfﬂ'

+

S S

Esfi— Ergi <

Theorem 1 shows that we can implement a multi-channel scheduler based
upon any single-channel scheduler. The penalty for doing so is an increase in
the exit time of each packet. Notice, however, that the increase is quite small.
From Corollary 1, if the output channels efhave similar capacities, then the
difference in the exit times from andt is less than the transmission time of two
packets in a channel af This is because the transmission time of a packet is at
most™=Z= . This is not significant if the channel capacity is large.

The behavior of bothr and s can be combined into a single scheduler that
emulates.
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Definition 1 A multi-channel scheduler emulatesa single-channel scheduler
if and only if all of the following hold.

e C,=0C,.
e Scheduler forwards packets in the same order as scheduler
e A packet ins is forwarded only if it has already been forwardedy
e An output channel is cannot remain idle while there are packetssithat
have been forwarded by
|
We next consider the specific case wheris a PGPS scheduler. Below,

W, (1) is the number of bits of flowf that schedulet has forwarded during
the intervall0, 7].

Corollary 2 Let(G be a fluid GPS serveF be a PGPS scheduler that simulates
G, ands be a multi-channel scheduler that emulafeslLet all channels of have
equal capacity. Then, for any time for any input flowf, and for any;, : > 1,

N . L7 Ng—1)-Ly,;
EShf’l‘ _ EGVfJ CS + ( C) f7

WQf(T) — W&f(T) < Ns . L;nax + (NS — 1) . Lfﬁ-

IN

Proof: Note that the maximum packet size and total capacity of-, ands are
the same, so we drop the subscripts of these quantities. Consider first the exit
time. The relationship between the exit times fréhand( is as follows [18, 21].

Lmax
C

Epfi— Ecpi <

From Corollary 1,

(Ng— 1) Lmox N (Ns—1)- Ly,
C C
We combine the above two we obtain the desired result.

Esti—Epfi <

Espi— Eg i
(N,—1)-Lm™® (N, —1)-Ly; Lm
= C + C t o
B N, - LMo n (Ns — 1) . Lf,i
C C
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We next consideVV. For terseness, we define

(Ng— 1) Lmos n (Ng—1)- Ly,
C C

Also, for simplicity, we assum@&/(7) = 0 if 7 < 0.

Consider the difference betweéfip ;(7) and W (7). From Corollary 1,
every packet exits from no later than the corresponding exit time fratplus
«. Notice that the output channel éf has grater capacity than the single output
channel over which the same packet is sent.iidence, any bit of a packet will
exit from s no later than the time it would exit fro® plusa. Hence,

o =

We (T —a) < Wiy (7)
The following is a well known result of PGPS [18, 21].
WG’f(T — Oé) S Wp,f(T - Oé) + Lme

Thus,
WG’f(T — Oé) — Lmam S Ws,f<7') (1)

Furthermore, in the worst cas@, has only packets of queued, and thus it can
transmita - C bits from f in a seconds. Hence,

Wer(t) = Wes(t—a)<a-C (2)
Combining (1) with (2),
WQf(T) — WSJ(T) <a-C+Lm™*

The right hand side is as follows after replacindy its defined value.

(Ng— 1) Lma= . (Ns—1)- Ly,
C C

Simplifying we obtain the desired result.
Ng- L™ 4 (Ng—1)- Ly,

|
The multi-channel emulation of a PGPS server yields an algorithm that is
somewhat different from the multi-channel PGPS algorithm presented in [4] (called
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MSFQ). Nonetheless, the same bound on the exit time of a packet given in Corol-
lary 2 is precisely the same bound given for MSFQ in [4]. The bound on the num-
ber of bits served is a little higher, however. Nonetheless, as mentioned above, the
result of Theorem 1 is not restricted to emulating PGPS servers. It can be applied
to the emulation ofiny packet scheduler, regardless of type. For example, the
theorem can be applied to the emulation of first-come-first-serve, weighted round-
robin [22], rate-controlled static-priority [29], or the emulation of any scheduler

in the family of rate-proportional servers [23].

4 Bounded Appetite Schedulers

A disadvantage of the emulation of a single-channel scheduler by a multi-channel
scheduler is that the latter is not work-conserving. For example, assume the chan-
nels of the multi-channel scheduler are idle, and two packets are received at the
same time. After forwarding one of these packets, the next packet cannot be for-
warded untilL/C seconds later, wherg is the size of the forwarded packet and

C the total capacity of the scheduler. Another disadvantage is that the scheduler
must have a timer that expirds/C' seconds after transmitting a packet of size

This may increase the implementation complexity of the scheduler.

In this section, we investigate the transformation of a work-conserving single-
channel scheduler into a work-conserving multi-channel scheduler. We desire
two properties of this transformation. First, it must encompass a large number of
single-channel schedulers. Second, the resulting multi-channel scheduler should
be as close as possible to the original single-channel scheduler.

We consider schedulers that assign deadlines to packets and forward packets in
order of increasing deadline. The deadline of pagketat schedules is denoted
Dy ;. Assigning deadlines to packets can be done by assigning a timestamp to
each packet, and then forwarding packets in order of increasing timestamp. How-
ever, the timestamp need not be exactly equal to the deadline. For example, in
self-clocking fair queuing [16] and weighted fair queuing [18, 21], the timestamp
assigned to each packet is not equal to its intended deadline. However, we require
that if a packep;; has a timestamp greater than the timestamp of another packet
Dg.;» then the deadline qf;; is greater than the deadline af ;.

We say that a scheduler dgadline orderedf it forwards packets in order of
increasing deadline. Without loss of generality, we assumelhat > A, ;.

We next consider the exit time from a work-conserving, deadline ordered,
multi-channel scheduler. To guarantee that packets exit by their deadlines, we
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must bound the occurrence of deadlines. We use the bound introduced in [12].
Let Z;(a, ) be the total number of bytes that arrivestaluring intervalja, b|
and whose deadline is at madstThat is,

Zs(a,b) = (Z f,l . a S As,fﬂ‘ N Ds’fﬂl S b . L51f7i>

Definition 2 A scheduler with capacityC, satisfies thdoounded appetite prop-
erty for a constany if and only if, for all intervalsja, b] in which Z(a,b) > 0,

Zs(a,b) < ((b—a)-Cs—0)
[

Theorem 2 Consider a multi-channel, work-conserving, deadline-ordered sched-
uler s. Lets have bounded appetite with const@antThen, for all input flowsf
and for all 7, one of the following holds.

Ng- L7 — Lggi—0  Lgyi

ES,f,’L' S Dsyfﬂ' + Cs CgTL’L'IL

Ly,

min
Cs

Espi < Aspit

Proof: The proof is similar to that of Theorem 1. Assume that when pagket
arrives ats, there is an idle channel and; is immediately forwarded. Then,

Ly
Es,f,i < As,f,i + f’
Cgﬂln
Consider now that whep;; arrives ats, all channels are busy (i.epy; is
queued as). Let 7 be the latest time, but no later thal ;;, such that one of the

following holds:

1. A packetp, ; was forwarded directly to an output channg] ( has no queu-
ing delay ats) and all packets forwarded in the interVal A ], including
Dg.;» have deadlines at most; ¢ ;.

2. A packetp, ; was forwarded, wher®, , ; > D, ;;, all packets forwarded
in the interval(7, A; ;] have deadlines at mo8$, ;;, and all channels are
busy during this interval.
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Consider the first case. Any packet forwarded before must arrive after
time 7 and have a deadline of at mast ;;. This is becausg, ; has no queuing
delay at timer, and furthermore, only packets with deadlines at mosf,; are
forwarded during the intervat, A; ;|

Since the deadline of a packet is greater than its arrival time, only packets
arriving in the intervalr, D; ;] can arrive after and have a deadline of at most
D, ;. From the bounded appetite property, the number of bytes in these packets
add to at most

(DS,N—T)-C’S—Q (3)

Note that both packets, ; andp;,; are counted in (3) above. Also, note that only
the packets in (3) and the channel backlog at timepreventp,, from being
forwarded. The channel backlog at time can be at mostN, — 1) - L7** bits,
since there was an empty channel whegn arrived.

From the definition op, ;, all channels are busy until;; is forwarded. The
case that delays;, the most is when all channedg the same timénish trans-
mitting their packets. Hencey; has an exit time as follows.

Dsji—7)-Co—0—Lyyi  (Ng—1)- LT Ly,
(Dspi = 7) i ) L L

Sht= C, C, cmin

Reducing we obtain,

(NS —1)- Lrer — ¢ — Lsysi  Lgyi
C, cmin

Esfi < Dsyi+

A similar reasoning applies to the second case. The main difference is that in
the first casepD; ,; < D, r;, and hencep, ; is counted in (3). This is no longer
true in the second case. Hence, packets in the channel backlog at(imekiding
Pg.;) Plus those packets counted in (3) may exiveforep;, is forwarded to a
channel. The backlog at timeis at mostV - L7***. Hence, the exit time is as
follows.

Ng - L7 —0 — Lg¢;  Lsyi
,f7+ S

Eszfvi S DS,f,Z‘ + CS c’;mn

Corollary 3 Under the same conditions as Theorem 2, with the additional re-
striction that all channels of have equal capacity;™" = ¢m* = ]C;— for all

15



input flowsf and all 7, one of the following holds.

Ng - L7 — 0 N (Ns—1)- Ly s
C, Cs

Ls i

Es,f,i S As,f,i + —J’

min
Cs

Esri < Dsypit

Theorem 2 shows an upper bound on the exit time from a multi-channel,
work-conserving, deadline-ordered scheduler with bounded appetite. Notice that
it is possible that the multi-channel scheduler simply assigns to each packet the
same deadline that a bounded-appetite single-channel scheduler. Thus, the multi-
channel scheduler may assign deadlines in the same way as any of the following
protocols, all of which have been shown to have bounded appetite [12]: virtual
clock [25], time-shift scheduling [8] weighted fair queuing [18, 21], stop-and-
go [15F, and the whole family of rate-proportional servers [23]

We next consider the specific case where the packet timestamp of a multi-
channel scheduleris the same as the packet timestamp of a PGPS scheduler.

Corollary 4 LetG be a GPS server an#® be a PGPS scheduler that simulates
G. Lets be a multi-channel, work-conserving, deadline-ordered scheduler that
assigns the same timestamp to each packeP akes. LetC; = C,, and all
channels ok have the same capacity. Then, for any timéor any input flowf,

and for anyi, i > 1,

N, LM (N, —1)- Ly,
< i ’
- (OR Cs
Wa (1) = Wy(r) < Ng- L7+ (Ny—1)- Ly,

Esri — Ea g

Time-shift scheduling was shown to be a member of the rate-proportional family of schedulers
[5].

2Although stop-and-go is not work-conserving, it defines an eligibility time for each packet.
After the eligibility time of the packet has elapsed, the packet is scheduled according to its dead-
line. Thus, if we consider each packet as arriving into the multi-channel scheduler at its eligibility
time, then Theorem 2 also applies to stop-and-go deadlines.

3Although not shown in [12], it is easy to show that all rate-proportional schedulers have
bounded appetite. The deadline is the time at which the system potential reaches the potential
of the packet.
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Proof: Consider first the exit time. In [12], it was shown that PGPS is a bounded-
appetite scheduler with= 0 andDp;; = Eg ;;* Thus, sinceD, ;; = Dpj; =
E¢ 1, and sinceCs; = Cp, s is also a bounded appetite scheduler viitk= 0.
Thus, from Corollary 3,

N, - L7 Ny —1)-Lg ¢,
S +( ) 7f7

E.ti < Eqti
gi S Bapi t+ c- c.

which is the desired result.

The proof of the bound ol is the same as that in Corollary 2. |

The assignment of deadlines in a multi-channel schedudsrgiven in Corol-
lary 4 yields the same algorithm as MSFQ [4]. The bound on the exit time of a
packet given in Corollary 4 is precisely the same bound given for MSFQ in [4].
The bound on the number of bits served is a little higher, however. Nonetheless, as
mentioned above, Theorem 2 is not restricted to GPS deadlines. It can be applied
to any assignment of deadlines that satisfy the bounded appetite property.

5 Single-Channel End-to-End Delay

In this section, we review the end-to-end quality of service model of a single-

channel network. We base our model on the models of [6, 13]. We present the

end-to-end quality of service model of a multi-channel network in Section 6.
Consider schedulerand an input flowf of s. We define thestart-timeS; ;

of packetp,, at schedules as follows [6, 13]. Assume were to forward the

packets off at exactlyR; bits/sec.. Theny; ;; is the time at which the first bit

of py, is forwarded bys. More formally,

Ssp1 = Aspa

Ly
Ssfi = max(A&f,i’ Safiio1) + f,(i—1)

Ry

) , foreveryi,i>1

The first equation above is obvious. For the second equation, the first bit of
packetp;; begins to be transmitted after packet;_.) exitss, that is, after time
S, i-1) + Ly a-1)/ Ry
The start-time is measured assumirfgrwards the bits of at exactly the rate
R;. However, the true forwarding rate may be different. Nonetheless, on average,

4Although P does not comput& ; ;, the timestamp# assigns to packets ensure that packets
are forwarded in order of their exit time fro6d [12].
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s forwards the packets of at a rate of at leask;. Therefore, the exit time of
packetp,; from s is close to its start timej; ;. If s has this property, we sayis
astart-time scheduld6, 7, 13, 17].

Definition 3 A scheduler is a start-time schedulaf and only if, for every input
flow f of s, and everyi, i > 1,

Egri < Ssfi+0s5i

for some constant; ; ;.
|

We refer tod; ;,; as thestart-time delayof packetp,, at schedules, and we
refertoS; s, +d, s, as thestart-time exit boundf p;,; ats. We assume the values
of § are such that the exit bounds are increasing. That is, far &ll;; + 0, 7, <
Ss,f,(i4+1) T Os,f,(i+1)-

The start-time delay is broad enough to represent the delay provided by many
scheduling protocols. For example, by choosig, = L;;/Rf + L /Cs,
ds.7; becomes the delay of virtual-clock and weighted-fair-queuing protocols [21,
25]. Another example is the real-time channel model, [11, 28] where each flow
has constant packet size and constant packet delay. This is represented above by
havingd, ;; andL,; be constant for all.

We next consider the delay of a packet across a sequence of schedulers. Be-
cause the start-time of a packet determines its exit time from a scheduler, a bounded
end-to-end delay requires a bounded per-hop increase in the start-time of the
packet. This bound is as follows.

Theorem 3 Let s be a start-time schedulef, be an input flow o, andt be the
next scheduler aftet. Then, for alli,

Sti < Sspi + Ds i

whereA; ;; = max {0, 7.} [ |
1 1§I§Z K

This bound was shown in [7, 13], and it also follows from the results in [28].
From induction and the definition of a start-time scheduler, we can obtain the
following end-to-end exit bound.
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Corollary 5 Lettq,ts,...,t, be a sequence @f start-time schedulers traversed
by flow f. For all 4,

k—1

Sty fii < Sty fi + Z A, 1

r=1
Euyopi < Stpi T Oty g
[ |

Notice that the above bounds are independent of the particular scheduling
technique, and the capacity of the channel between the schedulers. The only re-
guirement is that the schedulers are start-time schedulers.

6 Multi-Channel End-to-End Delay

As discussed in Section 2, a multi-channel scheduler may reorder packets. There-
fore, even if the scheduler is a start-time scheduler, we cannot apply Theorem 3,
because this theorem assumes no packet reorder. We next present some general
results about a scheduler that reorders packets. We then apply these results to the
reorder introduced by a multi-channel scheduler.

We begin with a lemma that bounds the start-time of packets in the presence
of limited reorder.

Lemma 1 Consider a start-time schedulerthat may reorder packets. Légtbe
an input flow ofs, and g be the output flow of derived fromf (i.e., g is f with
some reorder). Lep,; = py., that is, the;™ packet ofg is thei'" packet off.
Finally, lett be the next scheduler after

1. Assumey; is the last packet of floyi. Then,

Stgg < Sspi + As i

2. Assumey ;1) IS the last packet of flovi. Then,

i+m
k=i+1 Lf,k

St,g,j S Ss,f,i + As,f,i +
Ry
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The proof Lemma 1 is given in the appendix. This lemma implies that if
no packet aftep,, is reordered withp, ;, then the start-time increase of; is the
same as in Theorem 3. Furthermore, if packels, ) up top; ;1. are reordered
with p;;, then the start-time qf; increases in proportion to the number of bytes
in these packets. We next apply this lemma to the limited reorder introduced by a
multi-channel scheduler.

Theorem 4 Let s be an multi-channel start-time scheduléibe an input flow of
s, andt be the next scheduler after Let g be the output flow of derived fromf,
and letp, ; = p;;. Finally, letct = ¢™™. Then,

Lf’i Ns

. Z c”
sz'n fopur S
Stvgnj S SS,f,Z’ + Asmfvi + s Rf

Proof: Notice that a multi-channel scheduler reorders packets, but with limited
reorder. That is, while packet;; is being transmitted in a channel, packets from
f with index greater tham could be transmitted. For a given channel, for these
packets to arrive beforg; ;, their transmission must take less time than the trans-
mission ofp,. In the worst casey;; is transmitted over the slowest channel of
capacityc”. Thus, it takesL;,;/c™" seconds to transmit this packet. During
this time, channek can transmit a total of

Lf,’L

3 S
mn
CS

LA

bytes of packets whose index is greater tharHence, the packets with index
greater than that arrive tat beforep,, can add to at most

N,
Lf77' - n
bytes.
The result follows from Lemma 1. [ |

Corollary 6 Under the same conditions as in Theorem 4, except that all channels
of s have the same capacity, the increase in start-time is as follows.

Ny—1)- Ly,
St»gJ < Ss,f,i + AS,f,i -+ #
Ry
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Assume a flow traverses a path of multi-channel schedulers. The start-time of
a packet of the flow increases at each hop, and an upper bound on this per-hop
increase is given above. Thus, the exit time of the packet is just the start-time of
the packet at the first scheduler, plus the increase in start-time at each hop, plus
the start-time delay at the last scheduler of the path.

Corollary 6 shows that the packet reorder introduced by a multi-channel sched-
uler affects the start-time of each packet at the next scheduler. The impact of this
increase depends on the values\gfandL,;/R;. Itis likely that NV, will be quite
small, with only a few channels between nodes. However, the fgrmR ; may
be significant, and for some applications, even a per-hop delay equa) A& is
too large. Thus, the impact of packet reorder is significant. In Section 7, we show
how packets can be efficiently sorted to prevent this increase in start-time.

We conclude this section by combining Theorem 4 above with the results of
Sections 3 and 4.

Corollary 7 Let s be an multi-channel schedulef,be an input flow ok, andt¢
be the next scheduler after Let g be the output flow of derived fromf, and let
pg.; = pyai- Finally, letel = ¢mm,

1. Lets emulate a start-time single-channel schedulefhen,s is a start-time
scheduler, where

(Ng—1)- L7 — Lg; Ly

657.]"’@' = 6T‘,f,i + Cs Cg}”L’LTL

2. Let s be a deadline-ordered server with bounded appetite and con&tant
Then,s is a start-time scheduler, where

Ng- L7 — Lggi—0 Ly

Os,fi = Ds i + . cmin. — Onli

3. In both cases above, the start-timepgf at schedulet is as follows.

Lfi 3

) T

RO
S n=2

Ry

St7g7j S SS7f7Z + ASMf?Z +
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7 Sorting Schedulers

We next attempt to reduce the end-to-end delay bound of a series of multi-channel
schedulers. This large delay bound is caused by the reordering of packets through
multiple channels. To reduce the delay bound, each scheduler must restore the
original order of the packets of each flow. In this section, we present three tech-
niques to restore this order. We first consider an obvious sorting technique, and
show how it fails to reduce the delay bound. Then, we introduce two additional
techniques that, although more complex, are effective in reducing the delay bound.

Assume the index of each packetis included in the packet’s header. I.e., packet
pr.i contains in its header. The obvious technique to order packets is to sort them
as they arrive. Therefore, the queue of each flows sorted by packet index.
Furthermore, the next packet éfto be forwarded is the packet with the smallest
index. However, note that the scheduler may not always forward the packets of
f by increasing index. For example, assume that pagket ) arrives to the
scheduler an instant before packet. It is possible thapy ;.1 is chosen to be
forwarded by the scheduler immediately upon arrival, and thus, it is forwarded
beforep;; is received.

For simplicity, we consider the virtual clock protocol. Given that packets ar-
rive out of order, the timestamp assignment method of virtual clock cannot be
used. In particular, the timestamp of a packet is not fixed, because it may change
with the arrival of packets of the same flow with a smaller index. Thus, to simplify
our presentation, we make two assumptions. First, eachfflbas a fixed packet
size Ly. Second, the scheduler uses flow timestamps [9], as opposed to packet
timestamps. With flow timestamps, a packet does not receive a timestamp when
it is received. Instead, a single timestaffipis maintained for each floyi. We
explain flow timestamps in more detail below.

The flow timestamf’; is updated as follows.

e When a packet fronf is received and inserted into the queugfof
— If the queue off is empty, T} is updated tanax(Ay;, Tf) + é—;.
— If the queue off is not emptyI’; remains unchanged.

¢ When the packet at the head of the queue is forwarded:

— If the queue off is empty, T remains unchanged.

— If the queue off is not emptyT’ is updated td’y + é—ff‘.
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Figure 4: Sorting schedulers example.

It is easy to show that if a flow has a non-empty queue, then the exit time of its
next packet is at mogt; + L™**/C. Furthermore, it can also be shown that this
exit bound is at most the exit bound of the virtual clock protocol [9].

We next consider an example to show that, even though the quefiasof
maintained sorted by index, the end-to-end delay bound is similar to that given in
Section 6.

Consider the schedulers in Figure 4. Flgwtraverses schedulers s, and
t. The index of each packet gf corresponds to the order in which the packet
was created, and not the order in which it arrives at a scheduler. Schedulers
and s have three channels. Two of these channels have equal capacity, and the
remaining channel has a capacity slightly lower than the other two. Sirca
multi-channel scheduler, it may reorder packets while forwarding them to

Consider the following sequence of events at scheduler

1. Scheduler forwardspy;, ps i+1), andpy 2y at the same time. Packef;
is forwarded over the channel with lesser capacity.

2. Packety, ;1) andpy ;12 arrive ats at timer. Assume these two packets
are forwarded immediately upon arrival. LEt; be the flow timestamp of

fats. Let
Ly
Top=7+—"
f T+ Rf
whenpy ;+1) became the head of the queuefobind
2. Ly
Top=7+"—"
f T+ Rf

whenpy (;.10) became the head of the queuefof
3. Letpy; arrive ats at timer + €. Since the queue of is empty at this time,
timestampl/’;  is updated as follows.
3-Ls

T, ~7+ 21
S T+ Rf
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4. Letpy 43y andpy 14 arrive ats afterpy; and beforep,; is forwarded.

5. Letpys, pyivs), andpy 14y be forwarded froms at the same time, where
pr.i is forwarded over the channel with lesser capacity. Let the exit time of

pr.i from s be
3. Ly
Toy~T+—
ST Rf

Thus, the exit time op;, ;+-3) andpy ;14 is slightly less than this.

Note that scheduler maintains the queue gf sorted by index. Nonetheless,
the exit time ofp;, from sis 7 + ff ie., Iarger than its exit time if were
a single-channel scheduler. '

A similar sequence of events may occur at schedylas follows. First, we
assume packejs, ;1) andpy 10y departt soon after they are received. Next, we
consider packetsy (;+3) andpy, i14).

Becauseyy ;3 andpy ;14 arrive tot beforep, ;, the queue off is empty at
this time. We may therefore assume they are forwarded immediately upon arrival.
Furthermore, recall that; ;s andp; ;4 arrive at timer + % Lf Thus, when
Py i+3) becomes the head of the queuefofve have

Packetp;; arrives afterpy ;.3 andpy 14y are forwarded. Thus, whepy; be-
comes the head of the queuefgfwe have

T ~ -
S T+ Rf

Hencep;; may be delayed atuntil this time.
We have shown that the per-hop delaypgf is actually“f as opposed to

the per-hop delay o% in single-channel schedulers. Therefore, simply sorting
the queue of each flow by index is insufficient. To overcome this, we present two
more advanced sorting techniques.
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Our sorting techniques require that packets have a small additional delay when
entering a scheduler. Therefore, we assume that, for each paglatscheduler
s, there is areligibility time G ;,. Schedules will not forward p;,; before this
time. Since a packet has not truly “arrived” to the scheduler until its eligibility
time, we redefine the start-time as follows.

Ly
Ss,f,i = max (Gs,f,ia Gs,f,(ifl) + Ll))
Ry
We place the restriction that packets should become eligible in their sorted order,
that is,G, s; < G f,i41) for all 4.

7.1 Jitter-Reduction Sorting-Schedulers

The first technique is a jitter reduction technique, similar to the technique in [26].
If sis a start-time scheduler, then each packet is labelled with the difference be-
tween its exit time and its start-time exit bound. That is, each pagkes labelled

with the value), ;;, where

)\s,f,i = s, fi + 5s,f,i - Es,f,i
If ¢ is the next scheduler after then the eligibility time is as follows.
Grpi=Aigi + Xepi = B i+ Xo i = S pi + 05,1

By using the above technique, each pagketbecomes eligible atprecisely
at its start-time exit bound ati.e., attimeS; s+, ;. In all start-time scheduling
protocols in the literature, the start-time exit bounds increase with each new packet
of the same flow. Hence, packets will become eligibleiatsorted order.

From the above, we can represent the behavierasfd the additional delay
by a single-channel schedulér where the start-time delay is the same ahds’.
Thatis,és r; = 0+ 14, for all f andi. Each packeg;, exitss’ precisely at its start-
time exit bound. This implies that when a flow traverses a path of multi-channel
jitter-reduction schedulers, this is equivalent to traversing a path of single-channel
schedulers. In this case, the end-to-end delay is simply obtained from Corollary
5.

One problem to be addressed is that upg/fgpackets can become eligitde
the same timewhereM is the number of flows at the scheduler. Since inserting
a packet into an output queue ordered by timestamp t@kleg; M) time, it takes
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Figure 5: Output queue of scheduler with eligibility times.

O(M -log M) time to process all the packets that become eligible. This overhead
is too large for a high-speed network implementation. To resolve this, we present
a technique similar to the one presented in [24]. This reducéxliag M) time

the overhead of managing the eligibility of packets. We assume that each packet is
assigned a timestamp, and packets are forwarded in order of increasing timestamp.

The data structures needed are shown in Figure 5. Time is divided into small
intervals of constant size, as shown in Figure 5(a). Each time interval has a queue
of packets. We refer to these queuesirgsrval queues Each interval queue
contains packets that become eligible during its interval, and these packets are
sorted by timestamp. Furthermore, at most one packet from each flow can be in
an interval queue.

Let ¢ be the size of the time intervals. At time- ¢, the queue of interval
((n—1)-¢,n - ¢] becomes eligible, and its interval queue is transferred to the
output queue of the scheduler. The output queue has the form of a balanced search
tree. The leaves of this tree are the roots of elapsed interval queues (see Figure
5(b)).

Each flow has a regular queue of packets, independent of the interval queues.
This regular queue is sorted by packet index (or equivalently, by eligibility time).
The packet with the smallest index is located both in the regular queue and in an
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interval queue. All other packets of the flow are only in the regular queue.

Note that since each interval queue has at most one packet from each flow,
each interval queue has at madgtpackets, and the output queue has at nidst
leaves.

When a packet from the output queue is transmitted, the packet is removed
from its interval queue and from the regular queue of the flow. Then, the packet at
the head of the regular queue of the flow is examined. If this packet is not eligible,
it is added to the queue of the appropriate interval. If it is eligible, it is inserted
into the output queue as an interval queue of size one.

Receiving a packet is similar. Whary; is received, its eligibility time is
computed. Ifp;; does not have the smallest index fofit is simply inserted into
the regular queue of. Otherwise, lep, ; be the packet of in an interval queue.

This packet is removed from its interval queue. Thepyifis eligible, it is added
to the output queue as an interval queue of size oney lfis not eligible, it is
added to the appropriate interval queue.

Note that this technique introduces an additional delay td the incoming
packets. Therefore, the per-hop delay bound of each flow grows biowever,
¢ can be kept small, close to the transmission time of a packet.

The above technique of sorting packets based on their eligibility time has a
couple of disadvantages. The first disadvantage is that the per-hop delay of packet
pyi ats is ds s, regardless of how lightly loaded the scheduler is. This prevents
an application from taking advantage of a low per-hop delay during light net-
work loads. Another disadvantage is that the timestamp of each packet must be
computed upon arrival, before the packet is inserted into an interval queue. This
timestamp should be the timestamp the packet would receive if it arrived precisely
at its eligibility time. Although this is possible with flow timestamps [9], it is not
possible in all protocols. For example, in protocols such as WFQ [18, 21], the
timestamp that a packet receives when it becomes eligible cannot be computed
at the time of the packet’s arrival. This is because the timestamp of the packet
depends on packets from other flows, and these packets may not have yet arrived
to the scheduler.

7.2 Fixed-Delay Sorting-Schedulers

Our second technique remedies the shortcomings of the first technique. Here, a
packetp; ; at schedulet becomes eligible when all other packets, i < j, have
already been received atand are eligible. By delaying packets in this manner,
we have the following increase in start-time.
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Theorem 5 Let s be a start-time multi-channel schedulébe an input flow o,
andt be the next scheduler gfafter s. In addition, we assume the following.

e Eligibility times att are non-decreasing, i.e., for all G, ;; < Gy ¢, (i11)-
e There exists @, such that for alki, G, y; — Ay 5 < V4.

Then, the start-time atis as follows.

Stfi < Se i+ Dggi + Uy

Corollary 8 Letty,t,,...,t; be a sequence af start-time schedulers traversed
by flow f. Each of these schedulers satisfies the conditions of Theorem 5. Then,

for all <,
k—1

Stfi < St fi Z (Atm,f,i + ¢t($+l>)

r=1

Etk,f,’t’ S Stkval + 6tk’fﬂ

Proof: Sinces is a start-time scheduler, we have
At pi < Ssgi+ 0s g
We are given thatr; s, < A, s; + 1. Hence,
Gii < Ssfi+0spi+ (4)

Because a packet is not eligible unless it is received, and since eligibility times are
increasing, the packets gfbecome eligible in order of their index. Furthermore,
from (4) above, schedulerplus the delay at before the packet becomes eligible
has the same behavior as a single-channel start-time schetuldrered, ;; =
ds.7.i + Yr. Therefore, the start-time afollows from Theorem 3, and the end-to-
end delay follows from Corollary 5. |

The above technique, although not work-conserving, allows a flow to take
advantage of a lightly loaded network. In this case, the packets of a flow may
be forwarded at a rate greater than the reserved rate of the flow, and with a per-
hop delay lower than the start-time delay However, the technique must be
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implemented efficiently and with a small valuef We next consider a specific
implementation.

At schedulert, time is divided into intervals of constant size. lgtbe the
length of an interval. We requirg, to be at least the maximum transmission time
of a packet, that is, .

min
Cs

Op >

Letinterval n denote the interval(n — 1) - ¢4, n - ¢4).

Each flow has a queue of packets for each interval. The queue offfkow
intervaln is denoted)), ;,,. Packets off that arrive during intervat are stored in
Q1,1 In addition,q, s, is ordered by packet index. Note that the maximum size
of Qt.5.n i ¢ - Cs.

In order to determine the eligibility time of a packet, we must determine
whether all packets with lesser indices have been received or not. We next ad-
dress this issue.

Letp;; be the packet of with smallest index that arrived during interval
Consider any packei;,;, wherei < j. Due to reorderp;; may arrive during
intervaln + 1. However,p;, cannot arrive during interval + 2. This is because
of the limited reorder and of the lower bound ¢n Thus, at timgn + 1) - ¢, all
packets off with index less than have been received.

In some cases, we may reduce the time whegnbecomes eligible as follows.
Recall thatp, ; is received during intervah. Assume packep;., j < k, is
received during intervak — 1. This implies that by time: - ¢,, all packets with
index less thaik have been received. Hence, by timep,, all packets with index
less thary have also been received.

We combine the two observations above to determine when a pagckee-
comes eligible, as follows.

1. Letn be the interval during which packet ; arrives.
2. If the current time is at leagh + 1) - ¢, thenpy ; is eligible.

3. If the current time is at least - ¢, and there is a packet; that arrived
during intervaln — 1, such thay < k, thenpy ; is eligible.

The sorting technique is therefore as follows. When a packet is received, it is
inserted into the appropriate interval queue. At each timey,, wheren > 1,
eligible packets are removed from their interval queues and are transferred to the
scheduler. The algorithm to determine which packets become eligible is shown in
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for n =2 to oo,
wait until clock > n - ¢,
for every f, where Q. s -1y # 0,
while Q¢ 7,n-1) # 0,
let p;, have the smallest index in interval— 1.
let p;; have the smallest index in interval
if i < j,then
forwardp;; to the scheduler
else
forwardp, ; to the scheduler
end if
end while
end for
end for

Figure 6: Transferring packets from their interval queues to the scheduler.

Figure 6. Since a packet cannot become eligible during the interval in which it is
received, inserting and removing packets from an interval queue do not interfere
with each other. Thus, inserting and removing packets from interval queues can
be done in parallel.

A packet truly “arrives” at the scheduler when it is removed from its interval
gueue. Itis at this time that the scheduler processes the packet in the usual way.
E.g., the scheduler assigns a timestamp to the packet and inserts the packet into
the output queue. Note that delaying packets in the above manner does not affect
the scheduling algorithm in any way, except for a small additional delay in the
arrival of packets. Thus, the output queue of the scheduler is unaffected by this
technique.

The overhead introduced by the sorting technique is very small. The interval
size¢, is approximately the transmission time of a packet. In addition, notice that
the processing time of each packet increases only by a constant amount. This is
because interval queues are bounded. Finally, let us make the sensible assump-
tion that packets can be inserted into the interval queues and transferred from the
interval queues to the scheduler as fast as packets are received. Then, the to-
tal additional delay introduced by the sorting technique is at rdoest;. Thus,

Y, < 3 - ¢y, and the per-hop delay bound of each flow grows3bys,. This is
greater than the increase @fof Section 7.1. However, it is applicable to a larger
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class of schedulers.

8 Concluding Remarks

In this paper, we have considered the problem of providing deterministic quality
of service guarantees in a network with multiple channels between nodes. We
have shown that any single-channel scheduling protocol can be converted into a
multi-channel scheduling protocol without significantly increasing the delay at the
scheduling node. This technique is inherently not work-conserving. In addition,
we have shown that for schedulers with bounded appetite, any work-conserving
single-channel scheduling protocol can be converted to a work-conserving multi-
channel scheduling protocol. In addition, due to multiple channels between nodes,
the packets of a flow may be reordered. This in turn significantly increases the
upper bound on end-to-end delay. We have shown that this increase in delay can
be eliminated through the use of efficient sorting techniques.

There are several possible topics for future work in multi-channel scheduling
protocols. We discuss a couple of topics below.

We have restricted ourselves to the design of multi-channel schedulers based
on existing single-channel schedulers. The bound on the packet exit time of
our multi-channel schedulers is very close to the corresponding bound of single-
channel schedulers. Thus, we do not believe that a significant reduction in exit
time is possible by designing protocols specifically tailored for multiple channels.
Nonetheless, a slight improvement may be possible.

In our network model, the packets of each flow are distributed among all the
output channels of the scheduler. Another approach would be to have a scheduler
for each output channel, and have the packets of each flow be forwarded over a
single output channel. Thus, the problem of multiple channels has been reduced to
the well-known problem of scheduling over a single channel. However, we have
the additional problem of choosing the output channel for each flow. An incorrect
assignment of flows to output channels may waste network resources.

Consider the following two examples. First, it is possible that no channel has
enough capacity to support a new flow, yet the sum of the remaining capacities of
all the channels may be enough to support the flow. As another example, consider
those protocols that allow flows to temporarily exceed their packet rate (e.g., WFQ
[18, 21]). This allows some flows to make use of capacity unused by other flows.
With multiple channels, it is possible that a channel has high utilization, but other
channels, although fully reserved, have low utilization. If a flow is forwarded only
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over a single channel, this prevents the flow in the high utilization channel from
taking advantage of the unused capacity in the other channels.
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Appendix

Proof of Lemma 1

We present a couple of lemmas before presenting the proof of Lemma 1.
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Lemma 2 Consider a schedulerwith input flowf. If for any packepy ;, where
1 < j < i, we modify4, ;; to be at most its previous value, théh,; cannot
increase.

Proof: We will reduce the arrival time of packgtincrementally and show that
S, cannot increase.

Consider first reducingl, ; ;, but without reducing it belowd, s ;_;). From
the definition ofS, reducing the arrival time of a packef; does not increase
St.r.;» and by a simple induction on the definition 8f it does not increasg;
foranyi, i > j.

Consider reducing now; ; ; below A, ; ;_1) but not belowA; ; ;o). For
simplicity, we keep the same indices in both cases, i.e., in the reordereg gase,
arrives tot beforepy (;_1).

We use a hat accent to denote the values after the reductidp;inand we
use non-accented values to denote the values without the reductipn jnThus,
A, s, is the original arrival time of s ; and A, ; ; is the reduced arrival time gf; ;.

From the definition of5, andp; ;_) being the packet previous g ;.1 in
the reordered flow,

Stp.+1) = max(Fy g -1y, Ar g, +1))
Without reorder, from the definition df,
St..G4+1) = max(Fy g5, Ay 5, 41))

From the above, we must show thatf,(j_l) < F, ;. We have four cases to
consider.

1 Avpj < Foggoo

In this case, in the reordered flow, ; is the next packet aftep ;_o).
Hence, from the definition of,

Stvaj = Ft»f:(j72)
Fyt;=Figg-2 + Lsj/Ry (5)

Within this case we have the following two subcases.
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(@) Ars- < E,f,j
Because in the reordered flaw ; is the packet previous to; 1),
from the definition ofS,

Stmfv(j_l) = Ft:fv]

Fipg-n = Fipj+ Lig-/Ry
From equation (5),
FrpG-1 = Figg-2 + Lyj/Rp + Lyp-1)/ Ry

In the ordered flow, from the definition ¢f, F' increases by at least
L/ Ry with each packet. Hence,

Fipj 2 Figg2) + Lpj/Rp + Ly-1)/ Ry

ThUS,FLf,(j—l) < Ft,f,j

(b) Av 1) > Fig
Because in the reordered flaw ; is the packet previous to; ;_1),
from the definition ofS,

Stvf1(j_1) = At7f1(j_1)

Fyp -1y = Avp -1 + Ly.g-1)/ By (6)
In the ordered flow, from the definition ¢f,

Fip; = Supg+Ly/Ry

Fop -1+ Ly /Ry

SttG-1) + Lyg-n/Ry + Lyj/ Ry
At g-1) + Ly /Ry + Lyj/ Ry

AV

v

Hence, combining the above with Equation (B);.;_1) < Fi s ;-

2' Atvaj > Ft:fv(j72)
Since in the reordered flow, ; is the next packet aftgy; ;_,), from the
definition of S, R )
St = Avpi

Fipj=Avsi+ Ly /Ry (7)

Within, this case, we have the following two subcases.
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@) Avson < Fipy
In the reordered flow, singe;, ;1) follows p; ;, from the definition of
S,

St:fv(j_l) = Ft7f7j
= {from Equation (7}
Avpj+ Lyj/ Ry

Also from the definition ofS,
Fypory = Avpj+ Lyj /Ry + Ly 1)/ Ry
In the ordered flow, from the definition &f and F,

Fiyj St.ri+ Lypj/ Ry

FypG-n+ Lyj/ Ry
Stp-1) + Lyg-1y/ Ry + Ly /Ry
AvpG-v + Lo/ Ry + Ly j/ Ry

AV

Y

Note thatA, ;1) > A, s, (due to the reorder), and henég;,; >
Ft»fv(jfl)'
(b) At,f,(j—l) > Ft»f:j

In the reordered flow, singe;, ;_1) follows p; ;, from the definition of
S,

St:fv(jfl) = At:fv(jfl)

Fygg-1 = Aug-n + Lyg-n/ By

In the ordered flow, from the definition &f,

Firi > Firg-
= Stva(jfl) + Lfv(]fl)/Rf
At r.-1) + Lyg-n/ Ry

v

Hence,Ft,ﬁ(j,l) < Figj.

37



Lemma 3 Consider a schedules and an input flowf. Assume we insert an
additional packey into f after packety ;1) and before packet ;. Then, the
start-time ofp,; for all 4,7 > j, increases by at most,/R;.

Proof: Even though we insert a packet infg for simplicity, let us maintain
the packet indices as before the packet was inserted. Therefore, the sequence
of packet arrivals iy ;_1), ¢, ps;. Values corresponding to the case where
is inserted have a hat accent Non-accented values either do not change with the
insertion ofq or correspond to the case wheres not inserted. We first show that
S; ; increases by at mog, /Ry, i.e.,
S5 < 5%, + Lo/ By
We have two cases.
1. F¢

£,(G-1) < AS
From the deflnltlon of5,

S = max(F} ;_1y, A})
SinceA; < Aj;andFy ;) < A},
S; < Ay,
Thus, for packep; ; which followsg,
Sj"j = maa:(ﬁ’;,A?j)
max(S; + Lq/ Ry, A} ;)

max(A?j + Lq/waA?j)

IN

Note that sincd’;’(j_l) < Aj;,j in f, then without inserting,
St =A%
Hence,S;; < 57, + Ly/Ry.

2. F3 iy > A3,

In this case, from the definition df,
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SinceAg < A;j < FJf 1) from the definition ofS,

(-

S5 = max(Fny(j,D’ AZ) = F;,(jfl)

q

For the next packet; ; afterg,

,SAY;J = max(ﬁ’;,A?j)
= max(S, + L/ Ry, A} )
= max(F}; 1)+ Le/ Ry, A} )
= Fj 1)+ Ly/Ry

Hence, combining with the abové;vj < S}, + Ly/Ry.

We next consider the increaseSnfor packets aftep; ;. From the definition
of S, foralli,i > 1,

Sjsf,z‘ = max(S;,(z‘—l) + Lﬁ(i—l)/Rfa A;z)

If 5 ;_,) Increases by a valug, thenS7; ; increases by at most We have shown
that S} ; increases by at mogt,/iZ;. Hence, by a simple induction proof, for all
i,i > j, S}, increases by at mosgt, / R; |
We next present the proof of Lemma 1.
Proof: Consider first part one. Lét correspond to a possible output f
where each packet g¢fis delayed its maximum. That is, for allp,; = p;, and

Atni = Ss g + 05,1

Notice that packet order is preserved, since we made the assumption in Section 5
that start-time exit bounds are increasing. Also, note that for all packetstio®
corresponding packet afarrives no later than the packetgfFurthermore, from

the results of [6, 13], for ali,

Sthi < Sspi+ Ds 1

We manipulate flow: until we obtain our desired floy. Each manipulation
cannot increase the start time of packet.

Only packety, ; up top, ; affect the computation of; , ;. Thus, we assume
g simply consists of packeis, ; up top, ;. Leth’ be obtained fronk by deleting
all those packets which are notgn I.e., 2’ contains only packets, ; up top, ;.
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Note thatp,;, which isp, ;, is the last packet of. Also, since we assumed that
pr.i IS the last packet of, it is also the last packet éf and?'.

It is obvious from a simple induction proof and the definitiorsothat remov-
ing any packet from a flow cannot increase the valué ér any packet in the
flow. Hence, the start-times of the packetsibhave not increased beyond those
of the corresponding packets fof

Next, note that the packets gfand/’ are not in the same order. Through a
repeated application of Lemma 2, we can reduce the arrival times of the packets
of h' (except the last ong;;), and make their arrival times equal to the corre-
sponding packets af. This results in flowh”. From the lemma, the start time of
pyrsi in h” does not increase.

Finally, the arrival time of;, must also be reduced to the arrival timepgf.
From the definition of9, reducing the arrival time of a packet does not increase
its start-time. Hence,

Stgg < Sthi < Sspi+ Asfi

Consider now part two. If no packet aftef; is reordered wittp;;, the start
time ofp;; att is the same as in part one. However, th@ackets aftep;; could
be reordered withy;, and arrive tot beforep;;. By a repeated application of
Lemma 3 and part one we obtain,

Stgg < Sthi < Sspit Dspi+ —k:}; :
!
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