
A Theory of Multi-Channel Schedulers for Quality
of Service

Jorge A. Cobb and Miaohua Lin
Department of Computer Science

The University of Texas at Dallas

Richardson, TX 75083-0688

{cobb,miaohua}@utdallas.edu

November 12, 2002

Abstract

A computer network consists of a set of computing nodes interconnected via
communication channels. It is commonly assumed that, for each pair of net-
work nodesu andv, there is at most one channel fromu to v. However, it is
often desirable to have multiple channels between nodes. That is, for every
pair of network nodesu andv, there may be multiple channels fromu to
v. In this paper, we consider the problem of providing deterministic quality
of service guarantees when there are multiple channels between nodes. We
show that any packet scheduling protocol that operates over a single channel
can be modified to operate over multiple channels. In addition, this transfor-
mation increases the packet delay through the node by only a small amount.
However, having multiple channels between nodes may cause packet re-
order. This reorder significantly increases the upper bound on end-to-end
delay. We show how this increase in delay is avoided through the use of
efficient sorting techniques.

1 Introduction

A computer network provides quality of service if there is an upper bound on
the delay of packets through the network. This delay bound can be either prob-
abilistic or deterministic. In this paper, we focus on deterministic delay bounds.



Research on packet scheduling protocols that provide deterministic delay bounds
flourished in the previous decade (for a survey, see [27]). Many of these protocols
are based, one way or another, on earlier work on task scheduling. In particular,
they are based on the techniques given in the landmark paper of Liu and Layland
on periodic task scheduling [19].

In [19], all tasks share a single resource. However, in the last few years, there
have been breakthroughs in the scheduling of tasks overmultiple resources [1, 2,
20]. Even though task scheduling over multiple resources has been successful,
there has been little work on packet scheduling over multiple channels between
network nodes. This is due in part to the belief that multiple channels between
nodes is either impractical or uncommon. However, there is significant evidence
to the contrary.

In a recent paper [3], it was argued that packet reordering is not a “patho-
logical” problem, but rather a normal occurrence. That is, packets are reordered
not only due to route changes (which are rare), but also due to parallelism in the
network. One reason for this parallelism is the aggressive deployment of paral-
lel channels between nodes. As stated in [3], in a survey of 38 major service
providers in 1997, only two had no parallel channels between their nodes. One
reason for parallel channels is that they often reduce equipment and trunk costs.
That is, it is often more cost effective to use two components in parallel than to
use one component with twice the capacity. In addition, parallel channels improve
fault-tolerance.

Another technology that provides multiple channels between nodes is the es-
tablishment of light-paths in wave-division multiplexed (WDM) optical networks.
Although the establishment of light-paths is usually semi-permanent, recent work
allows the establishment of light-paths on-demand [14]. If there is a significant
load between two nodes in the network, it is possible that a single light-path may
not provide enough capacity between these nodes. In this case, additional light-
paths may be established between them (for more examples of multi-channel sys-
tems, see [4].)

Based on the evidence presented above, it is likely that multiple channels be-
tween nodes will continue to exist. Therefore, if quality of service is deployed
on a global scale, it will likely encounter network nodes with multiple channels
between them. Hence, the problem of scheduling packets over multiple channels
must be studied.

The first packet scheduling protocol that provides deterministic quality of ser-
vice over multiple channels is presented in [4]. The scheduling protocol assigns
timestamps to packets in the same manner as weighted-fair-queuing [18, 21], and

2



packets are forwarded to channels in order of increasing timestamp. However,
no other scheduling protocols were considered, and the end-to-end delay over a
series of nodes was not determined.

In [10], we presented general techniques to develop scheduling protocols for
nodes with multiple channels. However, the techniques were restricted to the case
where all channels of a node have equal capacity. In this paper, we generalize the
techniques to allow channels of different capacity. In particular, we present two
techniques to transform a scheduling protocol that operates over a single channel
into a scheduling protocol that operates over multiple channels. In addition, we
consider the end-to-end delay of packets through a series of nodes with multiple
channels. We observe that the packet reorder caused by multiple channels may
significantly increase the end-to-end delay. We show how this increase in delay
can be prevented through the use of efficient sorting techniques.

2 Multi-Channel Schedulers

In this section, we define our network model and protocol notation. We begin with
the usual network model where there is only a single channel between nodes. We
then extend our model to multiple channels between nodes.

A networkis a set of computers interconnected by point-to-point communica-
tion channels. The network may be viewed as a graph, where each computer is
a node in the graph and each channel is a directed edge in the graph. Thus, we
use the terms computer and node interchangeably. A network is asingle-channel
networkiff, for every pair of nodesu andv, there is at most one channel fromu
to v. Nodesu andv areneighborsiff there is a channel fromu to v or there is a
channel fromv to u.

A flow is a sequence of packets that traverse the network, starting at the source
node of the flow and ending at the destination node of the flow. A network may
be traversed by multiple flows. The network path of each flow is fixed, and net-
work resources are reserved for each flow. This reservation of resources ensures a
bounded end-to-end packet delay.

In a single-channel network, every output channel in a node is equipped with
a scheduler. From the input channels of the node, each scheduler receives packets
from flows that traverse the output channel of the scheduler. The scheduler then
chooses the transmission order and transmission time of these packets over its
output channel.

As an example, consider Figure 1. Figure 1(a) shows a network with five

3



nodes. There are four flows in the network,f , g, x, andy. Each channel is
labelled with the flows that traverse it. Figure 1(b) shows the center node in detail,
including the scheduler of each of its output channels, and the path through the
node taken by each of the four flows.

We say a packet isforwardedto the output channel when its first bit is trans-
mitted over the output channel. We say a packetexitsa scheduler when the last bit
of the packet is transmitted by the output channel, and hence, the output channel
becomes idle at this moment. To simplify our discussion, we ignore channel prop-
agation delays, since they simply add a constant delay to each packet. We say a
scheduler iswork-conservingif it does not allow its output channel to remain idle
while its queue is non-empty.

We adopt the following notation for each flowf and each schedulers along
the path off .

Rf rate (bits/sec.) reserved for flowf .
pf,i ith packet off , i ≥ 1.
Lf,i length of packetpf,i (bits).

Lmax
f,i maximum ofLf,j, where1 ≤ j ≤ i.

Lmax
s maximum packet length of all flows ats.

As,f,i arrival time ofpf,i at schedulers.
Es,f,i exit time ofpf,i from s.

Cs output channel capacity (bits/sec.) of schedulers.

We next enhance the network model to include multiple channels between
nodes.

A multi-channel networkis a network in which there exists a pair of nodes,
u andv, such that the number of channels fromu to v is greater than one. An
example of a multi-channel network is shown in Figure 2(a). It is similar to the
network in Figure 1(a), except that there are two channels between each pair of
nodes. Figure 2(b) shows the center node in detail.

All output channels that lead to the same neighboring node are managed by
a single scheduler. Therefore, all packets with a common next-hop node have a
common scheduler. Because all output channels of a scheduler lead to the same
node, the scheduler distributes the packets of each flow among all its output chan-
nels.

A scheduler is said to be amulti-channel schedulerif it manages multiple out-
put channels, or asingle-channel schedulerif it manages a single output channel.

For a multi-channel schedulers, we adopt the following notation.

4



scheduler scheduler

(a)

(b)

x,y

f,g

g,yf,x

x,y

f,g

f,x g,y

f
g

x y

input
channel

output
channel

input
channel

output
channel

channel

Figure 1: Output channels and their schedulers.

5



scheduler scheduler

input
channels

input
channels

output
channels

output
channels

(a)

(b)

x,y

f,x g,y

f,g

f,g f,g

f g

x,y x,y

x y g,y

g,y

f,x

f,x

channel

Figure 2: Multiple output channels per node.

6



Ns number of output channels managed bys.
cs,i capacity ofith output channel ofs, 1 ≤ i ≤ Ns.

cmin
s minimum channel capacity ofs, i.e.,min{cs,i | 1 ≤ i ≤ Ns}.

cmax
s maximum channel capacity ofs, i.e.,max{cs,i | 1 ≤ i ≤ Ns}.
Cs total capacity of schedulers, i.e.,

∑Ns

i=1 cs,i.

We assume that each scheduler forwards the packets of each flow in the order
in which they are received. However, note that packets from a flow may be re-
ordered along their path to the destination. To illustrate this, assume that multiple
output channels of a scheduler are idle. In addition, assume that packetspf,i and
pf,(i+1) are forwarded to a pair of idle channels at the same time. IfLf,i > Lf,(i+1),
thenpf,(i+1) will arrive to the next node earlier thanpf,i, and hence, these two
packets become reordered.

Due to reorder, we say a flowg is derivedfrom flow f if both flows have the
same set of packets. That is, ifg andf differ, then they differ only in the order of
their packets.

When the packets of a flow are received at a node, the node has two options
before transferring the packets to their scheduler. The node may simply transfer
the packets in the order in which they are received, or the node may sort the
packets back into their original order. We will consider both of these cases in later
sections.

3 Single-Channel Emulation

Single-channel schedulers have been studied extensively in the literature, and a
large number of these schedulers have been developed [27]. The obvious ques-
tion to ask is if existing single-channel schedulers can be transformed into multi-
channel schedulers. In this section, we present a simple technique by whichall
single-channel schedulers can be transformed into multi-channel schedulers.

Consider Figure 3. In this figure we have three schedulers. Schedulert is a
single-channel scheduler. Schedulerr is a single-channel scheduler whose output
channel has infinite capacity and whose input flows are the same as those oft.
Schedulers is a multi-channel scheduler whose output capacity equals the output
capacity oft.

The behavior of these schedulers is as follows. Schedulerr forwards each
packet at exactly the same time at which the same packet is forwarded byt. Be-
cause the capacity ofr is infinite, oncer forwards a packet, the packet is received

7



capacity = Ct
f
g
h

t

capacity = ∞
f
g
h

r s

capacity = Cs = Ct

Figure 3: Multi-channel emulation of a single-channel scheduler.

immediately bys. Notice that afterr forwards a packet of sizeL to s, it may
not forward the next packet until at leastL/Ct seconds later. Therefore,r is not
work-conserving. Finally,s is work-conserving. It simply queues the packets re-
ceived fromr, and it forwards these packets in FCFS order to its output channels.
Schedulers treats all its output channels alike, even though their capacity may
not be equal. Thus, if a channel becomes idle, and the queue ofs is not empty,
then the next packet from the queue is forwarded over this channel. In a sense,
schedulersr ands emulate the behavior of schedulert, except that the packets are
distributed over multiple channels.

We next compare the behavior of these two systems.

Theorem 1 Let t be a single-channel scheduler with capacityCt. Assume a
single-channel schedulerr has an output channel with infinite capacity, andr
has the same input flows ast. Letr forward packets in the same order ast and at
exactly the same time ast. Assumes is a work-conserving, FCFS, multi-channel
scheduler such thatCs = Ct. Let the input ofs be the output ofr. Then, for all
input flowsf and for all i,

Es,f,i − Et,f,i ≤ (Ns − 1) · Lmax
s − Lf,i

Cs

+
Lf,i

cmin
s

Proof:
Thechannel backlogof a scheduler is the sum of the number of bits that remain

to be transmitted from packets currently in a channel. Thetotal backlogis the
channel backlog plus the queue size.

8



If packetpf,i arrives ats and is sent immediately to a channel, (i.e., no queuing
at s), then the extra delay suffered ats is at most

Lf,i

cmin
s

− Lf,i

Ct

The desired result follows fromCt = Cs.
Assume now that whenpf,i arrives ats, all channels are busy (i.e.,pf,i is

queued ats). Let pg,j be the latest packet beforepf,i such thatpg,j suffered no
queuing ats (i.e., there was one empty channel at the timepg,j arrives ats). Thus,
all channels are busy during the time interval[As,g,j, As,f,i).

Let β be the channel backlog ofs at timeA−
s,g,j. Note that there is one empty

channel at timeA−
s,g,j. Thus, the queue ofs is empty, and the total backlog is

also equal toβ. Note also thatβ ≤ (Ns − 1) · Lmax
s , because there is one empty

channel, and each channel can have at mostLmax
s bits.

Let λ be the total number of bits in the sequence of packets arriving ats during
the time interval[As,g,j, As,f,i). That is, we start withpg,j and end with the packet
previous topf,i.

Since packets arrive ats at a rate of at mostCt, which equalsCs, the length of
the time interval[As,g,j, As,f,i) is as follows.

(As,g,j − As,f,i) ≥ λ

Cs

Also, during the time interval[As,g,j, As,f,i), since all channels are busy, the num-
ber of bits forwarded is equal to

Cs · (As,f,i − As,g,j)

From the above two relations, the total number of bits forwarded during the
interval [As,g,j, As,f,i) is at leastλ. That is, it is at least the total number of bits
arriving during the interval. Therefore, the total backlog at timeA−

s,f,i is at most
the total backlog at timeA−

s,g,j, i.e., at mostβ.
The total backlog ofβ bits preventpf,i from being forwarded into a channel.

We next consider the length of time beforepf,i is forwarded. Note that the worst
delay forpf,i occurs when all channels finish clearing the backlog at the same time.
This is because if a channel finishes earlier than others, thenpf,i is forwarded via
the idle channel. Because all channels are busy untilpf,i is forwarded, and because
the backlog is cleared by all channels at time same time,pf,i begins transmission
no later than time

As,f,i +
β

Cs

9



In the worst case, the slowest channel is assigned topf,i. Hence,Es,f,i, is as
follows.

Es,f,i ≤ As,f,i +
β

Cs

+
Lf,i

cmin
s

The additional delay compared to a single channel scheduler is as follows.

Es,f,i − Et,f,i ≤ As,f,i +
β

Cs

+
Lf,i

cmin
s

− (As,f,i +
Lf,i

Cs

)

Thus,

Es,f,i − Et,f,i ≤ β

Cs

+
Lf,i

cmin
s

− Lf,i

Cs

We argued thatβ ≤ (Ns − 1) · Lmax
s . Therefore,

Es,f,i − Et,f,i ≤ (Ns − 1) · Lmax
s

Cs

+
Lf,i

cmin
s

− Lf,i

Cs

Reducing the above,

Es,f,i − Et,f,i ≤ (Ns − 1) · Lmax
s − Lf,i

Cs

+
Lf,i

cmin
s

Corollary 1 Under the same assumptions as those in Theorem 1, plus the ad-
ditional restriction that all output channels ofs have the same capacity, i.e.,
cmax
s = cmin

s = Cs

Ns
, then, for all input flowsf and for all i,

Es,f,i − Et,f,i ≤ (Ns − 1) · Lmax
s

Cs

+
(Ns − 1) · Lf,i

Cs

Theorem 1 shows that we can implement a multi-channel scheduler based
upon any single-channel scheduler. The penalty for doing so is an increase in
the exit time of each packet. Notice, however, that the increase is quite small.
From Corollary 1, if the output channels ofs have similar capacities, then the
difference in the exit times froms andt is less than the transmission time of two
packets in a channel ofs. This is because the transmission time of a packet is at
most Ns·Lmax

s

Cs
. This is not significant if the channel capacity is large.

The behavior of bothr ands can be combined into a single scheduler that
emulatest.

10



Definition 1 A multi-channel schedulers emulatesa single-channel schedulert
if and only if all of the following hold.

• Ct = Cs.

• Schedulers forwards packets in the same order as schedulert.

• A packet ins is forwarded only if it has already been forwarded byt.

• An output channel ins cannot remain idle while there are packets ins that
have been forwarded byt.

We next consider the specific case wheret is a PGPS scheduler. Below,
Wt,f (τ) is the number of bits of flowf that schedulert has forwarded during
the interval[0, τ ].

Corollary 2 Let G be a fluid GPS server,P be a PGPS scheduler that simulates
G, ands be a multi-channel scheduler that emulatesP . Let all channels ofs have
equal capacity. Then, for any timeτ , for any input flowf , and for anyi, i ≥ 1,

Es,f,i − EG,f,i ≤ N · Lmax
s

Cs

+
(Ns − 1) · Lf,i

Cs

WG,f (τ)−Ws,f (τ) ≤ Ns · Lmax
s + (Ns − 1) · Lf,i

Proof: Note that the maximum packet size and total capacity ofP , G, ands are
the same, so we drop the subscripts of these quantities. Consider first the exit
time. The relationship between the exit times fromP andG is as follows [18, 21].

EP,f,i − EG,f,i ≤ Lmax

C

From Corollary 1,

Es,f,i − EP,f,i ≤ (Ns − 1) · Lmax

C
+

(Ns − 1) · Lf,i

C

We combine the above two we obtain the desired result.

Es,f,i − EG,f,i

≤ (Ns − 1) · Lmax

C
+

(Ns − 1) · Lf,i

C
+

Lmax

C

=
Ns · Lmax

C
+

(Ns − 1) · Lf,i

C

11



We next considerW . For terseness, we define

α =
(Ns − 1) · Lmax

C
+

(Ns − 1) · Lf,i

C

Also, for simplicity, we assumeW (τ) = 0 if τ < 0.
Consider the difference betweenWP,f (τ) and Ws,f (τ). From Corollary 1,

every packet exits froms no later than the corresponding exit time fromP plus
α. Notice that the output channel ofP has grater capacity than the single output
channel over which the same packet is sent ins. Hence, any bit of a packet will
exit from s no later than the time it would exit fromP plusα. Hence,

WP,f (τ − α) ≤ Ws,f(τ)

The following is a well known result of PGPS [18, 21].

WG,f (τ − α) ≤ WP,f (τ − α) + Lmax

Thus,
WG,f (τ − α)− Lmax ≤ Ws,f (τ) (1)

Furthermore, in the worst case,G has only packets off queued, and thus it can
transmitα · C bits fromf in α seconds. Hence,

WG,f (τ)−WG,f (τ − α) ≤ α · C (2)

Combining (1) with (2),

WG,f (τ)−Ws,f (τ) ≤ α · C + Lmax

The right hand side is as follows after replacingα by its defined value.
(

(Ns − 1) · Lmax

C
+

(Ns − 1) · Lf,i

C

)
· C + Lmax

Simplifying we obtain the desired result.

Ns · Lmax + (Ns − 1) · Lf,i

The multi-channel emulation of a PGPS server yields an algorithm that is
somewhat different from the multi-channel PGPS algorithm presented in [4] (called

12



MSFQ). Nonetheless, the same bound on the exit time of a packet given in Corol-
lary 2 is precisely the same bound given for MSFQ in [4]. The bound on the num-
ber of bits served is a little higher, however. Nonetheless, as mentioned above, the
result of Theorem 1 is not restricted to emulating PGPS servers. It can be applied
to the emulation ofany packet scheduler, regardless of type. For example, the
theorem can be applied to the emulation of first-come-first-serve, weighted round-
robin [22], rate-controlled static-priority [29], or the emulation of any scheduler
in the family of rate-proportional servers [23].

4 Bounded Appetite Schedulers

A disadvantage of the emulation of a single-channel scheduler by a multi-channel
scheduler is that the latter is not work-conserving. For example, assume the chan-
nels of the multi-channel scheduler are idle, and two packets are received at the
same time. After forwarding one of these packets, the next packet cannot be for-
warded untilL/C seconds later, whereL is the size of the forwarded packet and
C the total capacity of the scheduler. Another disadvantage is that the scheduler
must have a timer that expiresL/C seconds after transmitting a packet of sizeL.
This may increase the implementation complexity of the scheduler.

In this section, we investigate the transformation of a work-conserving single-
channel scheduler into a work-conserving multi-channel scheduler. We desire
two properties of this transformation. First, it must encompass a large number of
single-channel schedulers. Second, the resulting multi-channel scheduler should
be as close as possible to the original single-channel scheduler.

We consider schedulers that assign deadlines to packets and forward packets in
order of increasing deadline. The deadline of packetpf,i at schedulers is denoted
Ds,f,i. Assigning deadlines to packets can be done by assigning a timestamp to
each packet, and then forwarding packets in order of increasing timestamp. How-
ever, the timestamp need not be exactly equal to the deadline. For example, in
self-clocking fair queuing [16] and weighted fair queuing [18, 21], the timestamp
assigned to each packet is not equal to its intended deadline. However, we require
that if a packetpf,i has a timestamp greater than the timestamp of another packet
pg,j, then the deadline ofpf,i is greater than the deadline ofpg,j.

We say that a scheduler isdeadline orderedif it forwards packets in order of
increasing deadline. Without loss of generality, we assume thatDs,f,i > As,f,i.

We next consider the exit time from a work-conserving, deadline ordered,
multi-channel scheduler. To guarantee that packets exit by their deadlines, we

13



must bound the occurrence of deadlines. We use the bound introduced in [12].
Let Zs(a, b) be the total number of bytes that arrive tos during interval[a, b]

and whose deadline is at mostb. That is,

Zs(a, b) =
(∑

f, i : a ≤ As,f,i ∧ Ds,f,i ≤ b : Ls,f,i

)

Definition 2 A schedulers with capacityCs satisfies thebounded appetite prop-
erty for a constantθ if and only if, for all intervals[a, b] in whichZs(a, b) > 0,

Zs(a, b) ≤ ((b− a) · Cs − θ)

Theorem 2 Consider a multi-channel, work-conserving, deadline-ordered sched-
uler s. Let s have bounded appetite with constantθ. Then, for all input flowsf
and for all i, one of the following holds.

Es,f,i ≤ Ds,f,i +
Ns · Lmax

s − Ls,f,i − θ

Cs

+
Ls,f,i

cmin
s

Es,f,i ≤ As,f,i +
Lf,i

cmin
s

Proof: The proof is similar to that of Theorem 1. Assume that when packetpf,i

arrives ats, there is an idle channel andpf,i is immediately forwarded. Then,

Es,f,i ≤ As,f,i +
Lf,i

cmin
s

Consider now that whenpf,i arrives ats, all channels are busy (i.e.,pf,i is
queued ats). Let τ be the latest time, but no later thanAs,f,i, such that one of the
following holds:

1. A packetpg,j was forwarded directly to an output channel (pg,j has no queu-
ing delay ats) and all packets forwarded in the interval[τ, As,f,i], including
pg,j, have deadlines at mostDs,f,i.

2. A packetpg,j was forwarded, whereDs,g,j > Ds,f,i, all packets forwarded
in the interval(τ, As,f,i] have deadlines at mostDs,f,i, and all channels are
busy during this interval.

14



Consider the first case. Any packet forwarded beforepf,i must arrive after
time τ and have a deadline of at mostDs,f,i. This is becausepg,j has no queuing
delay at timeτ , and furthermore, only packets with deadlines at mostDs,f,i are
forwarded during the interval[τ, As,f,i].

Since the deadline of a packet is greater than its arrival time, only packets
arriving in the interval[τ, Ds,f,i] can arrive afterτ and have a deadline of at most
Ds,f,i. From the bounded appetite property, the number of bytes in these packets
add to at most

(Ds,f,i − τ) · Cs − θ (3)

Note that both packetspg,j andpf,i are counted in (3) above. Also, note that only
the packets in (3) and the channel backlog at timeτ− preventpf,i from being
forwarded. The channel backlog at timeτ− can be at most(Ns − 1) · Lmax

s bits,
since there was an empty channel whenpg,j arrived.

From the definition ofpg,j, all channels are busy untilpf,i is forwarded. The
case that delayspf,i the most is when all channelsat the same timefinish trans-
mitting their packets. Hence,pf,i has an exit time as follows.

Es,f,i ≤ τ +
(Ds,f,i − τ) · Cs − θ − Ls,f,i

Cs

+
(Ns − 1) · Lmax

s

Cs

+
Ls,f,i

cmin
s

Reducing we obtain,

Es,f,i ≤ Ds,f,i +
(Ns − 1) · Lmax

s − θ − Ls,f,i

Cs

+
Ls,f,i

cmin
s

A similar reasoning applies to the second case. The main difference is that in
the first case,Ds,g,j ≤ Ds,f,i, and hence,pg,j is counted in (3). This is no longer
true in the second case. Hence, packets in the channel backlog at timeτ (including
pg,j) plus those packets counted in (3) may exits beforepf,i is forwarded to a
channel. The backlog at timeτ is at mostN · Lmax

s . Hence, the exit time is as
follows.

Es,f,i ≤ Ds,f,i +
Ns · Lmax

s − θ − Ls,f,i

Cs

+
Ls,f,i

cmin
s

Corollary 3 Under the same conditions as Theorem 2, with the additional re-
striction that all channels ofs have equal capacity,cmin

s = cmax
s = Cs

Ns
, for all

15



input flowsf and all i, one of the following holds.

Es,f,i ≤ Ds,f,i +
Ns · Lmax

s − θ

Cs

+
(Ns − 1) · Ls,f,i

Cs

Es,f,i ≤ As,f,i +
Ls,f,i

cmin
s

Theorem 2 shows an upper bound on the exit time from a multi-channel,
work-conserving, deadline-ordered scheduler with bounded appetite. Notice that
it is possible that the multi-channel scheduler simply assigns to each packet the
same deadline that a bounded-appetite single-channel scheduler. Thus, the multi-
channel scheduler may assign deadlines in the same way as any of the following
protocols, all of which have been shown to have bounded appetite [12]: virtual
clock [25], time-shift scheduling [8]1, weighted fair queuing [18, 21], stop-and-
go [15]2, and the whole family of rate-proportional servers [23]3.

We next consider the specific case where the packet timestamp of a multi-
channel schedulers is the same as the packet timestamp of a PGPS scheduler.

Corollary 4 Let G be a GPS server andP be a PGPS scheduler that simulates
G. Let s be a multi-channel, work-conserving, deadline-ordered scheduler that
assigns the same timestamp to each packet asP does. LetCs = Cp, and all
channels ofs have the same capacity. Then, for any timeτ , for any input flowf ,
and for anyi, i ≥ 1,

Es,f,i − EG,f,i ≤ Ns · Lmax
s

Cs

+
(Ns − 1) · Lf,i

Cs

WG,f (τ)−Ws,f (τ) ≤ Ns · Lmax
s + (Ns − 1) · Lf,i

1Time-shift scheduling was shown to be a member of the rate-proportional family of schedulers
[5].

2Although stop-and-go is not work-conserving, it defines an eligibility time for each packet.
After the eligibility time of the packet has elapsed, the packet is scheduled according to its dead-
line. Thus, if we consider each packet as arriving into the multi-channel scheduler at its eligibility
time, then Theorem 2 also applies to stop-and-go deadlines.

3Although not shown in [12], it is easy to show that all rate-proportional schedulers have
bounded appetite. The deadline is the time at which the system potential reaches the potential
of the packet.

16



Proof: Consider first the exit time. In [12], it was shown that PGPS is a bounded-
appetite scheduler withθ = 0 andDP,f,i = EG,f,i

4. Thus, sinceDs,f,i = DP,f,i =
EG,f,i, and sinceCs = CP , s is also a bounded appetite scheduler withθ = 0.
Thus, from Corollary 3,

Es,f,i ≤ EG,f,i +
Ns · Lmax

s

Cs

+
(Ns − 1) · Ls,f,i

Cs

which is the desired result.
The proof of the bound onW is the same as that in Corollary 2.
The assignment of deadlines in a multi-channel schedulers as given in Corol-

lary 4 yields the same algorithm as MSFQ [4]. The bound on the exit time of a
packet given in Corollary 4 is precisely the same bound given for MSFQ in [4].
The bound on the number of bits served is a little higher, however. Nonetheless, as
mentioned above, Theorem 2 is not restricted to GPS deadlines. It can be applied
to any assignment of deadlines that satisfy the bounded appetite property.

5 Single-Channel End-to-End Delay

In this section, we review the end-to-end quality of service model of a single-
channel network. We base our model on the models of [6, 13]. We present the
end-to-end quality of service model of a multi-channel network in Section 6.

Consider schedulers and an input flowf of s. We define thestart-timeSs,f,i

of packetpf,i at schedulers as follows [6, 13]. Assumes were to forward the
packets off at exactlyRf bits/sec.. Then,Ss,f,i is the time at which the first bit
of pf,i is forwarded bys. More formally,

Ss,f,1 = As,f,1

Ss,f,i = max

(
As,f,i, Ss,f,(i−1) +

Lf,(i−1)

Rf

)
, for everyi, i > 1

The first equation above is obvious. For the second equation, the first bit of
packetpf,i begins to be transmitted after packetpf,(i−1) exitss, that is, after time
Ss,f,(i−1) + Lf,(i−1)/Rf .

The start-time is measured assumings forwards the bits off at exactly the rate
Rf . However, the true forwarding rate may be different. Nonetheless, on average,

4AlthoughP does not computeEG,f,i, the timestampsP assigns to packets ensure that packets
are forwarded in order of their exit time fromG [12].

17



s forwards the packets off at a rate of at leastRf . Therefore, the exit time of
packetpf,i from s is close to its start time,Ss,f,i. If s has this property, we says is
astart-time scheduler[6, 7, 13, 17].

Definition 3 A schedulers is a start-time schedulerif and only if, for every input
flowf of s, and everyi, i ≥ 1,

Es,f,i ≤ Ss,f,i + δs,f,i

for some constantδs,f,i.

We refer toδs,f,i as thestart-time delayof packetpf,i at schedulers, and we
refer toSs,f,i + δs,f,i as thestart-time exit boundof pf,i ats. We assume the values
of δ are such that the exit bounds are increasing. That is, for alli, Ss,f,i + δs,f,i <
Ss,f,(i+1) + δs,f,(i+1).

The start-time delay is broad enough to represent the delay provided by many
scheduling protocols. For example, by choosingδs,f,i = Lf,i/Rf + Lmax

s /Cs,
δs,f,i becomes the delay of virtual-clock and weighted-fair-queuing protocols [21,
25]. Another example is the real-time channel model, [11, 28] where each flow
has constant packet size and constant packet delay. This is represented above by
havingδs,f,i andLf,i be constant for alli.

We next consider the delay of a packet across a sequence of schedulers. Be-
cause the start-time of a packet determines its exit time from a scheduler, a bounded
end-to-end delay requires a bounded per-hop increase in the start-time of the
packet. This bound is as follows.

Theorem 3 Let s be a start-time scheduler,f be an input flow ofs, andt be the
next scheduler afters. Then, for alli,

St,f,i ≤ Ss,f,i + ∆s,f,i

where∆s,f,i = max
1≤x≤i

{δs,f,x}.

This bound was shown in [7, 13], and it also follows from the results in [28].
From induction and the definition of a start-time scheduler, we can obtain the
following end-to-end exit bound.

18



Corollary 5 Let t1, t2, . . . , tk be a sequence ofk start-time schedulers traversed
by flowf . For all i,

Stk,f,i ≤ St1,f,i +
k−1∑
x=1

∆tx,f,i

Etk,f,i ≤ Stk,f,i + δtk,f,i

Notice that the above bounds are independent of the particular scheduling
technique, and the capacity of the channel between the schedulers. The only re-
quirement is that the schedulers are start-time schedulers.

6 Multi-Channel End-to-End Delay

As discussed in Section 2, a multi-channel scheduler may reorder packets. There-
fore, even if the scheduler is a start-time scheduler, we cannot apply Theorem 3,
because this theorem assumes no packet reorder. We next present some general
results about a scheduler that reorders packets. We then apply these results to the
reorder introduced by a multi-channel scheduler.

We begin with a lemma that bounds the start-time of packets in the presence
of limited reorder.

Lemma 1 Consider a start-time schedulers that may reorder packets. Letf be
an input flow ofs, andg be the output flow ofs derived fromf (i.e., g is f with
some reorder). Letpg,j = pf,i, that is, thejth packet ofg is theith packet off .
Finally, let t be the next scheduler afters.

1. Assumepf,i is the last packet of flowf . Then,

St,g,j ≤ Ss,f,i + ∆s,f,i

2. Assumepf,(i+m) is the last packet of flowf . Then,

St,g,j ≤ Ss,f,i + ∆s,f,i +

∑i+m
k=i+1 Lf,k

Rf

19



The proof Lemma 1 is given in the appendix. This lemma implies that if
no packet afterpf,i is reordered withpf,i, then the start-time increase ofpf,i is the
same as in Theorem 3. Furthermore, if packetspf,(i+1) up topf,(i+m) are reordered
with pf,i, then the start-time ofpf,i increases in proportion to the number of bytes
in these packets. We next apply this lemma to the limited reorder introduced by a
multi-channel scheduler.

Theorem 4 Let s be an multi-channel start-time scheduler,f be an input flow of
s, andt be the next scheduler afters. Letg be the output flow ofs derived fromf ,
and letpg,j = pf,i. Finally, let c1

s = cmin
s . Then,

St,g,j ≤ Ss,f,i + ∆s,f,i +

Lf,i

cmin
s

·
Ns∑
n=2

cn
s

Rf

Proof: Notice that a multi-channel scheduler reorders packets, but with limited
reorder. That is, while packetpf,i is being transmitted in a channel, packets from
f with index greater thani could be transmitted. For a given channel, for these
packets to arrive beforepf,i, their transmission must take less time than the trans-
mission ofpf,i. In the worst case,pf,i is transmitted over the slowest channel of
capacitycmin

s . Thus, it takesLf,i/c
min
s seconds to transmit this packet. During

this time, channeln can transmit a total of

Lf,i

cmin
s

· cn
s

bytes of packets whose index is greater thani. Hence, the packets with index
greater thani that arrive tot beforepf,i can add to at most

Lf,i

cmin
s

·
Ns∑
n=2

cn
s

bytes.
The result follows from Lemma 1.

Corollary 6 Under the same conditions as in Theorem 4, except that all channels
of s have the same capacity, the increase in start-time is as follows.

St,g,j ≤ Ss,f,i + ∆s,f,i +
(Ns − 1) · Lf,i

Rf

20



Assume a flow traverses a path of multi-channel schedulers. The start-time of
a packet of the flow increases at each hop, and an upper bound on this per-hop
increase is given above. Thus, the exit time of the packet is just the start-time of
the packet at the first scheduler, plus the increase in start-time at each hop, plus
the start-time delay at the last scheduler of the path.

Corollary 6 shows that the packet reorder introduced by a multi-channel sched-
uler affects the start-time of each packet at the next scheduler. The impact of this
increase depends on the values ofNs andLf,i/Rf . It is likely thatNs will be quite
small, with only a few channels between nodes. However, the termLf,i/Rf may
be significant, and for some applications, even a per-hop delay equal toLf,i/Rf is
too large. Thus, the impact of packet reorder is significant. In Section 7, we show
how packets can be efficiently sorted to prevent this increase in start-time.

We conclude this section by combining Theorem 4 above with the results of
Sections 3 and 4.

Corollary 7 Let s be an multi-channel scheduler,f be an input flow ofs, and t
be the next scheduler afters. Letg be the output flow ofs derived fromf , and let
pg,j = pf,i. Finally, let c1

s = cmin
s .

1. Lets emulate a start-time single-channel schedulerr. Then,s is a start-time
scheduler, where

δs,f,i = δr,f,i +
(Ns − 1) · Lmax

s − Lf,i

Cs

+
Lf,i

cmin
s

2. Let s be a deadline-ordered server with bounded appetite and constantθ.
Then,s is a start-time scheduler, where

δs,f,i = Ds,f,i +
Ns · Lmax

s − Ls,f,i − θ

Cs

+
Ls,f,i

cmin
s

− Ss,f,i

3. In both cases above, the start-time ofpf,i at schedulert is as follows.

St,g,j ≤ Ss,f,i + ∆s,f,i +

Lf,i

cmin
s

·
Ns∑
n=2

cn
s

Rf

21



7 Sorting Schedulers

We next attempt to reduce the end-to-end delay bound of a series of multi-channel
schedulers. This large delay bound is caused by the reordering of packets through
multiple channels. To reduce the delay bound, each scheduler must restore the
original order of the packets of each flow. In this section, we present three tech-
niques to restore this order. We first consider an obvious sorting technique, and
show how it fails to reduce the delay bound. Then, we introduce two additional
techniques that, although more complex, are effective in reducing the delay bound.

Assume the index of each packet is included in the packet’s header. I.e., packet
pf,i containsi in its header. The obvious technique to order packets is to sort them
as they arrive. Therefore, the queue of each flowf is sorted by packet index.
Furthermore, the next packet off to be forwarded is the packet with the smallest
index. However, note that the scheduler may not always forward the packets of
f by increasing index. For example, assume that packetpf,(i+1) arrives to the
scheduler an instant before packetpf,i. It is possible thatpf,(i+1) is chosen to be
forwarded by the scheduler immediately upon arrival, and thus, it is forwarded
beforepf,i is received.

For simplicity, we consider the virtual clock protocol. Given that packets ar-
rive out of order, the timestamp assignment method of virtual clock cannot be
used. In particular, the timestamp of a packet is not fixed, because it may change
with the arrival of packets of the same flow with a smaller index. Thus, to simplify
our presentation, we make two assumptions. First, each flowf has a fixed packet
sizeLf . Second, the scheduler uses flow timestamps [9], as opposed to packet
timestamps. With flow timestamps, a packet does not receive a timestamp when
it is received. Instead, a single timestampTf is maintained for each flowf . We
explain flow timestamps in more detail below.

The flow timestampTf is updated as follows.

• When a packet fromf is received and inserted into the queue off :

– If the queue off is empty,Tf is updated tomax(Af,i, Tf ) +
Lf

Rf
.

– If the queue off is not empty,Tf remains unchanged.

• When the packet at the head of the queue is forwarded:

– If the queue off is empty,Tf remains unchanged.

– If the queue off is not empty,Tf is updated toTf +
Lf

Rf
.

22



r sf t

Figure 4: Sorting schedulers example.

It is easy to show that if a flow has a non-empty queue, then the exit time of its
next packet is at mostTf + Lmax/C. Furthermore, it can also be shown that this
exit bound is at most the exit bound of the virtual clock protocol [9].

We next consider an example to show that, even though the queue off is
maintained sorted by index, the end-to-end delay bound is similar to that given in
Section 6.

Consider the schedulers in Figure 4. Flowf traverses schedulersr, s, and
t. The index of each packet off corresponds to the order in which the packet
was created, and not the order in which it arrives at a scheduler. Schedulersr
ands have three channels. Two of these channels have equal capacity, and the
remaining channel has a capacity slightly lower than the other two. Sincer is a
multi-channel scheduler, it may reorder packets while forwarding them tos.

Consider the following sequence of events at schedulers.

1. Schedulerr forwardspf,i, pf,(i+1), andpf,(i+2) at the same time. Packetpf,i

is forwarded over the channel with lesser capacity.

2. Packetspf,(i+1) andpf,(i+2) arrive ats at timeτ . Assume these two packets
are forwarded immediately upon arrival. LetTs,f be the flow timestamp of
f at s. Let

Ts,f = τ +
Lf

Rf

whenpf,(i+1) became the head of the queue off , and

Ts,f = τ +
2 · Lf

Rf

whenpf,(i+2) became the head of the queue off .

3. Let pf,i arrive ats at timeτ + ε. Since the queue off is empty at this time,
timestampTs,f is updated as follows.

Ts,f ≈ τ +
3 · Lf

Rf

23



4. Let pf,(i+3) andpf,(i+4) arrive ats afterpf,i and beforepf,i is forwarded.

5. Let pf,i, pf,(i+3), andpf,(i+4) be forwarded froms at the same time, where
pf,i is forwarded over the channel with lesser capacity. Let the exit time of
pf,i from s be

Ts,f ≈ τ +
3 · Lf

Rf

Thus, the exit time ofpf,(i+3) andpf,(i+4) is slightly less than this.

Note that schedulers maintains the queue off sorted by index. Nonetheless,
the exit time ofpf,i from s is τ +

3·Lf

Rf
, i.e., 2·Lf

Rf
larger than its exit time ifr were

a single-channel scheduler.
A similar sequence of events may occur at schedulert, as follows. First, we

assume packetspf,(i+1) andpf,(i+2) departt soon after they are received. Next, we
consider packetspf,(i+3) andpf,(i+4).

Becausepf,(i+3) andpf,(i+4) arrive tot beforepf,i, the queue off is empty at
this time. We may therefore assume they are forwarded immediately upon arrival.
Furthermore, recall thatpf,(i+3) andpf,(i+4) arrive at timeτ +

3·Lf

Rf
. Thus, when

pf,(i+3) becomes the head of the queue off , we have

Ts,f ≈ τ +
4 · Lf

Rf

Next, whenpf,(i+4) becomes the head of the queue off , we have

Ts,f ≈ τ +
5 · Lf

Rf

Packetpf,i arrives afterpf,(i+3) andpf,(i+4) are forwarded. Thus, whenpf,i be-
comes the head of the queue off , we have

Ts,f ≈ τ +
6 · Lf

Rf

Hence,pf,i may be delayed att until this time.
We have shown that the per-hop delay ofpf,i is actually 3·Lf

Rf
, as opposed to

the per-hop delay ofLf

Rf
in single-channel schedulers. Therefore, simply sorting

the queue of each flow by index is insufficient. To overcome this, we present two
more advanced sorting techniques.

24



Our sorting techniques require that packets have a small additional delay when
entering a scheduler. Therefore, we assume that, for each packetpf,i at scheduler
s, there is aneligibility time Gs,f,i. Schedulers will not forward pf,i before this
time. Since a packet has not truly “arrived” to the scheduler until its eligibility
time, we redefine the start-time as follows.

Ss,f,i = max

(
Gs,f,i, Gs,f,(i−1) +

Lf,(i−1)

Rf

)

We place the restriction that packets should become eligible in their sorted order,
that is,Gs,f,i ≤ Gs,f,(i+1) for all i.

7.1 Jitter-Reduction Sorting-Schedulers

The first technique is a jitter reduction technique, similar to the technique in [26].
If s is a start-time scheduler, then each packet is labelled with the difference be-
tween its exit time and its start-time exit bound. That is, each packetpf,i is labelled
with the valueλs,f,i, where

λs,f,i = Ss,f,i + δs,f,i − Es,f,i

If t is the next scheduler afters, then the eligibility time is as follows.

Gt,f,i = At,f,i + λs,f,i = Es,f,i + λs,f,i = Ss,f,i + δs,f,i

By using the above technique, each packetpf,i becomes eligible att precisely
at its start-time exit bound ats, i.e., at timeSs,f,i+δs,f,i. In all start-time scheduling
protocols in the literature, the start-time exit bounds increase with each new packet
of the same flow. Hence, packets will become eligible att in sorted order.

From the above, we can represent the behavior ofs and the additional delayλ
by a single-channel schedulers′, where the start-time delay is the same ats ands′.
That is,δs,f,i = δs′,f,i, for all f andi. Each packetpf,i exitss′ precisely at its start-
time exit bound. This implies that when a flow traverses a path of multi-channel
jitter-reduction schedulers, this is equivalent to traversing a path of single-channel
schedulers. In this case, the end-to-end delay is simply obtained from Corollary
5.

One problem to be addressed is that up toM packets can become eligibleat
the same time, whereM is the number of flows at the scheduler. Since inserting
a packet into an output queue ordered by timestamp takesO(log M) time, it takes

25



output
queue

interval
queues of
ineligible
packets

0 φ 2⋅φ n⋅φ

interval
queues of
eligible
packets

a)

b)

Figure 5: Output queue of scheduler with eligibility times.

O(M · log M) time to process all the packets that become eligible. This overhead
is too large for a high-speed network implementation. To resolve this, we present
a technique similar to the one presented in [24]. This reduces toO(log M) time
the overhead of managing the eligibility of packets. We assume that each packet is
assigned a timestamp, and packets are forwarded in order of increasing timestamp.

The data structures needed are shown in Figure 5. Time is divided into small
intervals of constant size, as shown in Figure 5(a). Each time interval has a queue
of packets. We refer to these queues asinterval queues. Each interval queue
contains packets that become eligible during its interval, and these packets are
sorted by timestamp. Furthermore, at most one packet from each flow can be in
an interval queue.

Let φ be the size of the time intervals. At timen · φ, the queue of interval
((n − 1) · φ, n · φ] becomes eligible, and its interval queue is transferred to the
output queue of the scheduler. The output queue has the form of a balanced search
tree. The leaves of this tree are the roots of elapsed interval queues (see Figure
5(b)).

Each flow has a regular queue of packets, independent of the interval queues.
This regular queue is sorted by packet index (or equivalently, by eligibility time).
The packet with the smallest index is located both in the regular queue and in an

26



interval queue. All other packets of the flow are only in the regular queue.
Note that since each interval queue has at most one packet from each flow,

each interval queue has at mostM packets, and the output queue has at mostM
leaves.

When a packet from the output queue is transmitted, the packet is removed
from its interval queue and from the regular queue of the flow. Then, the packet at
the head of the regular queue of the flow is examined. If this packet is not eligible,
it is added to the queue of the appropriate interval. If it is eligible, it is inserted
into the output queue as an interval queue of size one.

Receiving a packet is similar. Whenpf,i is received, its eligibility time is
computed. Ifpf,i does not have the smallest index off , it is simply inserted into
the regular queue off . Otherwise, letpf,j be the packet off in an interval queue.
This packet is removed from its interval queue. Then, ifpf,i is eligible, it is added
to the output queue as an interval queue of size one. Ifpf,i is not eligible, it is
added to the appropriate interval queue.

Note that this technique introduces an additional delay ofφ to the incoming
packets. Therefore, the per-hop delay bound of each flow grows byφ. However,
φ can be kept small, close to the transmission time of a packet.

The above technique of sorting packets based on their eligibility time has a
couple of disadvantages. The first disadvantage is that the per-hop delay of packet
pf,i at s is δs,f,i, regardless of how lightly loaded the scheduler is. This prevents
an application from taking advantage of a low per-hop delay during light net-
work loads. Another disadvantage is that the timestamp of each packet must be
computed upon arrival, before the packet is inserted into an interval queue. This
timestamp should be the timestamp the packet would receive if it arrived precisely
at its eligibility time. Although this is possible with flow timestamps [9], it is not
possible in all protocols. For example, in protocols such as WFQ [18, 21], the
timestamp that a packet receives when it becomes eligible cannot be computed
at the time of the packet’s arrival. This is because the timestamp of the packet
depends on packets from other flows, and these packets may not have yet arrived
to the scheduler.

7.2 Fixed-Delay Sorting-Schedulers

Our second technique remedies the shortcomings of the first technique. Here, a
packetpf,j at schedulert becomes eligible when all other packetspf,i, i < j, have
already been received att and are eligible. By delaying packets in this manner,
we have the following increase in start-time.

27



Theorem 5 Lets be a start-time multi-channel scheduler,f be an input flow ofs,
andt be the next scheduler off after s. In addition, we assume the following.

• Eligibility times att are non-decreasing, i.e., for alli, Gt,f,i ≤ Gt,f,(i+1).

• There exists aψt such that for alli, Gt,f,i − At,f,i ≤ ψt.

Then, the start-time att is as follows.

St,f,i ≤ Ss,f,i + ∆s,f,i + ψt

Corollary 8 Let t1, t2, . . . , tk be a sequence ofk start-time schedulers traversed
by flowf . Each of these schedulers satisfies the conditions of Theorem 5. Then,
for all i,

Stk,f,i ≤ St1,f,i +
k−1∑
x=1

(
∆tx,f,i + ψt(x+1)

)

Etk,f,i ≤ Stk,f,i + δtk,f,i

Proof: Sinces is a start-time scheduler, we have

At,f,i ≤ Ss,f,i + δs,f,i

We are given thatGt,f,i ≤ At,f,i + ψt. Hence,

Gt,f,i ≤ Ss,f,i + δs,f,i + ψt (4)

Because a packet is not eligible unless it is received, and since eligibility times are
increasing, the packets off become eligible in order of their index. Furthermore,
from (4) above, schedulers plus the delay att before the packet becomes eligible
has the same behavior as a single-channel start-time schedulers′, whereδs′,f,i =
δs,f,i + ψt. Therefore, the start-time att follows from Theorem 3, and the end-to-
end delay follows from Corollary 5.

The above technique, although not work-conserving, allows a flow to take
advantage of a lightly loaded network. In this case, the packets of a flow may
be forwarded at a rate greater than the reserved rate of the flow, and with a per-
hop delay lower than the start-time delayδ. However, the technique must be

28



implemented efficiently and with a small value ofψ. We next consider a specific
implementation.

At schedulert, time is divided into intervals of constant size. Letφt be the
length of an interval. We requireφt to be at least the maximum transmission time
of a packet, that is,

φt ≥ Lmax
s

cmin
s

Let intervaln denote the interval((n− 1) · φt, n · φt].
Each flow has a queue of packets for each interval. The queue of flowf for

intervaln is denotedQt,f,n. Packets off that arrive during intervaln are stored in
Qt,f,n. In addition,Qt,f,n is ordered by packet index. Note that the maximum size
of Qt,f,n is φt · Cs.

In order to determine the eligibility time of a packet, we must determine
whether all packets with lesser indices have been received or not. We next ad-
dress this issue.

Let pf,j be the packet off with smallest index that arrived during intervaln.
Consider any packetpf,i, wherei < j. Due to reorder,pf,i may arrive during
intervaln + 1. However,pf,i cannot arrive during intervaln + 2. This is because
of the limited reorder and of the lower bound onφt. Thus, at time(n + 1) · φt, all
packets off with index less thanj have been received.

In some cases, we may reduce the time whenpf,j becomes eligible as follows.
Recall thatpf,j is received during intervaln. Assume packetpf,k, j < k, is
received during intervaln − 1. This implies that by timen · φt, all packets with
index less thank have been received. Hence, by timen ·φt, all packets with index
less thanj have also been received.

We combine the two observations above to determine when a packetpf,j be-
comes eligible, as follows.

1. Let n be the interval during which packetpf,j arrives.

2. If the current time is at least(n + 1) · φt, thenpf,j is eligible.

3. If the current time is at leastn · φt, and there is a packetpf,k that arrived
during intervaln− 1, such thatj < k, thenpf,j is eligible.

The sorting technique is therefore as follows. When a packet is received, it is
inserted into the appropriate interval queue. At each timen · φt, wheren ≥ 1,
eligible packets are removed from their interval queues and are transferred to the
scheduler. The algorithm to determine which packets become eligible is shown in

29



for n = 2 to ∞,
wait until clock ≥ n · φt

for every f , whereQt,f,(n−1) 6= ∅,
while Qt,f,(n−1) 6= ∅,

let pf,i have the smallest index in intervaln− 1.
let pf,j have the smallest index in intervaln.
if i < j, then

forwardpf,i to the scheduler
else

forwardpf,j to the scheduler
end if

end while
end for

end for

Figure 6: Transferring packets from their interval queues to the scheduler.

Figure 6. Since a packet cannot become eligible during the interval in which it is
received, inserting and removing packets from an interval queue do not interfere
with each other. Thus, inserting and removing packets from interval queues can
be done in parallel.

A packet truly “arrives” at the scheduler when it is removed from its interval
queue. It is at this time that the scheduler processes the packet in the usual way.
E.g., the scheduler assigns a timestamp to the packet and inserts the packet into
the output queue. Note that delaying packets in the above manner does not affect
the scheduling algorithm in any way, except for a small additional delay in the
arrival of packets. Thus, the output queue of the scheduler is unaffected by this
technique.

The overhead introduced by the sorting technique is very small. The interval
sizeφt is approximately the transmission time of a packet. In addition, notice that
the processing time of each packet increases only by a constant amount. This is
because interval queues are bounded. Finally, let us make the sensible assump-
tion that packets can be inserted into the interval queues and transferred from the
interval queues to the scheduler as fast as packets are received. Then, the to-
tal additional delay introduced by the sorting technique is at most3 · φt. Thus,
ψt ≤ 3 · φt, and the per-hop delay bound of each flow grows by3 · φt. This is
greater than the increase ofφt of Section 7.1. However, it is applicable to a larger

30



class of schedulers.

8 Concluding Remarks

In this paper, we have considered the problem of providing deterministic quality
of service guarantees in a network with multiple channels between nodes. We
have shown that any single-channel scheduling protocol can be converted into a
multi-channel scheduling protocol without significantly increasing the delay at the
scheduling node. This technique is inherently not work-conserving. In addition,
we have shown that for schedulers with bounded appetite, any work-conserving
single-channel scheduling protocol can be converted to a work-conserving multi-
channel scheduling protocol. In addition, due to multiple channels between nodes,
the packets of a flow may be reordered. This in turn significantly increases the
upper bound on end-to-end delay. We have shown that this increase in delay can
be eliminated through the use of efficient sorting techniques.

There are several possible topics for future work in multi-channel scheduling
protocols. We discuss a couple of topics below.

We have restricted ourselves to the design of multi-channel schedulers based
on existing single-channel schedulers. The bound on the packet exit time of
our multi-channel schedulers is very close to the corresponding bound of single-
channel schedulers. Thus, we do not believe that a significant reduction in exit
time is possible by designing protocols specifically tailored for multiple channels.
Nonetheless, a slight improvement may be possible.

In our network model, the packets of each flow are distributed among all the
output channels of the scheduler. Another approach would be to have a scheduler
for each output channel, and have the packets of each flow be forwarded over a
single output channel. Thus, the problem of multiple channels has been reduced to
the well-known problem of scheduling over a single channel. However, we have
the additional problem of choosing the output channel for each flow. An incorrect
assignment of flows to output channels may waste network resources.

Consider the following two examples. First, it is possible that no channel has
enough capacity to support a new flow, yet the sum of the remaining capacities of
all the channels may be enough to support the flow. As another example, consider
those protocols that allow flows to temporarily exceed their packet rate (e.g., WFQ
[18, 21]). This allows some flows to make use of capacity unused by other flows.
With multiple channels, it is possible that a channel has high utilization, but other
channels, although fully reserved, have low utilization. If a flow is forwarded only

31



over a single channel, this prevents the flow in the high utilization channel from
taking advantage of the unused capacity in the other channels.

Acknowledgments

This work was supported in part by the Texas Advanced Research Program through
grant number 009741-0139-1999.

References

[1] Baruah, S., Cohen, N, Plaxton, G, Varvel, D., “Proportionate Progress: A
Notion of Fairness in Resource Allocation”,Algorithmica, 15, pp. 600-625,
1996.

[2] Baruah, S., Gherke, J., Plaxton, G., “Fast Scheduling of Periodic Tasks on
Multiple Resources”, in:Proceedings of the International Parallel Process-
ing Symposium, 1995.

[3] Bennet, J.C.R., Partridge, C., Shectman, N., “Packet Reordering is not
Pathological Network Behavior”,IEEE/ACM Transactions on Networking,
7(6), December 1999.

[4] Blanquer J.M., Ozden B., “Fair Queuing for Aggregated Multiple Links”,
in: Proceedings of the ACM SIGCOMM Conference, 2001.

[5] Cobb J., “Universal Timestamp Scheduling for Real-Time Networks”,Com-
puter Networks, 31, 1999.

[6] Cobb J., “An In-Depth Look at Flow Aggregation”, in:Proceedings of the
IEEE International Conference on Network Protocols, 1999.

[7] Cobb J., Gouda M., “Flow Theory”,IEEE/ACM Transactions on Network-
ing, 5(5), October 1997.

[8] Cobb J, El-Nahas A., Gouda M., “Time-Shift Scheduling: Fair Scheduling of
Flows in High-Speed Networks”,IEEE/ACM Transactions on Networking,
6(3), June 1998.

32



[9] Cobb J., Gouda M., El-Nahas A., “Flow Timestamps”, in:Proceedings of
the Annual Joint Conference on Information Sciences, 1995.

[10] Cobb J., M. Lin, “End-to-End Delay Guarantees for Multiple-Channel
Schedulers”, in:Proceedings of the IEEE International Workshop on Qual-
ity of Service, 2002.

[11] D. Ferrari, D. Verma, “A Scheme for Real-Time Channel Establishment in
Wide-Area Networks”,IEEE Journal on Selected Areas in Communications,
8(3), April 1990.

[12] Figueira N., Pasquale J., “A Schedulability Condition for Deadline-Ordered
Service Disciplines”,IEEE/ACM Transactions on Networking, 5(2), April
1997.

[13] Figueira N., Pasquale J., “Leave-in-Time: A New Service Discipline for
Real-Time Communications in a Packet-Switching Data Network”, in:Pro-
ceedings of the ACM SIGCOMM Conference, 1995.

[14] Fumagalli, A., Cai, J., Chlamtac, I., “A Token Based Protocol for Inte-
grated Packet and Circuit Switching in WDM”, in:Proceedings of the IEEE
GLOBECOM Conference, 1998.

[15] Golestani, S.J., “A Framing Strategy for Congestion Management”,IEEE
Journal on Selected Areas in Communications, 9(7), Sept. 1991.

[16] Golestani, S. J., “A Self-Clocking Fair-Queuing Scheme for Broadband Ap-
plications”, in:Proceedings of the IEEE INFOCOM 1994 Conference.

[17] Goyal P, Lam S., Vin H., “Determining End-to-End Delay Bounds in Het-
erogeneous Networks”, in:Proceedings of the NOSSDAV workshop, 1995.

[18] Keshav S., “A Control Theoretic Approach to Flow Control”, in:Proceed-
ings of the ACM SIGCOMM Conference, 1991.

[19] Liu C., Layland J., “Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment”,Journal of the ACM, 20, January 1973.

[20] Moir, M., Ramamurthy, S., “Fair Scheduling of Fixed and Migrating Peri-
odic Tasks on Multiple Resources”, in:Proceedings of the IEEE Real-Time
Systems Symposium, 1999.

33



[21] Parekh A. K. J., Gallager R., “A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks: The Single Node Case”,
IEEE/ACM Transactions on Networking, 1(3):344-357, June 1993.

[22] Shreedhar, M. and Varghese, G., “Efficient Fair Queuing Using Deficit
Round Robin”, in:Proceedings of the ACM SIGCOMM Conference1995.

[23] Stiliadis, D. Varma, A., “Rate-proportional Servers: a Design Methodol-
ogy for Fair Queuing Algorithms”,IEEE/ACM Transactions on Networking,
6(2), April 1998.

[24] Stiliadis, D. Varma, A., “A General Methodology for Designing Efficient
Traffic Scheduler Shaping Algorithms”, in:Proceedings of the INFOCOM
Conference, 1997.

[25] Xie G., Lam S., “Delay Guarantee of Virtual Clock Server”,IEEE/ACM
Transactions on Networking, 3(6) December 1995.

[26] Verma D. C., Zhang H., Ferrari D., “Delay Jitter for Real-Time Commu-
nication in a Packet Switched Network”, in:Proceedings of the TRICOM
Conference, 1991.

[27] Zhang H., “Service Disciplines for Guaranteed Performance Service in
Packet-Switching Networks”,Proceedings of the IEEE, 93,(10), October
1995.

[28] Zheng Q., Shin K.G., “On the Ability of Establishing Real-Time Channels
in Point-to-Point Packet-Switched Networks”,IEEE Transactions on Com-
munications, 42(2/3/4), 1994.

[29] Zhang H., Ferrari D., “Rate-Controlled Static Priority Queuing”, in:Pro-
ceedings of the INFOCOM Conference, 1993.

Appendix

Proof of Lemma 1

We present a couple of lemmas before presenting the proof of Lemma 1.

34



Lemma 2 Consider a schedulert with input flowf . If for any packetpf,j, where
1 ≤ j < i, we modifyAt,f,j to be at most its previous value, thenSt,f,i cannot
increase.

Proof: We will reduce the arrival time of packetj incrementally and show that
St,f,i cannot increase.

Consider first reducingAt,f,j, but without reducing it belowAt,f,(j−1). From
the definition ofS, reducing the arrival time of a packetpf,j does not increase
St,f,j, and by a simple induction on the definition ofS, it does not increaseSt,f,i

for anyi, i > j.
Consider reducing nowAt,f,j below At,f,(j−1) but not belowAt,f,(j−2). For

simplicity, we keep the same indices in both cases, i.e., in the reordered case,pf,j

arrives tot beforepf,(j−1).
We use a hat accent to denote the values after the reduction inAt,f,j and we

use non-accented values to denote the values without the reduction inAt,f,j. Thus,
At,f,j is the original arrival time ofpf,j andÂt,f,j is the reduced arrival time ofpf,j.

From the definition ofS, andpf,(j−1) being the packet previous topf,(j+1) in
the reordered flow,

Ŝt,f,(j+1) = max(F̂t,f,(j−1), At,f,(j+1))

Without reorder, from the definition ofS,

St,f,(j+1) = max(Ft,f,j, At,f,(j+1))

From the above, we must show thatF̂t,f,(j−1) ≤ Ft,f,j. We have four cases to
consider.

1. Ât,f,j ≤ Ft,f,(j−2)

In this case, in the reordered flow,pf,j is the next packet afterpf,(j−2).
Hence, from the definition ofS,

Ŝt,f,j = Ft,f,(j−2)

F̂t,f,j = Ft,f,(j−2) + Lf,j/Rf (5)

Within this case we have the following two subcases.

35



(a) At,f,(j−1) ≤ F̂t,f,j

Because in the reordered flowpf,j is the packet previous topf,(j−1),
from the definition ofS,

Ŝt,f,(j−1) = F̂t,f,j

F̂t,f,(j−1) = F̂t,f,j + Lf,(j−1)/Rf

From equation (5),

F̂t,f,(j−1) = Ft,f,(j−2) + Lf,j/Rf + Lf,(j−1)/Rf

In the ordered flow, from the definition ofS, F increases by at least
L/Rf with each packet. Hence,

Ft,f,j ≥ Ft,f,(j−2) + Lf,j/Rf + Lf,(j−1)/Rf

Thus,F̂t,f,(j−1) ≤ Ft,f,j

(b) At,f,(j−1) > F̂t,f,j

Because in the reordered flowpf,j is the packet previous topf,(j−1),
from the definition ofS,

Ŝt,f,(j−1) = At,f,(j−1)

F̂t,f,(j−1) = At,f,(j−1) + Lf,(j−1)/Rf (6)

In the ordered flow, from the definition ofS,

Ft,f,j = St,f,j + Lf,j/Rf

≥ Ft,f,(j−1) + Lf,j/Rf

= St,f,(j−1) + Lf,(j−1)/Rf + Lf,j/Rf

≥ At,f,(j−1) + Lf,(j−1)/Rf + Lf,j/Rf

Hence, combining the above with Equation (6),F̂t,f,(j−1) < Ft,f,j.

2. Ât,f,j > Ft,f,(j−2)

Since in the reordered flowpf,j is the next packet afterpf,(j−2), from the
definition ofS,

Ŝt,f,j = Ât,f,j

F̂t,f,j = Ât,f,j + Lf,j/Rf (7)

Within, this case, we have the following two subcases.

36



(a) At,f,(j−1) ≤ F̂t,f,j

In the reordered flow, sincepf,(j−1) follows pf,j, from the definition of
S,

Ŝt,f,(j−1) = F̂t,f,j

= {from Equation (7)}
Ât,f,j + Lf,j/Rf

Also from the definition ofS,

F̂t,f,(j−1) = Ât,f,j + Lf,j/Rf + Lf,(j−1)/Rf

In the ordered flow, from the definition ofS andF ,

Ft,f,j = St,f,j + Lf,j/Rf

≥ Ft,f,(j−1) + Lf,j/Rf

= St,f,(j−1) + Lf,(j−1)/Rf + Lf,j/Rf

≥ At,f,(j−1) + Lf,(j−1)/Rf + Lf,j/Rf

Note thatAt,f,(j−1) > Ât,f,j (due to the reorder), and henceFt,f,j >

F̂t,f,(j−1).

(b) At,f,(j−1) > F̂t,f,j

In the reordered flow, sincepf,(j−1) follows pf,j, from the definition of
S,

Ŝt,f,(j−1) = At,f,(j−1)

F̂t,f,(j−1) = At,f,(j−1) + Lf,(j−1)/Rf

In the ordered flow, from the definition ofS,

Ft,f,j > Ft,f,(j−1)

= St,f,(j−1) + Lf,(j−1)/Rf

≥ At,f,(j−1) + Lf,(j−1)/Rf

Hence,F̂t,f,(j−1) < Ft,f,j.

37



Lemma 3 Consider a schedulers and an input flowf . Assume we insert an
additional packetq into f after packetpf,(j−1) and before packetpf,j. Then, the
start-time ofpf,i for all i, i ≥ j, increases by at mostLq/Rf .

Proof: Even though we insert a packet intof , for simplicity, let us maintain
the packet indices as before the packet was inserted. Therefore, the sequence
of packet arrivals ispf,(j−1), q, pf,j. Values corresponding to the case whereq
is inserted have a hat accent. Non-accented values either do not change with the
insertion ofq or correspond to the case whereq is not inserted. We first show that
Ss

f,j increases by at mostLq/Rf , i.e.,

Ŝs
f,j ≤ Ss

f,j + Lq/Rf

We have two cases.

1. F s
f,(j−1) < As

f,j

From the definition ofS,

Ŝs
q = max(F s

f,(j−1), A
s
q)

SinceAs
q ≤ As

f,j andF s
f,(j−1) < As

f,j,

Ŝs
q ≤ As

f,j

Thus, for packetpf,j which followsq,

Ŝs
f,j = max(F̂ s

q , As
f,j)

= max(Ŝs
q + Lq/Rf , A

s
f,j)

≤ max(As
f,j + Lq/Rf , A

s
f,j)

= As
f,j + Lq/Rf

Note that sinceF s
f,(j−1) < As

f,j in f , then without insertingq,

Ss
f,j = As

f,j

Hence,Ŝs
f,j ≤ Ss

f,j + Lq/Rf .

2. F s
f,(j−1) ≥ As

f,j

In this case, from the definition ofS,

Ss
f,j = max(F s

f,(j−1), A
s
f,j) = F s

f,(j−1)

38



SinceAs
q ≤ As

f,j ≤ F s
f,(j−1), from the definition ofS,

Ŝs
q = max(F s

f,(j−1), A
s
q) = F s

f,(j−1)

For the next packetpf,j afterq,

Ŝs
f,j = max(F̂ s

q , As
f,j)

= max(Ŝs
q + Lq/Rf , A

s
f,j)

= max(F s
f,(j−1) + Lq/Rf , A

s
f,j)

= F s
f,(j−1) + Lq/Rf

Hence, combining with the above,Ŝs
f,j ≤ Ss

f,j + Lq/Rf .

We next consider the increase inS for packets afterpf,j. From the definition
of S, for all i, i > 1,

Ss
f,i = max(Ss

f,(i−1) + Lf,(i−1)/Rf , A
s
f,i)

If Ss
f,(i−1) increases by a valueα, thenSs

f,i increases by at mostα. We have shown
thatSs

f,j increases by at mostLq/Rf . Hence, by a simple induction proof, for all
i, i ≥ j, Ss

f,i increases by at mostLq/Rf

We next present the proof of Lemma 1.
Proof: Consider first part one. Leth correspond to a possible output ofs,

where each packet off is delayed its maximum. That is, for alli, ph,i = pf,i, and

At,h,i = Ss,f,i + δs,f,i

Notice that packet order is preserved, since we made the assumption in Section 5
that start-time exit bounds are increasing. Also, note that for all packets ofg, the
corresponding packet ofh arrives no later than the packet ofg. Furthermore, from
the results of [6, 13], for alli,

St,h,i ≤ Ss,f,i + ∆s,f,i

We manipulate flowh until we obtain our desired flowg. Each manipulation
cannot increase the start time of packetpf,i.

Only packetspg,1 up topg,j affect the computation ofSt,g,j. Thus, we assume
g simply consists of packetspg,1 up topg,j. Let h′ be obtained fromh by deleting
all those packets which are not ing. I.e.,h′ contains only packetspg,1 up topg,j.

39



Note thatpf,i, which ispg,j, is the last packet ofg. Also, since we assumed that
pf,i is the last packet off , it is also the last packet ofh andh′.

It is obvious from a simple induction proof and the definition ofS, that remov-
ing any packet from a flow cannot increase the value ofS for any packet in the
flow. Hence, the start-times of the packets ofh′ have not increased beyond those
of the corresponding packets ofh.

Next, note that the packets ofg andh′ are not in the same order. Through a
repeated application of Lemma 2, we can reduce the arrival times of the packets
of h′ (except the last one,pf,i), and make their arrival times equal to the corre-
sponding packets ofg. This results in flowh′′. From the lemma, the start time of
pf,i in h′′ does not increase.

Finally, the arrival time ofpf,i must also be reduced to the arrival time ofpg,j.
From the definition ofS, reducing the arrival time of a packet does not increase
its start-time. Hence,

St,g,j ≤ St,h,i ≤ Ss,f,i + ∆s,f,i

Consider now part two. If no packet afterpf,i is reordered withpf,i, the start
time ofpf,i at t is the same as in part one. However, them packets afterpf,i could
be reordered withpf,i and arrive tot beforepf,i. By a repeated application of
Lemma 3 and part one we obtain,

St,g,j ≤ St,h,i ≤ Ss,f,i + ∆s,f,i +

∑i+m
k=i+1 Lf,k

Rf

40


