
The Timely-Token Protocol∗

Jorge A. Cobb† Miaohua Lin

Department of Computer Science
The University of Texas at Dallas

Richardson, TX 75083-0688
{cobb,miaohua}@utdallas.edu

November 7, 2003

Abstract

The token protocols in FDDI and FDDI-M support synchronous and
asynchronous traffic. However, FDDI suffers from a token-lateness
problem, and FDDI-M may starve asynchronous traffic. To remove
these two weaknesses, we propose the timely-token protocol. The
main feature of this protocol is the addition of information to the to-
ken so that each station may determine the reason of an early token
arrival. Using this information, each station limits its asynchronous
transmission to ensure that the token is not late at subsequent sta-
tions. In addition, we present a synchronous allocation scheme for this
protocol. Finally, a comparison is made against FDDI and FDDI-M.

Keywords: FDDI, FDDI-M, local-area-networks, quality-of-service.

1 Introduction

In this paper, we present an enhancement to the timed-token protocol pro-
posed by Grow [1]. This protocol has been incorporated into the Fiber

∗Supported in part by a grant from the Texas Advanced Research Program.
†Corresponding author: phone 972 883 2479, fax 972 883 2349

1



Distributed Data Interface (FDDI), and its purpose is to support a mix-
ture of synchronous and asynchronous traffic in a token-ring network. Syn-
chronous messages are transmitted periodically and have a deadline, while
asynchronous messages are transmitted on a best-effort basis.

During initialization, a protocol parameter, called Target Token Rota-
tion Time (TTRT ), is chosen, and it indicates the expected time of each
token rotation. Each station i is assigned a portion Si of the TTRT . This
is the maximum time station i is allowed to transmit synchronous traffic
upon receiving the token. The remaining portion of the TTRT , A∗, where
A∗ = TTRT −

∑

i Si, is the time available to transmit asynchronous messages
during each token rotation.

Given the value of TTRT , a Synchronous Allocation (SA) scheme assigns
a value of Si to each station i. Several SA schemes have been proposed for
FDDI [2, 4, 5].

In FDDI, the rotation time of the token may exceed TTRT . Due to this
lateness of the token, an FDDI ring can use at most half of its bandwidth
to transmit synchronous traffic [6]. To alleviate this deficiency, Shin et al.
proposed the FDDI-M token protocol [6]. In FDDI-M, the token is never
late. This allows FDDI-M to support synchronous traffic with a larger range
of deadline constraints than FDDI.

However, FDDI-M has some weaknesses. First, in some cases, FDDI-
M may not be able to transmit asynchronous traffic, although intuitively it
should. That is, there are scenarios where the portion A∗ of the TTRT is
non-zero, yet asynchronous traffic is starved. In addition, the analysis of SA
schemes for FDDI-M is quite unintuitive and unmanageable, and does not
lead to closed form expressions. Therefore, although there is a large number
of SA schemes for FDDI, such as PA [7], FLA [7], MCA [2], EMCA [5], ELA
[8] and EGA [9] (an overview of most of the above SA schemes and more may
be found in [10] and [11]), no SA schemes have been designed specifically for
FDDI-M.

In this paper, we present the timely-token protocol. In this protocol, the
token is never late. In addition, at every token rotation, A∗ time units are
available for asynchronous traffic. Furthermore, the protocol is simple and
yields a straightforward SA scheme.

The paper is organized as follows. The network and traffic models are
introduced in Section 2. FDDI and FDDI-M, along with their weaknesses,
are described in Section 3. The timely-token is described in Section 4. An
SA scheme for the timely-token is given in Section 5. Section 6 compares

2



station

repeater

token

0

1

2

3

Figure 1: Token-ring network.

the timely-token against FDDI and FDDI-M. In Section 7, we show how the
timely-token can be implemented with each repeater storing only a couple of
bits. Finally, concluding remarks are given in Section 8.

2 Token Protocols and Traffic Model

The token protocols in this paper operate on a ring consisting of N stations.
Each station has a unique number in the range 0 . . N − 1. In addition, each
station is connected to two others by a unidirectional medium that forms a
single closed path (see Figure 1). For each station i, the next station along
the unidirectional medium is station (i + 1) mod N .

A small message, called token, circulates when all stations are idle. Before
a station can transmit, it must first grasp the token. After transmitting, the
station releases the token.

During each token rotation, there is a constant amount of time, denoted
by τ , that is unusable for transmission. The value of τ includes the propaga-
tion delay around the ring, and a few bits of store-and-forward delay at each
station. Note that the definition of A∗ given in the introduction needs to be
modified slightly as follows:

A∗ = TTRT − τ −
∑

i

Si

3



A synchronous stream is described by a triple, (P, D, C), where P is the
inter-arrival time of messages from the stream, D is an upper bound on mes-
sage delay, and C is the maximum time needed to transmit a message of the
stream. Although most SA schemes assume D = P , we do not make this
assumption. However, we do assume D ≤ P . Also, messages may be frag-
mented into smaller packets, and packet transmission cannot be preempted.

Agrawal et al. [7] showed how a token-ring network having multiple syn-
chronous streams per station could be transformed into a logically-equivalent
network with one synchronous stream per (logical) station. Therefore, with-
out loss of generality, we assume a single synchronous stream per station.

A synchronous stream set consists of one synchronous message stream
per station. The synchronous stream of station i is denoted by the triple
(Pi, Di, Ci).

3 Previous Token Protocols

In this section, we provide an overview of the token protocols of FDDI and
FDDI-M. In addition, we describe weaknesses in each of them. These weak-
nesses are overcome by the timely-token protocol given in the next section.

3.1 FDDI Token Protocol

We next describe the token protocol used in FDDI1. During ring initialization,
each station i supporting synchronous traffic is assigned a fixed portion Si of
the TTRT . During each token rotation, station i can transmit synchronous
packets for at most Si time units.

Each station i has a token-rotation timer, TRTi. This timer always in-
creases. However, it may be reset to zero. The purpose of this timer is to
measure the time between token arrivals.

If TRTi reaches a value of at least TTRT before the token arrives at the
station, then TRTi is reset to zero, and the token is marked as “late” by
incrementing the station’s late count Li by one.

Each station i has an asynchronous-limit variable, Ai. In this variable,
station i stores the amount of time it may transmit asynchronous messages.

1This description differs from the typical description in the literature. However, it is
equivalent. We present this alternative definition for clarity and ease of comparison with
the timely-token.

4



Contrary to Si, the value of Ai may vary each time the token is received.
When a station receives the token, it performs the following steps:

1. If Li > 0, set Li := Li−1 and Ai := 0. Otherwise, Ai := TTRT −TRTi

and TRTi := 0.

2. If the station has synchronous packets, it transmits them for a time
period of up to Si time units, or until all the synchronous packets are
transmitted, whichever occurs first.

3. If station i has asynchronous packets, it transmits them for a time
period of up to Ai time units, or until all the asynchronous packets are
transmitted, whichever occurs first.

4. Station i passes the token to station (i + 1) mod N .

To initialize all timers, no packets are allowed to be transmitted during
the first token rotation. Also, all late counts Li are initialized to zero.

3.2 Late Token in FDDI

Consider a ring network with four stations, as shown in Figure 1. Assume
there is no traffic (either synchronous or asynchronous) in the previous token
rotation before the token arrives to station zero. The ring parameters are as
follows: TTRT = 100, and for each i, Si = 20. For simplicity, τ = 0.

When station zero receives the token, TRT0 = 0 and A0 = TTRT −
TRT0 = TTRT . Assume station zero has asynchronous packets, but it has
no synchronous packets. Also assume that immediately after the station
transmit its first asynchronous packet, it generates a synchronous message.
Station zero then transmits asynchronous packets for TTRT time units, and
releases the token to station one.

After this, assume all stations have plenty of synchronous and asyn-
chronous packets. Then, stations one, two, and three transmit their syn-
chronous packets for 20 time units each (because S1 = S2 = S3 = 20). Thus,
the token rotation time of stations one, two, and three is 100, 120, and 140,
respectively, all of which are at least TTRT . These stations receive a late
token, and cannot transmit asynchronous packets.

When the token reaches station zero for a second time, the token rotation
time will be TTRT +

∑3
i=1 Si = 160. This is greater than the TTRT , which

5



equals 100. The TTRT is considered to be the expected token rotation time,
but from this example we see that the token rotation time may significantly
exceed the TTRT .

Note that as the token rotation time grows, the ability to satisfy a set
of synchronous streams diminishes. Thus, the direct effect of late tokens
is the reduced ability to schedule synchronous traffic. In this example, the
synchronous message arriving at station zero experiences a waiting time of
160 time units. For its deadline to be satisfied, it must be greater than 160.

When station zero transmits asynchronous traffic for TTRT time units,
it takes advantage of unused synchronous bandwidth of other stations. How-
ever, each station is allowed to transmit Si time units of synchronous traffic
at every rotation. Thus, at the next rotation, the other stations transmit
their allotted Si time units of synchronous bandwidth, causing the token to
arrive late at station zero. From this observation, we conclude that the late-

ness of the token is due to a station taking advantage of unused synchronous

bandwidth of other stations. This observation plays a significant role in the
design of the timely-token of Section 4.

3.3 FDDI-M Token Protocol

We next overview the token protocol of FDDI-M2. Similar to FDDI, during
ring initialization, each station i supporting synchronous traffic is assigned
a fixed portion Si of the TTRT . During each token rotation, station i can
transmit at most Si time units of synchronous packets. Also similar to FDDI,
each station i has an asynchronous-limit variable, Ai, and a token-rotation
timer TRTi. To initialize the token-rotation timers, no packets are transmit-
ted during the first token rotation.

When station i receives the token, it performs the following steps:

1. Ai := TTRT − (TRTi +
∑

i Si) = A∗ + τ − TRTi.

2. If station i has synchronous packets, it transmits them for a time pe-
riod of up to Si time units, or until all the synchronous packets are
transmitted, whichever occurs first.

3. TRTi := 0.

2Again, this description differs from the typical description in the literature. However,
it is equivalent. We present this alternative definition for clarity and ease of comparison
with the timely-token.

6



4. If station i has asynchronous packets, it transmits them for a time
period of up to Ai time units, or until all the asynchronous packets are
transmitted, whichever occurs first.

5. Station i passes the token to station (i + 1) mod N .

3.4 Starvation of Asynchronous Traffic in FDDI-M

We next present an example where asynchronous traffic is starved in FDDI-
M, even though not all of the TTRT has been allocated to synchronous
traffic. The example is similar to the one in Section 3.2.

Consider four stations, as shown in Figure 1. Let TTRT = 100, and for
each i, Si = 20. For simplicity, τ = 0. Thus, A∗ = TTRT −

∑

i Si = 20.
Assume there is no traffic before the token reaches station zero in the first

rotation. When the token reaches station zero again, let there be plenty of
both synchronous and asynchronous traffic at all stations. Then, TRT0 =
0, and A0 = A∗ − TRT0 = A∗ = 20. That is, station zero can transmit
asynchronous packets up to the total ring asynchronous allocation A∗, and
also its own synchronous allocation Si. For the following stations, the values
of TRT are 40, 60 and 80, respectively. Because these values are all greater
than A∗, these stations cannot transmit any asynchronous packets.

When the token reaches station zero for the third time, again, let there
be plenty of synchronous and asynchronous traffic at all stations. Recall
that in FDDI-M, TRTi is reset to zero after transmitting the synchronous
traffic. Thus, when the token returns to station zero, TRT0 = A0+

∑3
i=1 Si =

20 + 60 = 80, which is larger than A∗. Therefore, station zero is unable to
transmit asynchronous traffic. Nonetheless, station zero does transmit its
synchronous traffic. For the following stations, the value of TRTi, 1 ≤ i ≤ 3,
is 60 (counting all synchronous bandwidth used by other stations). This,
however, is larger than A∗. Thus, no asynchronous traffic is transmitted in
this rotation even though there are asynchronous packets at every station.
Even worse, the situation continues as long as there are plenty of synchronous
packets in each station during the following rotations.

In FDDI-M, the token is never late. That is, TRTi ≤ TTRT−Si whenever
station i receives the token. Although not mentioned in [6], we believe the
reason the token is never late is as follows. Recall our earlier argument that
a late token in FDDI is caused by a station taking advantage of unused
synchronous bandwidth from other stations. In FDDI-M this is not possible,

7



as follows. FDDI-M makes the pessimistic assumption that no synchronous
packets were transmitted during the last rotation. Therefore, to prevent a
late token, the station does not take advantage of any synchronous bandwidth
from any station. To ensure this,

∑

i Si is added to TRTi when calculating
Ai.

4 Timely-Token Protocol

In this section, we present the timely-token protocol. This protocol over-
comes the two weaknesses mentioned in the previous section.

4.1 Insight

In FDDI, tokens arrive late because a station may take advantage of unused
synchronous bandwidth during the token rotation. In FDDI-M, to prevent
late tokens, no station takes advantage of unused synchronous bandwidth.
However, each station is unaware of how much synchronous bandwidth was
used during the token rotation. Thus, the worst-case is assumed. That is,
it is assumed that no synchronous bandwidth was used. To avoid taking
advantage of this unused bandwidth, a total of

∑

i Si is added to TRTi in
the calculation of Ai. However, in doing so, asynchronous bandwidth may
be starved.

The above discussion implies that if a station becomes aware of how
much synchronous bandwidth was left unused by other stations, it could
accurately determine how much to add to TRTi as opposed to the worst case
assumption of

∑

i Si. To achieve this, an integer u is added to the token,
where u represents the sum of unused synchronous bandwidth of all stations
during the previous token-rotation. When the token arrives to station i, u
should also include the unused synchronous bandwidth of station i in the
previous token-rotation.

We next present an outline of the timely-token3.

3We presented an earlier version of this protocol in [3]. However, in [3], it is possible
for a station to use A∗ time units of asynchronous bandwidth at every token rotation,
and starve other stations of asynchronous traffic. The protocol we present below does not
suffer from this drawback.

8



4.2 Outline

As in the previous protocols, each station i has a token-rotation timer, TRTi,
an asynchronous-limit variable, Ai, and a constant portion Si of the TTRT .
In addition, station i maintains a variable si, where it stores the time units
of synchronous bandwidth it used in the previous token-rotation.

When station i receives the token, it performs the following steps:

1. Ai := (TTRT − u − TRTi)
+

2. TRTi := 0

3. u := u − (Si − si)

4. If station i has synchronous packets, it transmits them for a time pe-
riod of up to Si time units, or until all its synchronous packets are
transmitted, whichever occurs first.

5. si is assigned the number of time units of synchronous transmission
used in step 4.

6. u := u + (Si − si)

7. If station i has asynchronous packets, it transmits them for a time
period of up to Ai time units, or until all its asynchronous packets are
transmitted, whichever occurs first.

8. Station i passes the token to station (i + 1) mod N .

During the first token rotation, to initialize timers, no station is allowed
to transmit any packets. In addition, si is set to zero for all i, and u =

∑

i Si.
Note that Ai is initially the same as in FDDI-M.

We next present an example showing how synchronous and asynchronous
bandwidth are managed using the timely-token. It is the same example given
in Section 3.2 that caused the token to be late in FDDI.

Consider a ring network with four stations, as shown in Figure 1. As-
sume there is no traffic (either synchronous or asynchronous) in the previous
rotation before the token arrives to station zero. The ring parameters are as
follows: TTRT = 100, and for each i, Si = 20. For simplicity, τ = 0. Note
that A∗ = TTRT −

∑

i Si = 20.

9



When station zero receives the token, TRT0 = 0, u =
∑

i Si = 80
(since no synchronous packets were transmitted in the first rotation), and
A0 = TTRT − (TRT0 + u) = 20 = A∗. Therefore, the station can transmit
asynchronous packets for the entire asynchronous allocation A∗.

Assume station zero has asynchronous packets to transmit, but it has no
synchronous packets. Immediately after the station begins to transmit its
first asynchronous packet, a synchronous message arrives at the station. The
station then transmits asynchronous packets for A0 (i.e., A∗) time units, and
releases the token to station one. The value of u in the token remains 80,
since station zero did not transmit synchronous packets.

Assume next that all stations have synchronous and asynchronous pack-
ets. At station one, TRT1 = 20 and u = 80. Thus, A1 = 0, and no
asynchronous packets are transmitted. However, station one does transmit
S1 = 20 time units of synchronous traffic. It then forwards the token to
station two, with an updated u value equal to 60, because station one used
its entire synchronous allocation.

At station two, TRT2 = 40 and u = 60. Thus, A2 = 0, and no asyn-
chronous packets are transmitted. Station two transmits S2 = 20 time units
of synchronous traffic. It then forwards the token to station three, with an
updated u value equal to 40, because station two used its entire synchronous
allocation.

The scenario at station three is similar. It forwards the token to station
zero, with an updated u value equal to 20.

When the token reaches station zero again, TRT0 = 80 (includes the
asynchronous traffic of station zero and the synchronous traffic of the other
stations) and u = 20. Thus, A0 = 0, and it may not transmit asynchronous
traffic. Note, however, that since TRT0 = 80, the synchronous message that
originated in the previous rotation may now be transmitted, and its delay is
only 80, as opposed to 160 in FDDI. Thus, assume station zero transmits
Si = 20 time units of synchronous traffic, and forwards the token to station
one with u = 0.

Note that at station one, TRT1 = 80 and u = 0. Thus, A1 = 20 = A∗.
This allows station one to transmit asynchronous traffic, if desired. Similarly,
if station one does not transmit asynchronous traffic, stations two and three
may do so.

By continuing this example, we see that synchronous and asynchronous
bandwidth can both be used if every station has unlimited synchronous and
asynchronous packets. Also, even though the bandwidth is fully utilized, the

10



token is never late. We formalize this below.

4.3 Performance Bounds

We next formalize some bounds on the behavior of the timely-token. In
particular, we show that the token is never late, and the transmission of
asynchronous traffic is guaranteed.

For the results of this section and the next, the following constraints
must be satisfied. We therefore consider only those synchronous stream sets
satisfying these constraints.

Definition 1 The protocol constraints of the timely-token are as follows.

• The required transmission time of a message must be at most the dead-

line of this message.

(∀ i, Ci ≤ Di ≤ Pi)

• The message transmission time must be at most the available portion

of the TTRT .

(∀ i, Ci ≤ TTRT − τ)

• The sum of the synchronous allocations to all stations must be at most

the available portion of the TTRT .

∑

i

Si ≤ TTRT − τ

In order to reason about values that change over time, we enhance our
notation to include rounds, that is, token rotations.

Definition 2

Ri,m: round m of station i, i.e., time interval [t, t′], where t is the time when

station i receives the token for the mth time, and t′ is the time when

station i receives the token for the (m + 1)th time.

11



Ai,m
j : value assigned to Aj during Ri,m. In particular, Ai,m

i is the value as-

signed to Ai when the token is received at the beginning of Ri,m

TRT i,m
j : value of TRTj when station j receives the token during Ri,m. In par-

ticular, TRT i,m
i is the value of TRTi when the token is received at the

beginning of Ri,m

ai,m
j : duration of asynchronous transmission of station j during Ri,m. Note

that ai,m
j ≤ Ai,m

j .

si,m
j : duration of synchronous transmission of station j during Ri,m. Note

that si,m
j ≤ Sj.

Before presenting the theorems, we require the following two lemmas.

Lemma 1 For every i and m, when station i receives the token at the end

of Ri,m, the value of u in the token corresponds to the unused synchronous

time of all stations during Ri,m.

Proof: The proof is by induction on the number of stations visited by the
token. For the base case, consider the ring after initialization. No packets
are transmitted at the first token rotation, and furthermore, u =

∑

j Sj and
sj = 0 for all j. This satisfies the lemma.

For the induction step, consider a station i, and assume the lemma holds
for the previous station k. When the token arrives at i, for u to have the
correct value, the unused synchronous time of k from the previous round
must be removed from u, and the unused synchronous time of k from this
round must be added to u. These steps are performed by station k according
to the outline of the timely-token. Hence, the lemma holds when station i
receives the token.

Lemma 2 For every i, j, m,

Ai,m
i =



A∗ −
∑

j

a
i,(m−1)
j





+

Proof: From the definition of the asynchronous limit variable,

Ai,m
i = (TTRT − u − TRT i,m

i )+

12



From Lemma 1,
u =

∑

j

Sj −
∑

j

s
i,(m−1)
j

From the definition of TRT i,m
i ,

TRT i,m
i =

∑

j

s
i,(m−1)
j +

∑

j

a
i,(m−1)
j + τ

Therefore,

Ai,m
i =



TTRT −





∑

j

Sj −
∑

j

s
i,(m−1)
j



−





∑

j

s
i,(m−1)
j +

∑

j

a
i,(m−1)
j + τ









+

=



TTRT −
∑

j

a
i,(m−1)
j −

∑

j

Sj − τ





+

=



A∗ −
∑

j

a
i,(m−1)
j





+

Theorem 1 (Token is never late) For every station i, upon token arrival,

TRTi ≤ TTRT .

Proof: Consider round Ri,m. From Lemma 2, we have A
i,(m−1)
j ≤ A∗ for

all j. Furthermore, if station j transmits a
i,(m−1)
j time units of asynchronous

traffic during Ri,(m−1), then for any station k after j and before i, A
i,(m−1)
k

decreases by a
i,(m−1)
j . This is because TRT

i,(m−1)
k increases by a

i,(m−1)
j . There-

fore,

∑

j

a
i,(m−1)
j ≤ A∗ (1)

Furthermore,

TRT i,m
i =

∑

j

s
i,(m−1)
j +

∑

j

a
i,(m−1)
j + τ

≤
∑

j

s
i,(m−1)
j + A∗ + τ

≤
∑

j

Sj + A∗ + τ

= TTRT

13



Theorem 2 (Asynchronous traffic guarantee) For each i and m, a total

of A∗ time units become available for asynchronous transmission during Ri,m.

Proof: Consider A
i,(m+1)
i . From Lemma 2,

A
i,(m+1)
i =



A∗ −
∑

j

ai,m
j





+

We therefore have that
∑

j

ai,m
j

time units have been used, and therefore became available, for asynchronous
transmission during Ri,m. The remaining time units, if any, are assigned

to A
i,(m+1)
i . Therefore, a total of A∗ time units become available for asyn-

chronous transmission during every round of every station.

From the above theorems, we see that the maximum token rotation time
is upper-bounded by TTRT (the token is never late), and this bound is tight.
Furthermore, asynchronous bandwidth is always available to the stations at
each rotation (provided A∗ > 0). In particular, if the timely-token is used
in the scenarios of Sections 3.2 and 3.4, the token is never late, and the
asynchronous traffic is not starved.

5 Synchronous Bandwidth Allocation Scheme

There are two approaches to configure a token protocol to support a syn-
chronous stream set. First, the TTRT is given, and each Si value is chosen to
support the synchronous streams. This approach is known as a Synchronous

Allocation (SA) scheme. In this section, we present a SA scheme for the
timely-token. The second approach consists of choosing a TTRT value given
the synchronous stream set. We consider this approach in Section 6.

Before presenting our SA scheme, we measure how much synchronous
transmission time is available at a station before the deadline expires. This
measure was introduced in [5], and is defined as follows.

Definition 3 Given any interval of size Di, Xi is the minimum amount of

time during which station i can transmit synchronous packets in this interval.

14



TTRT TTRT TTRT

Si Si

αi

Di

t0 t1 t2

Figure 2: SA scheme illustration

Theorem 3 For the timely-token,

Xi = mi · Si + (Si − αi)
+

where mi and αi are as follows.

mi = bDi/TTRT c
αi = (mi + 1) ·TTRT − Di

Proof: Figure 2 illustrates the values of mi and αi used in our SA scheme
(mi = 2 in the figure). Our objective is to obtain the worst case scenario,
that is, station i is able to transmit the least possible amount of synchronous
traffic.

At time t0, i.e., at the beginning of the interval of size Di, station i either
forwards the token or begins transmitting asynchronous packets. Note that
at this time the station will not transmit synchronous packets until it receives
the token again. Let t1, be the time the token arrives again at station i.

The largest value of t1 − t0 is as follows. From Equation (1), the total
asynchronous bandwidth used between t1 and t0, including that of station i,
is at most A∗. Therefore, since all stations can transmit their allocation of
synchronous bandwidth, t1 − t0 is at most

A∗ +
∑

j 6=i

Sj + τ

Therefore, t2 − t0 ≤ TTRT . In this way, station i receives the token every
TTRT time units during the interval of size Di. From Theorem 1, this is the
worst case since the token is never late.

15



αi0 Si

Xi

mi ·αi

slope = (mi + 1)

slope = mi

Figure 3: Xi as a function of Si.

Thus, station i will be able to use its full Si time units of synchronous
transmission for a total of mi times. During the last token arrival, it will
only be able to transmit Si −αi time units of synchronous packets before the
end of the interval.

We base our SA scheme on Theorem 3 above. Our objective is to find
values of each Si that ensure that each synchronous message of station i is
transmitted within Di time units. That is, we require Xi ≥ Ci. However, Si

should be as small as possible. This ensures that the largest possible set of
synchronous streams is supported. To minimize Si, we choose Si such that
Xi = Ci.

Assume for the moment that for all i, Di ≥ TTRT . Figure 3 shows Xi

as a function of Si. To determine the value of Si such that Xi = Ci, we must
consider two cases. First, Ci ≤ mi ·αi. In this case, Ci = Si ·mi, and thus,

Si =
Ci

mi

Second, mi ·αi > Ci. In this case,

Ci = (Si − αi) · (mi + 1) + (mi ·αi)

16



Therefore,

Si =
Ci + αi

mi + 1

Consider now the remaining case where Di < TTRT for some i. In this
case, mi = 0, and thus, Xi = 0. To avoid this situation, we must force the
token to rotate faster. This is done by introducing a fictitious station g, and
choosing Sg as follows.

Sg = TTRT − Dmin

Above, Dmin is the minimum message deadline.
A specific station in the ring is assigned the duties of station g. In par-

ticular, since g never transmits traffic, this station ensures that Sg is always
included in u. Note that in this manner, no other station can use the syn-
chronous allocation Sg to transmit asynchronous packets. Therefore, each
token rotation will be at most TTRT − Sg, i.e., at most Dmin.

To compute the allocation of the remaining stations, let TTRT ′ = Dmin.
We assign to each Si the same value as computed earlier, but we use TTRT ′

in place of TTRT .
In summary, the SA scheme of the timely-token is as follows:

Case 1: if for all i, Di ≥ TTRT , then
if Ci ≤ mi ·αi,

let Si = Ci/mi

otherwise,
let Si = (Ci + αi)/(mi + 1)

Case 2: if there is an i, such that Di < TTRT , then
let Sg = TTRT − Dmin, for a fictitious station g.
let Sj be computed as in case 1 for all j, j 6= g,

except that TTRT ′ is used instead of TTRT ,
where TTRT ′ = Dmin.

The above SA scheme ensures all messages are transmitted by their dead-
lines. This is formalized in the following theorem.

Theorem 4 The SA scheme for the timely-token ensures that the set of

synchronous streams is schedulable, i.e., no message deadline is violated.

This is provided the protocol constraints hold.

Proof: Given our initial assumption of Di ≤ Pi for all i, note that each
synchronous message of station i needs to be transmitted before the arrival

17



of the next synchronous message. Therefore, if Xi ≥ Ci, this is sufficient for
each message to be transmitted by its deadline. Above, we have shown that
Xi = Ci for all cases. Thus, each message will be transmitted no later than
its deadline.

We conclude this section by applying the SA scheme to a couple of ex-
amples.

First, let TTRT = 100, N = 4, and, for each i, Ci = 20 and Di =
100. For simplicity, assume τ = 0. This implies that for each i, mi = 1
and αi = 100. Therefore, mi ·αi > Ci and Si = Ci/mi = 20. We need
to check, however, if the protocol constraints are satisfied. In particular,
∑

i Si = 80 < TTRT − τ = 100. Since the protocol constraints are satisfied,
the synchronous stream set is schedulable.

Next, consider another synchronous stream set as above, with the excep-
tion that, for each i, Di = 150 and Ci = 60. This implies that, for each i,
mi = 1, αi = 50. Therefore, mi ·αi < Ci, and Si = (Ci + αi)/(mi + 1) =
(60 + 50)/2 = 55. When we check the protocol constraints we obtain:
∑

i Si = 220 > TTRT − τ = 100. Thus, this synchronous message set is
not schedulable through our SA scheme.

6 Comparison Against FDDI and FDDI-M

In this section, we compare the timely-token against the FDDI and FDDI-
M. Our comparison focuses on the ability of these protocols to support syn-
chronous traffic.

We begin by comparing the timely-token against FDDI. We base our
comparison on the value of Xi in these protocols, because this value directly
reflects the ability of the protocol to provide service to a synchronous stream
i. The value of Xi in FDDI, however, is dependent on how often a station is
able to transmit synchronous traffic. This notion is represented by function
I [5], whose definition follows.

Definition 4 For any positive integer n, I(n) is an upper bound on the

maximum possible time that may elapse before any station i with synchronous

messages uses n ·Si time units of synchronous transmission.

Note that function I is independent of the station number. This is true
for both the timely-token and FDDI, as we will see below.

18



From the above definition, consider a time interval

[t, t + I(n)]

for some t. Each station i is allowed to transmit n ·Si time units of syn-
chronous traffic during this interval. This can be used to derive the value of
Xi, as follows [5]. Consider an integer ni, such that

I(ni − 1) ≤ Di < I(ni)

Consider now the interval
[t, t + Di]

for some t. From above, station i is able to transmit synchronous traffic
for at least (ni − 1) ·Si time units during this interval. This is because
I(ni − 1) ≤ Di. Furthermore, station i may be able to transmit a portion of
the next Si synchronous time units. In the worst case, these Si time units
are given to station i starting at time t + I(ni) − Si. This implies that an
additional

Di − (I(ni) − Si)

synchronous time units are available to station i before the end of the interval
of size Di. Thus, Xi is as follows.

Xi = (ni − 1) · Si + max[0, Di − I(ni) + Si] (2)

Note that Equation (2) is also valid for the timely-token. That is, the
equation was obtained without being specific about the token protocol. There-
fore, we may compare the timely-token against FDDI simply by comparing
their I functions.

To distinguish between function I in FDDI and in the timely-token, the
latter is denoted by IF and the latter is denoted by It.

Theorem 5 For the timely-token protocol,

It(n) = n ·TTRT −
⌊

n

N + 1

⌋

· A∗ (3)

Proof: We need to construct a scenario where the interval of time from the
longest scenario before a station can transmit n ·Si synchronous units. From

19



Theorem 2, the synchronous transmissions do not affect asynchronous trans-
missions. This implies that in our scenario all stations must have unlimited
amounts of synchronous data to transmit.

For ease of presentation we consider station zero. The scenario can be
reproduced for any other station.

Consider round R0,m. Recall that each station transmits synchronous
bandwidth before transmitting asynchronous bandwidth. Thus, the longest
interval before station zero transmits n · S0 units of synchronous bandwidth
begins immediately after station zero transmits its synchronous bandwidth
in round R0,m, and ends after transmitting S0 synchronous units at the be-
ginning of round R0,m+n. Thus, the interval of time is

[start(R0,m) + S0, start(R0,m+n) + S0]

where start(R0,m) denotes the starting time of round R0,m. Note that the
interval is of the same length as

[start(R0,m), start(R0,m+n)]

Thus, we consider the duration of rounds R0,m up to and including R0,m+n−1.
During the above rounds, n ·

∑N
h=1 Sh units of synchronous data are trans-

mitted. We next focus on the asynchronous data.
Consider the duration of the asynchronous transmissions of every station

in the above n rounds. That is, consider the sequence

a0,m
0 , a0,m

1 , . . . , a0,m
N−1, . . . , a

0,m+n
0 , a0,m+n

1 , . . . , a0,m+n
N−1

From Theorem 2, any value in this sequence plus the previous N values
add to at most A∗. That is, any subsequence of length N + 1 can add to
at most A∗. We therefore break this sequence into segments with N + 1
elements. If less than N + 1 elements remain these may add to at most A∗.
Hence, the total asynchronous transmission can add up to at most

⌈

n ·N

N + 1

⌉

·A∗

The above is equal to

n ·A∗ −
⌊

n

N + 1

⌋

· A∗

20



Combining the synchronous and asynchronous transmission, this adds to

n ·
N
∑

h=1

Sh + n ·A∗ −
⌊

n

N + 1

⌋

· A∗

To obtain the size of the desired interval, we need to add n · τ since each of
the n rounds has an overhead of τ . This, plus the definition of TTRT , gives
us the final result.

It(n) = n ·TTRT −
⌊

n

N + 1

⌋

· A∗

Notice that we developed our earlier SA scheme under the assumption
that the token will visit each station during every TTRT seconds, i.e., un-
der the assumption that It(n) ≤ n ·TTRT . With the tighter It(n) bound
proven above we can provide a better (although more complex) SA scheme,
as discussed in the appendix.

The most accurate value for function IF in FDDI has been derived by
Zhang and Burns [5], and is as follows.

IF (n) = n · TTRT +
N
∑

h=1

Sh + τ −
⌊

n

N + 1

⌋

·

(

TTRT −
N
∑

h=1

Sh − τ

)

From our definition of A∗,

IF (n) = n · TTRT +
N
∑

h=1

Sh + τ −
⌊

n

N + 1

⌋

· A∗ (4)

Note that a smaller value of I is desirable, since this yields a larger value
for Xi, and allows the protocol to schedule a larger number of flows. If we
compare the expressions for I in Equations (3) and (4), we find that, for any
n, It(n) < IF (n). In consequence, for the same set of Si values, the timely-
token yields larger values for each Xi. Thus, any set of synchronous flows
whose deadlines are satisfied by FDDI are also satisfied by the timely-token,
in particular, by using the same Si values as FDDI. The converse is not true,
however, as shown by an example when we discuss FDDI-M below.

Another advantage of the timely-token is as follows. In [5], it is shown
that the following is a requirement for any synchronous stream set in FDDI:

21



for every i, Di ≥ TTRT . However, as we have seen earlier, the timely-token
is able to support synchronous stream sets where Di < TTRT for some i.

We next focus our comparison on FDDI-M. To our knowledge, there is
no SA scheme for FDDI-M. However, as mentioned above, FDDI-M may
starve asynchronous traffic, while the timely-token ensures A∗ time units are
available for asynchronous traffic per token rotation.

In [6], FDDI and FDDI-M are compared in their ability to support a
set of homogeneous synchronous streams, i.e., all streams have the same D,
C, and P values. In FDDI, TTRT ≤ D/2 is required in order to meet
the message deadlines. The largest number of streams are supported when
TTRT = D/2 and S = C. Therefore, a maximum of D/2

S
, i.e., D

2 · C
streams

can be supported concurrently. On the other hand, for FDDI-M, we may set
TTRT = D, since the token is never late. Thus, a maximum of D

C
streams

may be supported, i.e., twice those of FDDI. Note that for the timely-token,
we may also set TTRT = D, and support the same number of synchronous
streams as FDDI-M, and thus support twice the number of streams as FDDI.

7 Token Implementation

For an efficient implementation, a station must be able to quickly determine,
with only a few bits delay, if the incoming frame is a token or not. Further-
more, it must quickly decide whether it should seize the token. One bit in
the frame can be used to distinguish between data frames and token frames.
Thus, the remaining issue is to quickly determine if the station should seize
the token. A station with Si > 0 should always seize the token, since it is
allowed to transmit up to Si time units of synchronous packets. Even if the
station has no synchronous packets to transmit, seizing the token and then
releasing it (which takes less than Si time units) will not interfere with the
guarantees of other stations.

Assume now that station i has Si = 0. If the station has asynchronous
packets to send, it must quickly determine if it should seize the token. From
the outline of the timely-token, a station can transmit asynchronous packets
for a total of Ai = TTRT −TRTi−u time units. Thus, it must look through
all bits of u in the token and its timer TRTi to decide if it should seize the
token. A way to do this with a delay of only a couple of bits is as follows.
The station keeps in a register the value of TTRT − TRTi. The register
has an initial value of TTRT and counts down only. The station compares

22



the register with u (bit by bit) as the bits are received. The station cannot
transmit asynchronous packets if the register value is less than u. On the
other hand, if the register is greater than u, then the station aborts forwarding
the token (and hence the next station cannot seize the token since it receives
a partial token) and seizes the token. Note that deciding if u is less than or
greater than the register can be done as the bits of the token are stored and
forwarded, provided the bits of u are received in order of their significance.
Hence, the token can either be seized or allowed to go by with a delay of only
a few bits per station.

8 Conclusion

This paper proposes a new protocol: the timely-token protocol. This proto-
col adds a parameter in the token that allows a station to determine whether
the early arrival of a token is due to unused synchronous bandwidth or un-
used asynchronous bandwidth. By doing this, it prevents the excessive use
of asynchronous transmission, and thus it avoids the token lateness problem
that exists in FDDI. At the same time, it guarantees that in each token
rotation there is always A∗ time units available for the transmission of asyn-
chronous traffic. This makes up for the weakness existing in FDDI-M, where
asynchronous traffic may be starved.

A simple Synchronous Allocation scheme is given for the timely-token.
It guarantees that if a set of synchronous streams satisfies the protocol con-
straints, then synchronous bandwidth is allocated to each station such that
no deadline is violated. The timely-token was compared against FDDI and
FDDI-M. Finally, a method to efficiently implement the seizing of the token
was discussed.

A SA scheme S is said to be optimal [2] for a token-protocol iff, for every
other SA scheme S ′, and for every set of synchronous streams, if S meets the
deadlines of the stream set, then S ′ also meets the deadlines of the stream
set.

Finding an optimal SA scheme for FDDI remains a challenge, since none
of the SA schemes proposed thus far are optimal [12]. Proving that an SA
scheme is optimal is challenging to the point that a couple of early SA schemes
were erroneously believed to be optimal.

In the appendix, we present an enhanced SA scheme for the timely-token
that satisfies a broader set of synchronous streams than the SA scheme in

23



Section 5. This SA is added mostly for completeness, since the range of
values over which it improves the scheme of Section 5 is not practical. We
conjecture that our enhanced SA scheme is optimal for the timely-token.
However, given the complexity of proving the optimality of a SA scheme, we
defer evaluating the optimality of our enhanced SA scheme to future work.

References

[1] R. Grow, “A timed token protocol for local area networks”, Proc. Electro’82,
Token Access Protocols, Paper 17/3, May 1982.

[2] B. Chen, G. Agrawal, and W. Zhao, “Optimal synchronous capacity allocation
for hard real-time communications with the timed token protocol”, Proc.
IEEE RTSS’92, pp. 198-207, Dec. 1992.

[3] J. Cobb, M. Lin, “The On-Time timed-token protocol”, Proc. IEEE GLOBE-
COM, 2002.

[4] C.C. Han and K. G. Shin, “A polynomial-time optimal synchronous band-
width allocation scheme for the timed-token MAC protocol”, Proc. IEEE
Infocom’95, pp. 875-882, Apr. 1995.

[5] S. Zhang and A. Burns, “An optimal synchronous bandwidth allocation
scheme for guaranteeing synchronous message deadlines with the timed-token
MAC protocol”, IEEE/ACM Trans. Networking, Vol.3, pp. 729-741, Dec.
1995.

[6] K. G. Shin and Q. Zheng, “FDDI-M: A scheme to double FDDI’s ability
of supporting synchronous traffic”, IEEE Transactions on Parallel and Dis-
tributed Systems, Vol. 6, No. 11, Nov. 1995.

[7] A. G. Agrawal, B. Chen, W. Zhao, and S. Davari, “Guaranteeing synchronous
message deadlines with the timed token medium access control protocol”,
IEEE Trans. on Comput., Vol. 43, No. 3, pp. 327-339, Mar. 1994.

[8] S. Zhang, A. Burns and A. Wellings, “An efficient and practical local syn-
chronous bandwidth allocation scheme for the timed-token mac protocol”,
Proc. IEEE Infocom, pp 920-927, 1996

[9] S. Zhang and E.S. Lee, “Efficient global allocation of synchronous bandwidths
for hard real-time communication with the timed token MAC protocol”, Proc.
of the Real-Time Computing Systems and Applications Conference, pp. 120
-127, 1999.

24



[10] D. Chen, V.C.S. Lee and E. Chan, “On the ability of the FDDI-M protocol
to support real-time traffic”, Proc. of the Real-Time Computing Systems and
Applications, pp. 51 -57, 1998.

[11] D. Chen, E. Chan and C.H. Lee, “Timing properties of the FDDI-M medium
access protocol for a class of synchronous bandwidth allocation schemes”,
Proc. of the Int’l. Conference on Computer Communications and Networks,
pp. 825-832, 1998.

[12] S. Zhang and E.S. Lee, “The non-optimality of synchronous bandwidth allo-
cation schemes for the timed token Protocol”, IEEE Communications Letters,
Vol.4, No. 3, March 2000.

Appendix

In this appendix, we present a SA scheme that is superior to the one presented in
Section 5. In Section 5, it is assumed that consecutive visits of the token to the
station are separated by TTRT seconds. That is, it is assumed that

I(n) = n · TTRT

However, as seen in Section 6, I(n) actually has a smaller value when n ≥ N + 1,
namely,

I(n) = n · TTRT −

⌊

n

N + 1

⌋

· A∗ (5)

We take advantage of this lower value of I(n) for our Enhanced SA Scheme (ESAS).
As mentioned in Section 6, the value of Xi may be derived from I(ni) as follows.

Xi = (ni − 1) · Si + max[0, Di − I(ni) + Si] (6)

where ni is an integer such that

I(ni − 1) ≤ Di < I(ni) (7)

In order to meet the deadline of stream i, we must have

Xi ≥ Ci (8)

Note that the value of Si needed to satisfy this depends on the value of ni and
I(ni). In turn, ni and I(ni) depend on Si, and a circular argument is created.
Therefore, we cannot simply derive the value of Si from an equation. Instead, we
adopt an iteration method, similar to the one adopted in [7] and [5].

Our general strategy is therefore as follows.

25



• First, we choose Si = 0 for all i.

• Then, we derive ni and I(ni) for each i.

• Next, assuming that ni and I(ni) remain constant, we compute for each i a
new value of Si that is the minimum value needed to ensure Xi ≥ Ci.

• Since each Si has increased, we obtain new values of ni and I(ni).

• These new values in turn may require each value of Si to be increased, and
thus new values of ni and I(ni) are needed. Thus, the iteration continues.

The above iteration should stop when one of the following hold.

(i) For each i, the value of Si need not increase to satisfy Xi ≥ Ci.

(ii) The protocol constraint of Definition 1 is violated.

We next describe the approach in more detail. First, assuming ni and I(ni)
remain constant, the minimum value needed for Si follows from Equation 6, and
is as follows.

Smin(ni, I(ni), Ci) =

{

Ci

ni−1 if δi · (ni − 1) ≥ Ci

δi · (ni − 1) + Ci−δi·(ni−1)
ni

otherwise

δi = I(ni) − Di

Above, δi is the amount of time that the token is unavailable for synchronous
bandwidth during its nith arrival to station i.

We next proceed to give the SA algorithm in more detail.

Enhanced SA Scheme:

1. for each i, let Si := 0.

2. for each i, obtain ni and I(ni) according to Equations 5 and 7.

3. if for each i, Si ≥ Smin(ni, I(ni), Ci), then stop, a solution has been found.

4. for each i, let Si := Smin(ni, I(ni), Ci).

5. If the protocol constraint is violated, stop, no solution was found.

6. Go to step 2.

Next we provide a theorem to justify the mechanism to compute Si above.

26



Theorem 6 Consider a synchronous allocation to every station such that the
deadlines of all synchronous streams are satisfied. Let S ′

i be the synchronous allo-
cation to station i. Assume the following hold for this synchronous allocation.

I ′(x) = x · TTRT −
⌊

x
N+1

⌋

· A∗′ for all x

I ′(n′
i − 1) ≤ Di < I ′(n′

i) for all i

Smin(n′
i, I

′(n′
i), Ci) ≤ S′

i for all i

Assume that after step number 2 in the ESAS, for all i,

Si ≤ S′
i

Then this continues to hold after step four.

Proof: First, note that if
∑

Si increases, then for any x, I(x) must remain equal
or increase. This is because as

∑

Si increases, A∗ decreases, and I(x) remains
equal or increases. Therefore, since we are given that

∑

Si ≤
∑

S′
i, then for all x,

I(x) ≤ I ′(x)

We next compare Smin(ni, I(ni), Ci) and Smin(n′
i, I(n′

i), Ci). Note that since
I(x) ≤ I ′(x) for all x, it must be the case that ni ≤ n′

i.
Assume first that ni = n′ and I(ni) ≤ I ′(n′

i). In this case, from the definition
of Smin, we have

Smin(ni, I(ni), Ci) ≤ Smin(n′
i, I

′(n′
i), Ci)

Assume on the other hand that ni < n′
i. In this case, again, from the definition of

Smin, we have
Smin(ni, I(ni), Ci) ≤ Smin(n′

i, I
′(n′

i), Ci)

After step four in the algorithm, Si = Smin(ni, I(ni), Ci), and we are given
that Smin(n′

i, I
′(n′

i), Ci) ≤ S′
i for all i. Thus, after step four, for all i,

Si ≤ S′
i

Corollary 1 For a given set of synchronous flows and TTRT value, if there ex-
ists a synchronous bandwidth allocation that satisfies Equations (5), (6), and (8),
then the ESAS also obtains a synchronous bandwidth allocation that satisfies these
equations.

27



Proof: In ESAS, the value of Si never increases beyond the Si value of the
solution that satisfies Equations (5), (6), and (8). Thus, since the minimum Si

value always increases in ESAS, ESAS will converge to a solution.

Note that the corollary restricts itself to those solutions satisfying Equations
(5), (6), and (8). This is because we do not claim that the ESAS above is optimal
for the timely-token. Proving that a SA allocation scheme is optimal has been
known to be challenging to the extent that for FDDI no optimal SA scheme is
known, and earlier SA schemes were erroneously considered to be optimal.

The ESAS provide in this appendix is provided primarily for completeness.
The scheme in Section 5 will suffice for most cases. ESAS is superior only when
ni ≥ N + 1, and since N is likely to be large, this would apply only for very large
values of Di.

28


