
Ž .Computer Networks 31 1999 2341–2360
www.elsevier.comrlocatercomnet

Universal Timestamp-Scheduling for real-time networks

Jorge A. Cobb)

Department of Computer Science, Mail Station EC 31, The UniÕersity of Texas at Dallas, Richardson, TX 75083-0688, USA

Abstract

Consider a network of computers interconnected by point-to-point communication channels. For each flow of packets
through the network, the network reserves a fraction of the packet rate of each channel along the path of the flow. We define
a family of scheduling protocols, called UniÕersal Timestamp-Scheduling, to forward packets in this network, such that all
members of the protocol family provide the same upper bound on packet delay as the well-known packet delay of Virtual
Clock scheduling. The protocol family is called uniÕersal because it encompasses a wide variety of protocols. To show this,
we prove that many scheduling protocols in the literature are members of the protocol family, and thus provide the above
guarantee. In addition, we show that the protocols in the literature have only considered one side of the spectrum of possible
scheduling protocols, and that there is another side of the spectrum that deserves attention and remains to be investigated.
q 1999 Elsevier Science B.V. All rights reserved.

Keywords: Computer networks; Real-time scheduling; Quality of service guarantees; High-speed networks

1. Introduction

Consider a computer network with point-to-point communication channels. Each output channel of a
computer is equipped with a scheduler. The input to the scheduler is a set of flows, where each flow is a
sequence of packets generated by a user application and received through an input channel. When an output
channel becomes idle, the task of its scheduler is to determine which received packet should be transmitted next
over the channel.

A particular type of scheduling protocols, which we call guaranteed-rate schedulers, forward packets from
w xeach flow at a designated rate. Examples of these scheduling protocols can be found in 18,20 . In all of these

protocols, the source of a flow finds a network path that leads to its desired destination. Then, the source
notifies each scheduler in the path about its desired packet rate. Each scheduler determines if it has enough
available bandwidth in its output channel to transmit the packets of the new flow. The new flow is accepted if
and only if all schedulers in the path accept the new flow.

Due to the reservation of bandwidth, the network can provide quality of service guarantees to each flow, such
as end-to-end packet delays. These service guarantees are of particular importance to real-time applications,

w xsuch as interactive audio and video 9 .

) Tel.: q1-972-883-2479; fax: q1-972-883-2349; e-mail: jcobb@utdallas.edu

1389-1286r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S1389-1286 99 00089-4

()J.A. CobbrComputer Networks 31 1999 2341–23602342

Some guaranteed-rate schedulers assign a timestamp to each incoming packet, and forward these packets to
the output channel in order of increasing timestamp. Thus, when a packet is received, it is stored in a queue
ordered by increasing timestamp. When the output channel becomes idle, the packet with the smallest timestamp

w xis forwarded to the output channel. Examples of these schedulers are Virtual Clock 6,17,19 , Weighted Fair
w x w x w xQueuing 13,14 , Time-Shift Scheduling 2 and Frame-Based Fair Queuing 16 .

The method used to assign timestamps to packets differs from one protocol to another. However, they all
share a similar structure. In this paper, we reveal the strong relationship among these protocols, by defining a
family of scheduling protocols, called UniÕersal Timestamp-Scheduling, and by showing that the above
protocols are all members of this family.

The protocol family is based on simulating a virtual server. The virtual server assigns timestamps to each bit
Ž .of a packet as opposed to each packet , and it forwards bits in increasing timestamp order. When a flow

becomes backlogged in the virtual server, the timestamp of its first bit is computed in accordance to the progress
of the virtual server. The difference among the members of the family is the value chosen for the initial
timestamp.

We show that all members of the protocol family guarantee to each flow its reserved packet rate. In addition,
they guarantee an upper bound on the delay of each packet similar to the delay bound in Virtual Clock
scheduling. Finally, we show that the end-to-end delay of each packet is also bounded. Since the protocols
mentioned earlier are all members of the protocol family, they all share these properties.

To show the generality of the protocol family, we show that the above protocols in the literature correspond
to one end of the spectrum of the Universal Timestamp-Scheduling family, and that there is another end of the
spectrum that is worthy of attention but has not been investigated. In this end of the spectrum, if a flow has not
generated packets for a certain amount of time, the flow will try to reclaim the bandwidth it has lost during its
period of inactivity. However, in doing so it will not infringe upon the basic deadline guarantees of other flows.

The organization of the paper is as follows. In Section 2, we present the general structure of all members of
the protocol family. In Section 3, we present the notation used to specify our protocols. In Section 4, we
introduce the concepts of bit timestamps and bit deadlines, which are the foundation of the virtual server. In
Section 5, we present the Universal Timestamp-Scheduling family of protocols. In Section 6, we prove the delay
bound for all members of the protocol family. The end-to-end delay of the protocol family is given in Section 7.
In Section 8, we show that existing protocols are members of the protocol family. Finally, in Section 9, we
present related work, and we discuss the end of the spectrum of the Universal Timestamp-Scheduling family
which remains to be investigated.

2. Basic protocol structure

In this paper, we present a family of scheduling protocols for a computer network. Before doing so, we first
present the structure that is common to all members of the family, and then in later sections we describe the
difference between members of the protocol family.

A computer network consists of a set of computers interconnected via point-to-point bi-directional channels.
A flow in a computer network is a potentially infinite sequence of packets generated by the same source and
having the same destination in the network. The chosen path and rate of each flow remain fixed throughout the
lifetime of the flow.

Each output channel of a computer is equipped with a scheduler, as shown in Fig. 1. From the input
channels, the scheduler receives packets from flows whose next hop to the destination is the output channel of
the scheduler. Whenever its output channel becomes idle, the scheduler chooses a received packet and forwards
the packet to the output channel.

The rate at which the scheduler forwards the packets of a flow must be bounded from below by the reserved
rate of the flow. To guarantee this minimum packet rate, the scheduler assigns a timestamp to each received

()J.A. CobbrComputer Networks 31 1999 2341–2360 2343

Fig. 1. A computer with two input channels and two output channels.

Ž .packet. The timestamp is a function among other things of the flow’s reserved rate. The scheduler forwards the
received packets in order of increasing timestamp.

We say that a packet is forwarded to the output channel when the first bit of the packet is being transmitted
by the output channel. We say a packet has exited the output channel if its last bit has been transmitted by the
output channel. We say a packet is in the output channel if it has been forwarded to the output channel but has
not exited the output channel.

The scheduler maintains a separate FIFO queue for the received packets from each flow. An interval of time
w xt1, t2 is said to be a busy period if the output channel is continuously sending packets throughout the interval,
and the output channel is idle immediately before t1 and immediately after t2.

We adopt the following notation:
Ø clock: real-time clock of the scheduler,
Ø N: maximum number of flows allowed by the scheduler,

Ž .Ø C: bandwidth bitsrs of the output channel,
Ž .Ø R.i: reserved rate of flow i bitsrs ,

Ø queue.i: queue of received packets of flow i,
Ø p.i.n: nth packet received from flow i,

Ž .Ø A.i.n: value of clock when p.i.n is received s ,
Ž .Ø L.i.n: packet size of p.i.n bits ,

Ø L : upper bound on packet length over all flows,max
Ž .Ø E.i.n: time when packet p.i.n exits the output channel s .

When a scheduler receives a packet from a flow, the packet is assigned a timestamp, and stored in the FIFO
queue of the flow. When the output channel becomes idle, the scheduler examines the timestamp of the packet
at the head of each queue, and chooses the packet with the smallest timestamp. This packet is dequeued and
forwarded to the output channel.

The goal of the scheduler is to forward the packets of each flow i at an average rate of at least R.i. Since all
N flows share the output channel, the following constraint is necessary:

Ny1

R.iFC. 1Ž .Ý
is0

The timestamp T.i.n assigned to each packet p.i.n is calculated as follows:

T.i .n:sS.i .nqL.i .nrR.i . 2Ž .
Ž .In the above equation, S.i.nGT.i. ny1 , and its exact value is protocol dependent; the choice of S.i.n is what

distinguishes one member of the protocol family from another.
Ž Ž ..For example, if we choose for S.i.n the value max A.i.n, T.i. ny1 , then the resulting protocol is known

as Virtual Clock. It can be easily shown by induction that, in the Virtual Clock protocol, T.i.n equals the time at
which p.i.n would exit an output channel whose sole input flow is flow i and the channel’s rate is exactly R.i.

()J.A. CobbrComputer Networks 31 1999 2341–23602344

Furthermore, it has been shown that, in Virtual Clock protocol, each packet exits the scheduler by the time
Ž . w xindicated in its timestamp plus the small constant L rC 6,17 . Thus, the timestamp in the Virtual Clockmax

protocol may be viewed as a bound on the exit time of a packet. This bound is desirable, since the bound
depends solely on the reserved rate of the flow. Thus, the packets of a flow will not experience large delays at a
scheduler unless the source of the flow exceeds its reserved packet rate.

If a scheduling protocol has the same upper bound on exit time as the Virtual Clock protocol, we say that the
protocol has rate-proportional delay.

Other timestamp protocols have different choices for the value of S.i.n, and thus the timestamps assigned to
the packets are different than the timestamps assigned in Virtual Clock, and the timestamps may no longer be
viewed as an exit deadline. Nonetheless, as we show later, many of these protocols have rate-proportional delay,
i.e., their upper bound on the exit time of a packet is at most the upper bound on the exit time of the same
packet in Virtual Clock scheduling.

3. Protocol notation

In this section, we present our notation to formally specify scheduling protocols, and we use the notation to
specify the basic protocol structure of the previous section.

We define the behavior of a scheduler process by a set of global constants, a set local inputs, a set of local
wxvariables, and a set of actions. Actions are separated from each other with the symbol , using the following

syntax:

wx wx wxbegin action action . . . action end

Each action is of the form guard™command. A guard is either a Boolean expression involving the local
variables of its process, or a receive statement of the form receive p.i.n. A command is constructed from

Ž . Ž . Ž .sequencing ; , conditional if fi , and iterative do od constructs that group together skip, assignment, and
forward statements of the form forward p.i.n. Similar notations for defining network protocols are discussed in
w x11,12 .

An action is said to be enabled if its guard is either a Boolean expression that evaluates to true, or a receive
statement of the form receive p.i.n, and there is a packet that may be received from some input flow.

An execution step of a protocol consists of choosing any enabled action from any process, and executing the
action’s command. If the guard of the chosen action is a receive statement receive p.i.n, then, before the
action’s command is executed, the flow number of the packet is stored in variable i, and the packet number is
stored in variable n.

Protocol execution is fair, that is, each action that remains continuously enabled is eventually executed.
On occasions, we use quantifications of the form:

[x :R x :B x .Ž . Ž .Ž .
Ž .Above, [is a commutative and associative binary operator, such as max, min, Ý summation , ;

Ž . Ž . Ž .conjunction , or ' disjunction . R x is a function defining the range of values for the dummy variable x, and
Ž .B x is a function defining the value given as an operand to [. For example,

min x :1FxF3: x 2Ž .
denotes the minimum of 12, 22, and 32. If the range of the dummy variable x is omitted, all values in the type
of x are included.

We are now ready to present the code for the scheduler process, which is given in Fig. 2. We model the
real-time clock with a variable of type real. This variable is incremented at certain points in the code to

()J.A. CobbrComputer Networks 31 1999 2341–2360 2345

Fig. 2. Scheduler process.

represent the natural progression of real-time. We make the simplifying assumption that executing an action
takes zero time.

In the first action, a packet is received, its timestamp is computed, and it is appended to the queue of its flow.
The second action is enabled when the output channel is idle and there is a non-empty queue. If this is the case,

Ž .function dequeue queue finds the packet whose timestamp is the smallest, and removes it from the queue of its
flow. This packet is then forwarded to the output channel.

In the third action, if the output channel is not idle, then the clock may be advanced, but not beyond the time
when the output channel becomes idle again. This is necessary to ensure that when the channel becomes idle

Ž .again the next packet will be sent immediately. In this action, function advance clock, idle chooses any value
Ž xin the interval clock, idle to represent the normal advancement of the clock.

In the final action, if the output channel is idle and all queues are empty, then the clock may advance its
value without any constraints.

4. Bit timestamps and deadlines

w xIn this section, we broaden the concept of packet timestamps to bit timestamps 2 , that is, we define a
timestamp to each bit of a packet, and the timestamp of the packet is the timestamp of the last bit of the packet.
Also, we associate a deadline to each bit of a packet, and the deadline of the packet is the deadline of the last bit
of the packet.

()J.A. CobbrComputer Networks 31 1999 2341–23602346

Fig. 3. Timestamps contained by each packet.

4.1. Bit timestamps

We assume that bits are of arbitrarily small size, and a timestamp is defined for each bit as follows. Let b be
w xa real number in the interval 0, L.i.n . We define the bit timestamp of ‘bit’ b of packet p.i.n as

S.i .nqbrR.i . 3Ž .
Ž .Thus, S.i.n is the timestamp of the first bit of the packet bs0 and T.i.n is the timestamp of the last bit of the

Ž .packet bsL.i.n . In this way, if at time S.i.n the packet is given to a constant rate server with rate R.i, then
Ž .bit b of p.i.n exits the server at the time indicated by 3 above.

We say that bit timestamp t is contained by packet p.i.n if a bit in the packet has timestamp t, i.e.,
S.i.nF tFT.i.n. Flow i contains timestamp t if some packet of i contains t.

For example, consider Fig. 3. In this figure, the timestamps of the first and last bits of each packet are
indicated by a vertical line. In flow 1, for its first packet, p.1.0, the timestamp of its first bit is 1 and the
timestamp of its last bit is 3. For the second packet, p.1.1, the timestamp of its first bit is 3 and the timestamp of
its last bit is 4, and for the third packet, p.1.2, its first bit has timestamp 6 and its last bit has timestamp 9. Thus,
all timestamp values from 1 up to 4 and from 6 up to 9 are contained by flow 1. Also, no flow contains
timestamp 5.

4.2. Bit deadlines

To ensure rate proportional delay, we associate with each packet p.i.n a deadline D.i.n, which is equal to the
timestamp the packet would receive under Virtual Clock scheduling. That is,

D.i .n:smax A.i .n , D.i . ny1 qL.i .nrR.i .Ž .Ž .
Therefore, a packet scheduler has rate-proportional delay if the exit time of each packet p.i.n is at most D.i.n
plus a small constant.

We will often need to refer to the deadline of the bit of flow i whose timestamp is t. Thus, D.i.t, where t is a
timestamp, denotes the deadline of the bit of flow i whose timestamp is t. Let timestamp t be contained by
packet p.i.n, and let bit b, 0FbFL.i.n, be the bit of p.i.n whose timestamp is t. Then, D.i.t is defined as
follows:

D.i .tsmax A.i .n , D.i . ny1 qbrR.i .Ž .Ž .
That is, the deadline of a bit is simply the timestamp the bit would receive in a Virtual Clock scheduler. Thus, in
Virtual Clock, the deadline of a bit and its timestamp are equivalent.

5. The Universal Timestamp-Scheduling family

In this section, we define a family of scheduling protocols, which we name UniÕersal Timestamp-Scheduling
Ž .protocols. Each protocol in the family assigns a timestamp to each received packet according to Assignment 2 ,

()J.A. CobbrComputer Networks 31 1999 2341–2360 2347

and forwards the packets in order of increasing timestamp. However, the protocols differ in their choice of S.i.n.
In this section, we define bounds on the possible values used for S.i.n. Regardless of which value is chosen
within these bounds, the scheduling protocol will have rate-proportional delay.

To represent the entire behavior of the protocol family, we define a predicate that must be satisfied by S.i.n.
We later show that the protocols of Virtual Clock, Weighted Fair Queuing, Time-Shift Scheduling, and
Frame-Based Fair Queuing choose values for S.i.n that satisfy this predicate, and thus, all these protocols are
members of the protocol family.

The possible values for S.i.n are derived from the behavior of a virtual server, which we present next.

5.1. Virtual serÕer

The virtual server receives as input the same set of flows as the packet scheduler, and forwards the packets of
these flows to an output channel whose bandwidth is also C. In addition, each packet is assigned a timestamp.

Ž .The virtual server also assigns timestamps to packets using Assignment 2 .
The difference between the packet scheduler of the previous section and the virtual server is that the virtual

server is able to forward a single bit at a time, rather than a whole packet at a time. The virtual server forwards
bits in order of increasing bit timestamp. Although the virtual server is not implementable, its behavior can be
computed by the scheduler, because the input flows of the virtual server are also the input flows of the
scheduler.

w X xLet t, t be an interval such that, if a flow contains a bit timestamp in this interval, then the flow contains
all timestamps in this interval; i.e., no flow partially contains the timestamps in this interval. Let B be the set of
flows that contain all the bit timestamps in this interval. From the way in which timestamps are assigned to bits,
the time required for the virtual server to forward all the bits in this interval is

Ýi :igB :R.i P tX y tŽ . Ž .
.

C

Note that this is similar to the way in which bits are forwarded by the virtual server used in Weighted Fair
w xQueuing 14 . However, the behavior of both virtual servers is quite different. In Weighted Fair Queuing,

timestamps are not assigned to bits. Therefore, if a flow has bits remaining to be forwarded, then bits from this
flow will continuously be forwarded until no more bits of the flow remain. This is not the case in our virtual
server, because if all the bits of flow i have timestamps that are smaller than all the bits of flow j, then all the
bits of flow i will be forwarded before any bit of flow j is forwarded.

Since bits are forwarded in increasing timestamp order, we define the following:
Ø W.i: timestamp of the next bit to be forwarded from flow i,
Ø T.i: largest bit timestamp of flow i; i.e., T.isT.i.n, where p.i.n is the last packet received from flow i,
Ø Z: timestamp of the next bit to be forwarded by the virtual server,
Ø F.i.n: time when the last bit of p.i.n exits the virtual server.

If W.i-T.i, there are some bits from flow i that remain to be forwarded. If W.isT.i, all bits from flow i
have been forwarded. Thus, if there is an i such that W.i-T.i, then Z is the minimum over all these i, that is,

Zs min i :W.i-T.i :W.i .Ž .
On the other hand, if there is no i such that W.i-T.i, then we assign to Z a value greater than the maximum
over all timestamps, that is,

Z) max i ::T.i .Ž .
We next give a small example of the behavior of the virtual server. Assume the virtual server has an output

channel bandwidth of 10 bitsrs, and three flows, where R.0sR.1s2.5 bitsrs, and R.2s5 bitsrs. Flows 0

()J.A. CobbrComputer Networks 31 1999 2341–23602348

and 1 have two packets each, and flow 2 has a single packet. The size of each packets is 100 bits. The
timestamps contained by each flow are shown in Fig. 4a. For the first packet of flow 0, its first bit has
timestamp 0 s and its last bit has timestamp 40 s, and for the second packet of flow 0, the first bit has timestamp
40 s and the last bit has timestamp 80 s. The timestamps of the packets of flow 1 are the same as those of flow
0. The single packet of flow 2 has a timestamp of 20 s for its first bit and a timestamp of 40 s for its last bit.

The behavior of the virtual server is shown in Fig. 4b. From time 0 up to time 10, the bits from flow 0 and
flow 1 with timestamps 0 up to 20 are transmitted over the output channel, for a total of 50 bits from each flow.
Thus, at time 10, W.0s20, W.1s20, and Zs20. At time 10, the first bit of the packet from flow 2 begins to
be transmitted, since the timestamp of this bit is also 20. Thus, for the next 20 s, the virtual server transmits the
bits with timestamps 20 up to 40 from all three flows, and the last bit of the first packet of each flow exits at
time 30. Therefore, at time 30, W.0s40, W.1s40, W.2s40, and Zs40. Then, since only the second
packets from flows 0 and 1 remain, these packets are transmitted during the next 20 s. Hence, at time 50,
W.0s80, W.1s80, W.2s40, and Z)80.

5.2. Virtual serÕer specification

We next present the specification of the virtual server, which is given in Fig. 5. There are four new variables,
StartS, Z, B, and upd.

StartS is a lower bound on the value chosen for S.i.n. Z is the timestamp of the next bit to be transmitted,
and B is the set of flows which still have bits to be transmitted and whose next bit to be transmitted has
timestamp equal to Z.

Ž .Variable upd update contains the timestamp such that when Zsupd, the membership in set B changes.
This will occur when either a flow i in B does not have any more bits to transmit, or a new flow i should be
added to B. Thus, upd is the minimum of two values: the minimum of all T.i for each i in B, and the minimum
of W.i such that i is not in B and W.i-T.i.

The specification consists of four actions.
In the first action, a packet is received. Before assigning a timestamp to the packet, the value of S.i.n is

Žcomputed, and the lower bound StartS is updated in the next section, we explain in detail how S.i.n is
.computed and how StartS is updated . After the packet is assigned its timestamp, Z, B, and upd are recomputed

because their values may have changed.
In the second action, if there are still bits to be forwarded from flows in B without causing a change in the

membership of B, i.e., if Z-upd, then we arbitrarily choose how many more of these bits to transmit. Then, Z
is updated accordingly, and the amount of time needed to transmit these bits is added to the clock.

Fig. 4.

()J.A. CobbrComputer Networks 31 1999 2341–2360 2349

Fig. 5. Virtual server.

In the third action, if the membership of B is about to change, i.e., if Zsupd, then B is updated. If the new
value of B is empty, then there are no more bits to transmit, and Z is set to a value greater than the maximum
of all bit timestamps. If B is not empty, then Z and upd are recomputed.

In the last action, if there are no more bits to transmit, the clock is advanced an arbitrary amount of time.

5.3. Computing the starting timestamp

What remains to be defined for the virtual server is the way in which S.i.n is chosen. If bits from flow i
Ž . Ž .remain to be forwarded W.i-T.i , then S.i.n is assigned T.i. ny1 . On the other hand, if no bits remain to

Ž .be forwarded W.isT.i , then there is some flexibility in the choice of S.i.n.
We would like to identify a range of values for S.i.n such that choosing any one of them ensures rate

proportional delay for the virtual server at the bit level. That is, each bit should exit the virtual server by the

()J.A. CobbrComputer Networks 31 1999 2341–23602350

time indicated in its bit deadline. This range of values for S.i.n should be as large as possible, to provide the
flexibility to represent many protocols in the literature as members of our protocol family.

To guarantee that a bit from flow j with timestamp W. j exits by its deadline, we simply count, for each flow
k, where W.k-W. j, the maximum number of bits that could have a timestamp at most W. j and are yet to be
transmitted. These bits are

W. jymax W.k ,Z PR.k .Ž .Ž .
To obtain the amount of time required to transmit these bits, simply divide by C. The virtual server should have
enough time to transmit all these bits from every flow k before the deadline of bit W. j of flow j expires. Thus,
the following predicate should always hold in the virtual server:

; j:ZFW. j:Ž
Ýk :W.k-W. j: W. jymax W.k ,Z PR.kŽ .Ž .Ž .

4Ž .C
FD. j. W. j yclockŽ .

..
We refer to the above predicated as the safety predicate. We will later show that if the above predicate holds, it
continues to hold as bits are transmitted, and thus, each bit exits no later than its deadline.

However, assume packet p.i.n is received, and no more bits remain to be transmitted from flow i. If S.i.n is
chosen such that S.i.n-Z, then Z is assigned S.i.n. This change in Z could invalidate the safety predicate.
Thus, we restrict the value chosen for S.i.n such that the safety predicate holds after p.i.n is assigned a
timestamp. This will ensure that the safety predicate holds at all times. In addition, we restrict S.i.n to be at least

Ž .T.i. ny1 , to prevent bits from different packets from having the same timestamp.
We illustrate the safety predicate with an example. Assume we have three flows, i, j, and k, where

R.isR. jsR.ks100 bitsrs, and Cs300 bitsrs. Initially, W.i, W. j, W.k, and Z are all zero. Also, assume
for simplicity that all packets are of size 100 bits and initially clocks0.

At time 0, three packets are received from flow i. The virtual server chooses S.i.0s0, and thus, the last
packet receives a timestamp equal to 3, and receives a deadline also equal to 3. This is indicated in Fig. 6a. It
takes one second for the virtual server to transmit all three packets. After transmitting the last bit, Zs3 and
clocks1.

Then, when clocks1, four packets are received from flow j. Note that S. j.0 may be assigned zero without
violating the safety predicate. Thus, assume we choose S. j.0s0. The last packet of j receives a timestamp of 4

Ž . Ž . Ž .Fig. 6. Bit timestamps, a clocks0; b clocks1; c clocks2 1r3.

()J.A. CobbrComputer Networks 31 1999 2341–2360 2351

and a deadline of 5, as shown in Fig. 6b. The virtual server takes 1 1r3 s to transmit these packets. After
transmitting the last bit, Zs4 and clocks2 1r3.

Next, three packets are received from flow k, and then one packet is received from flow i. The value of zero
is no longer valid for S.k.0. This is because the timestamp of the first bit of the next packet of i is 3, and there
is not enough time to transmit all bits of flow k with timestamps 0 to 3 before the deadline of the next bit of i,
which also equals 3, expires. Namely,

W.iymax W.k ,0 PR.krCs 3y0 P100r300Ž . Ž .Ž .
s1)D.i . W.i yclockŽ .
s3y7r3

s2r3.

In fact, the smallest value possible for S.k.0 that satisfies the safety predicate is one. If one is chosen for
S.k.0, all deadlines are met.

A packet scheduler belongs to the Universal Timestamp-Scheduling family if it assigns to S.i.n a value equal
to the value chosen by the virtual server. It can be shown that the two restrictions given earlier on the value
chosen for S.i.n will ensure rate-proportional delay for the virtual server. However, they do not ensure that the
packet scheduler will have rate-proportional delay. To accomplish this, we will require the following additional
restriction on S.i.n.

We define a non-decreasing lower bound on the value of S.i.n, called StartS. The value chosen for S.i.n must
be at least StartS. After W.i is assigned S.i.n, StartS is updated. Its new value is the smallest value, no smaller
than the previous value of StartS, such that

; j:StartSFW. j:Ž
Ýk :W.k-W. j: W. jymax W.k ,StartS PR.kŽ .Ž .Ž .

5Ž .C
FD. j. W. j yclockŽ .

..

That is, if any future packets are given bit timestamps whose values are at least StartS, then all bits currently in
the virtual server will exit no later than their deadlines.

We refer to the above predicate as the start predicate, because it gives a lower bound on the starting value of
the timestamps of a flow.

Ž . Ž .Notice that 4 is the same as 5 if we replace Z by StartS. We later show that StartS is always at most Z.
In summary, we have three requirements for the value chosen for S.i.n:
Ž . Ž .a T.i. ny1 FS.i.n.
Ž .b StartSFS.i.n.
Ž .c The safety predicate holds after the packet receives its timestamp.
We will show in a later section that these requirements guarantee that the packet scheduler also has

rate-proportional delay.

6. Upper delay bound

In this section, we prove that both the virtual server and the Universal Timestamp-Scheduler have
rate-proportional delay. We first address the virtual server, and then the packet scheduler.

()J.A. CobbrComputer Networks 31 1999 2341–23602352

6.1. Delay bound of the Õirtual serÕer

We begin with a few lemmas. In the following, the expression ‘at time t’ refers to the state of the virtual
server when variable clock has the value t.

wLemma 0. After its first packet is receiÕed, each flow i will always contain all timestamps in the interÕal W.i,
xT.i .

Proof. The proof is by induction over the packet number of flow i. For the base case, p.i.0 is received and after
it is timestamped, W.isS.i.0-T.i.0sT.i. When W.i increases, it is not increased beyond T.i, and T.i does

w xnot change until the second packet is received. Thus, flow i contains all timestamps in the interval W.i, T.i .
Ž . wFor the induction step, assume after p.i. ny1 is received, flow i contains all timestamps in W.i,

Ž .xT.i. ny1 .
Ž . Ž . Ž .If W.i-T.isT.i. ny1 , then S.i.n is assigned T.i. ny1 , and afterwards, W.i-T.i. ny1 sS.i.n-

w xT.i.nsT.i. Hence, from the induction hypothesis, flow i contains all bit timestamps in the interval W.i, T.i .
If W.isT.i, then after p.i.n is timestamped, W.isS.i.n-T.i.nsT.i, and hence, flow i contains all bit

w xtimestamps in the interval W.i, T.i .
Furthermore, W.i will not increase beyond T.i, and T.i does not change until the next packet is received.

Thus, the theorem holds.
I

Lemma 1. Let tX
- t, and let ZX and Z be the Õalues of Z at times tX and t, respectiÕely. If during the time

w X xinterÕal t , t , the Õirtual serÕer has bits to forward, and Z does not decrease, then

ty tX FZyZX .

Proof. Consider the second action of the virtual server, which is where the clock is advanced when the server is
not idle, and consider the second assignment in this action.

clock:sclockq Ýi :igB : ZyW.i PR.i rC.Ž .Ž .
At this point, each W.i has the value of ZX. Thus, we have

clock:sclockq Ýi :igB : ZyZX
PR.i rC.Ž .Ž .

Ž .From Relation 1 ,

Ýi :igB : ZyZX
PR.i rCŽ .Ž .

s Ýi :igB :R.i P ZyZX rCŽ . Ž .
FCP ZyZX rCsZyZX .Ž .

Thus, the value of Z increases at least as fast as the value of clock.
I

Ž . Ž . ŽLemma 2. a Assume W.isZ-T.i and D.i. W.i Gclock. Then, as long as W.isZ-T.i holds i.e., as
. Ž . Ž .long as Z increases monotonically and flow i has bits to send , we haÕe D.i. W.i Gclock. b If for some

constant s, W.i-sFT.i, then eÕentually sFW.i.

Ž .Proof. a From Lemma 1, if Z increases monotonically, it increases at least as fast as real-time. Hence, W.i
increases at least as fast as real time. From the definition of bit timestamps, if flow i contains all timestamps in

w X x Ž X.the interval t , t , then those bits corresponding to these timestamps are exactly ty t PR.i bits. Thus, since
the deadline of a bit is the time at which the bit exits a constant rate server with rate R.i, then D.i.tyD.i.tX G t
y tX.

()J.A. CobbrComputer Networks 31 1999 2341–2360 2353

Note that as long as W.isZ-T.i, flow i contains the timestamp W.i as Z increases. Thus, from the above,
Ž . Ž .D.i. W.i also increases at least as fast as real-time, and D.i. W.i Gclock continues to hold.
Ž .b To increase W.i beyond s, the virtual server transmits bits whose timestamps are at most s. These bits

Ž . Ž .can be at most Ý j::R. jPs s Ý j::R. j PsFCPs bits, which take at most s seconds to forward. Hence, within
at most s seconds W.i will increase beyond s.

I

Lemma 3. If before executing the first action, StartSFZ, and also, the safety predicate is true, then, after
executing the first action, StartSFZ, and the safety predicate remains true.

Proof. Notice that if the safety predicate holds after the action, and S.i.n is chosen such that StartSFS.i.n, and
before the action StartSFZ, then after the action StartSFZ. This is because if Z decreases, it will not decrease
below S.i.n, and hence not below the old value of StartS. Furthermore, since the safety predicate holds, the new
value of StartS cannot be greater than Z.

Ž .We must show that there is at least one value of S.i.n that can be chosen such that: T.i. ny1 FS.i.n,
StartSFS.i.n, and the safety predicate holds after p.i.n is timestamped.

Ž .If W.i-T.i, then S.i.n is assigned T.i. ny1 . In this case, the safety predicate still holds since none of W.i,
Ž .D.i. W.i , or Z have changed.

Ž Ž .. Ž Ž . .If W.isT.i i.e., W.isT.i. ny1 , then consider assigning to S.i.n max T.i. ny1 , Z . Regardless of
which of these two values is greater, W.isS.i.n after executing the action.

Ž .If T.i. ny1 FZ, let us choose S.i.n to be Z, and therefore Z does not change. Since StartSFZ,
Ž .StartSFS.i.n. It is easy to check that the safety predicate still holds, since max Z, W.i does not change, and

Ž . Ž .D.i. W.i sD.i. S.i.n Gclock.
Ž . Ž .Assume now Z-T.i. ny1 sW.i. Thus, S.i.n is assigned T.i. ny1 , and W.i does not change. Also,

Ž .because Z-T.isT.i. ny1 , there is another flow j, where ZsW. j-T. j, and thus Z does not change.
Finally, if the safety predicate holds, it is impossible for Z-W.i if the deadline of bit W.i has expired. This

Ž . Ž .implies that D.i. W.i does not change. Since none of W.i, D.i. W.i , or Z changes, the safety predicate still
Ž .holds. Since StartSFZ before the action, and Z does not change, then StartSFZ-T.i. ny1 sS.i.n.

I

Lemma 4. If the safety predicate holds before executing the second, third, or fourth action, then the safety
predicate will remain true after executing the action.

Proof. In the second action, some bits are forwarded. Also, variables Z, clock, and every W.i in B are
increased accordingly.

In the safety predicate, consider any flow j. We are required to show that

Ýk :W.kFW. j: W. jymax W.k ,Z PR.kŽ . .Ž .
C

FD. j W. j yclock.Ž .
If before the action is executed, W. j-Z, then W. j-Z after executing the action, and we have no proof

obligation for j.
If before the action is executed, W. jsZ, we have two choices. If W. jsT. j, then j is not in B, and after the

action is executed, W. j-Z, and thus we have no proof obligation for j. If ZsW. j-T. j, then after the action
is executed, ZsW. jFT. j, and the left-hand side of our obligation is 0. Notice that the left-hand side is always

Ž .at least zero, thus, since the predicate held before the action is executed, D. j. W. j Gclock before execution.
Ž . Ž .From Lemma 2 a , D. j. W. j Gclock continues to hold after the action is executed.

Finally, if Z-W. j before the action is executed, then j is not in B, and after the execution, ZFW. j. Thus,
Ž .W. j and D. j. W. j did not change. Let us look at the changes to the left- and right-hand sides of our proof

()J.A. CobbrComputer Networks 31 1999 2341–23602354

obligation above. The left-hand side decreases since Z increased, and the right-hand side decreases since clock
increases by

Ýk :kgB :R.k P ZyZXŽ . Ž .
C

where ZX is the value of Z before the execution. Consider any flow k, and see how much both sides change due
to k.

Ž X.If k is in B, then k’s contribution to reducing the left-hand side is ZyZ PR.krC, which is the same as
k’s contribution to the increase in the clock, so both sides remain balanced.

If k is not in B, then k does not contribute to changes to the right side. Also, W.k does not change.
Ž X.Therefore, the left side is reduced by at most ZyZ P R.krC without any contribution to the right side, so the

predicate continues to hold.
Consider now the third action. It does not change any W.i, but it may increase Z. Notice that increasing Z

Ž .preserves 4 , so the safety predicate continues to hold.
The last action increases the clock, but only if there are no bits to transmit, in which case Z)W.i for all i,

and the safety predicate holds trivially.
I

Corollary 1. At all times, the safety predicate is true and StartSFZ.

Proof. From Lemma 3, the first action preserves StartSFZ and the safety predicate. From Lemma 4, the
remaining actions preserve the safety predicate. Since Z increases and StartS remains constant in these actions,
then StartSFZ is also preserved by these actions.

I

Ž .Theorem 1. For any j, if W. j-T. j, then D. j. W. j Gclock.

Ž .Proof. As long as W. j-T. j we have, from the definition of Z, ZFW. j. From Corollary 1 and 4 ,

Ýk :W.kFW. j: W. jymax W.k ,Z PR.kŽ .Ž .Ž .
C

FD. j. W. j yclock.Ž .
Ž .Since ZFW. j, the left-hand side is always at least zero, and thus D. j. W. j Gclock.

I

Theorem 1 states that each bit in the virtual server exits before its deadline expires. Let us now examine the
behavior of the packet scheduler.

6.2. Delay bound of packet scheduler

A Universal Timestamp-Scheduler is a packet scheduler that chooses a value for S.i.n equal to the value of
S.i.n in the virtual server. Thus, both the packet scheduler and the virtual server will assign equal timestamps to
the same packet. Furthermore, the deadline of a packet in both the packet scheduler and the virtual server are
also the same. What remains to be shown is that the packet scheduler has rate proportional delay, that is, that
each packet will exit by its deadline plus a small constant, namely, L rC. To show this, we take advantage ofmax

the behavior of the virtual server.

Lemma 5. Let t, tFA.i.n, be the latest time when all packet queues of a UniÕersal Timestamp-Scheduler are
empty. If , from time t up to time E.i.n, the scheduler only forwards packets with timestamps at most T.i.n, then

E.i .nFF.i .n.

()J.A. CobbrComputer Networks 31 1999 2341–2360 2355

Proof. Since the input flows of both the virtual server and the packet scheduler are the same and their output
channel’s have equal rate, then the times when all queues are empty coincide in both systems. Thus, at time t,
the virtual server has no more bits to forward.

At time F.i.n, A.i.n-F.i.n, the virtual server has forwarded all bits with timestamps at most T.i.n. If
F.i.n-E.i.n, this implies the packet scheduler has forwarded at least one packet with timestamp at most T.i.n,

Ž .other than p.i.n, to the output channel before F.i.n, and not all bits if any of this packet have been forwarded
by the virtual server by time F.i.n. Let p. j.m be the first of these packets to be forwarded by the packet
scheduler.

Consider the arrival of p. j.m. It cannot be that A. j.m-F.i.n, because by time F.i.n the virtual server
forwarded all bits with timestamps at most T.i.n, and we are given that T. j.mFT.i.n and F.i.n-F. j.m. On the
other hand, F.i.nFA. j.m is impossible, since p. j.m is forwarded by the scheduler before F.i.n. Thus, p. j.m
cannot exist, and E.i.nFF.i.n.

I

Theorem 2. In a UniÕersal Timestamp-Scheduler, for all i and n,

E.i .nFD.i .nqL rC.max

Proof. Consider the latest time t, tFA.i.n, such that the packet scheduler had all packet queues empty, or it
forwarded a packet with a timestamp greater than T.i.n.

If t corresponds to when the queues were empty, then from Lemma 5, E.i.nFF.i.n, and from Theorem 1,
E.i.nFF.i.nFD.i.n.

If the time corresponds to when a packet with greater timestamp was forwarded, then note that at time t there
are no packets with timestamps smaller than T.i.n. Thus, all packets with timestamps smaller than T.i.n that are
forwarded before p.i.n will arrive after time t.

Consider the virtual server when p.i.n is received and is assigned a timestamp. From Corollary 1, after the
first action is executed and from the definition of Z, StartSFZFW.iFS.i.n.

Ž .From the definition of StartS, Relation 5 holds after executing the action, and recall that StartS is
Ž .non-decreasing. Thus, all future bits to be forwarded whether they have been received already or not with

Ž . Ž .timestamps at most W.i take no more than D.i. W.i yA.i.n clocksA.i.n seconds to transmit. From the
w x Ždefinition of the deadline of a bit, and since flow i contains all bit timestamps in the range W.i, T.i.n Lemma

. Ž . Ž . Ž . Ž .0 , then D.i.nGD.i. W.i q T.i.nyW.i . Furthermore, due to 1 , all bits from any flow with timestamps in
w x Žthe range W.i, T.i.n take at most T.i.nyW.i seconds to transmit. Thus, starting at time A.i.n, all bits whether

.received or not to be transmitted by the virtual server with timestamps at most T.i.n take at most D.i.nyA.i.n
seconds to transmit.

Ž .Let Y be the set of packets with timestamps at most T.i.n including p.i.n received after t and forwarded by
the scheduler up until p.i.n is forwarded. From time t up to time A.i.n, some of the bits in Y may have been
transmitted by the virtual server. The remaining bits of Y are contained in the calculation above made at time
A.i.n. Thus, starting at time t, the virtual server has enough time to transmit all bits in Y before the deadline of
p.i.n expires. Since the virtual server and the packet server have an output channel with rate C, the packet
scheduler has enough time also. However, since at time t a packet is being transmitted with timestamp greater
than T.i.n, by time D.i.nqL rC the scheduler will transmit all bits in Y.max I

We therefore conclude that any Universal Timestamp-Scheduler has rate-proportional delay. Thus, when a
new scheduling protocol based on packet timestamps is designed, the designer needs only to show that the
protocol belongs to the family of Universal Timestamp-Scheduling protocols, and as a corollary the protocol has
rate-proportional delay.

()J.A. CobbrComputer Networks 31 1999 2341–23602356

7. End-to-end delay bound

Consider the network path of a flow from its source to its destination, and let the number of schedulers in this
path be K. Let R be the reserved rate of the flow. Furthermore, assume each of the computers uses a scheduling

w xprotocol that has rate-proportional delay. In 1,3,10 , it has been shown that, for a source whose flow of packets
is constrained by a leaky bucket of size b and rate R, the end-to-end delay of a packet along its path is at most

brRq Ky1 P LrR qKP L rC .Ž . Ž . Ž .max

In the above, L is the maximum packet size of the flow, and L is the maximum packet size allowed alongmax

the path.
Since all protocols in the Universal Timestamp-Scheduling family have rate-proportional delay, then a source

whose network path consists of schedulers of this family has the above upper bound on end-to-end packet delay.

8. Existing family members

In this section, we show the flexibility of our family of Universal Timestamp-Scheduling protocols by
showing that many scheduling protocols in the literature belong to the family.

Assume the packet scheduler chooses S.i.n as follows:

S.i .n:smax V ,T.i . ny1 6Ž . Ž .Ž .
where V is a value that increases at least as fast as real-time. That is, if at some point in time, VyclockGa ,
for some constant a , then this will continue to hold forever.

It is easy to show by induction that, when packet p.i.n is timestamped, for any bit timestamp t contained by
p.i.n,

tyVFD.i .tyclock. 7Ž .
Furthermore, since V increases at least as fast as the clock, the above always holds.

Also, assume we are given that VFZ always holds. Since Z increases at least as fast as the real-time clock,
then preserving VFZ is possible as Z increases.

We next show that if this is the case, the value of S.i.n is the same as in the virtual server. That is, any
Ž .packet scheduler choosing S.i.n as in 6 above is a member of the Universal Timestamp-Scheduling family. We

begin with a lemma.

Lemma 6. Consider a flow i and packet p.i.n. Assume the Õirtual serÕer chooses S.i.n to be contained in the
w Ž . Ž Ž ..xrange T.i. ny1 , max Z, T.i. ny1 , disregarding the restriction of the safety predicate and StartS. Then, if

Ž .the packet scheduler chooses S.i.n according to 6 , then this is also a possible choice of S.i.n in the Õirtual
serÕer.

ŽProof. Consider first when W.i-T.i. In this case, the virtual server has no choice and assigns S.i.nsT.i. ny
. Ž . Ž .1 . Since VFZFW.i, then V-T.isT.i. ny1 , and S.i.nsT.i. ny1 also in the packet scheduler.

Ž . Ž .Consider now when W.isT.i. If V-T.i. ny1 , then the packet scheduler assigns S.i.nsT.i. ny1 ,
Ž .which is valid also in the virtual server. If T.i. ny1 FV, then S.i.nsV in the packet scheduler. Since VFZ,

then V is a valid choice of S.i.n in the virtual server.
Ž .Note that if Z decreases, it decreases to S.i.n. From 6 , S.i.nGV, and hence, VFZ is preserved when

assigning timestamps.
I

()J.A. CobbrComputer Networks 31 1999 2341–2360 2357

Ž .Theorem 3. If a packet scheduler assigns timestamps according to 6 , then S.i.n satisfies all three conditions
required by the Õirtual serÕer.

Ž .Proof. Lemma 6 showed that the value chosen for S.i.n according to 6 is valid if we ignore StartS and the
Ž .safety predicate. We show next that these two requirements are also satisfied by 6 . To do so, we also show

that StartSFV always holds. Notice that V is non-decreasing, and StartS increases only in the first action.
Thus, assume StartSFV, and consider the first action.

Assume the received packet is assigned its timestamp and StartS has not been updated. Consider any j, where
Ž . Ž .W. jGV. From Relations 1 and 7 ,

Ýk :W.k-W. j: W. jymax V ,W.k PR.k rCŽ .Ž .Ž .
F W. jyV PCrCŽ .
sW. jyVFD. j. W. j yclock.Ž .

Ž .Therefore, in Relation 5 , if we replace StartS by V, then the relation still holds. Because of this, and
because StartSFV before executing the action, then the value of StartS after the action is at most V.

Ž .Also, since VFZ, then Relation 5 with StartS replaced by V is stronger than the safety property, and hence
the safety property also holds.

Ž Ž ..Finally, since S.i.n[max V, T.i. ny1 , and StartSFV, then StartSFS.i.n.
I

w xConsider for example the case of the Virtual Clock protocol 19 . In this case, the value of V is simply
Ž .chosen to be the real-time clock, that is, Vsclock, and Relation 6 above reduces to

S.i .n:smax clock, T.i . ny1 .Ž .Ž .
Thus, in this case, as0. What we need to show is that VFZ. This is easily shown as follows. Because the

sum of the reserved rates of all the flows is at most the capacity of the output channel of the virtual server, the
rate of increase of Z is at least the rate of increase of the real-time clock. Furthermore, when Z is decreased, it
is set to S.i.n, where p.i.n is the latest packet received. Finally, from the above relation, S.i.nGclock, and
hence ZGclock.

Therefore, VsclockFZ at all times, and from Theorem 3, Virtual Clock belongs to the Universal
Timestamp Scheduling family of protocols.

w xShowing that Weighted Fair Queuing 13,14 belongs to this family is also easy. In this case, we choose V to
be equal to Z at all times, hence, VFZ trivially holds. We need to show that V increases at least as fast as

Žreal-time, but as we argued above, since the capacity of the virtual server is not over-allocated, Z which equals
.V increases at least as fast as real-time.

w xFinally, we would like to show that Time-Shift Scheduling 2 belongs to this family of protocols. In
Time-Shift Scheduling, V is actually an adjustable clock, which increases at the same rate as any real-time
clock, except that on special occasions its value is adjusted forward, as follows. Let S be the minimum valuemin

Ž .of all the S.i.n values of all packets currently in the queue including the one currently in transmission .
Whenever the scheduler detects that V-S , it sets V[S .min min

From the definition of V, V increases at least as fast as real-time. The only thing we need to show is that
VFZ at all times. We have shown earlier that Z increases at least as fast as real-time. Thus, as long as V is not
adjusted forward and Z is not decreased, VFZ holds.

When Z is decreased, is because a new packet p.i.n is received with S.i.n-Z. The new value of Z will be
S.i.n. From the timestamp formula, S.i.nGV, and hence, ZGV.

When V is increased, its new value is S . Thus, we only need to show that S FZ. This is easy to see,min min

because the virtual server forwards bits in increasing bit timestamp order, while the packet scheduler forwards

()J.A. CobbrComputer Networks 31 1999 2341–23602358

bits in increasing packet timestamp order. Therefore, the minimum bit timestamps in the packet scheduler are
always at most the minimum bit timestamps in the virtual server.

Hence, from Theorem 3, Time-Shift scheduling belongs to the Universal Timestamp Scheduling family.
w x Ž .In 15 , it was shown that Frame-Based Fair Queuing has properties similar to those needed for Relation 6 ,

and the argument is not repeated here.
Therefore, for all of these protocols, rather than proving directly that they have the rate-proportional delay

property, which may not be an easy task, one simply needs to prove that they belong to the Universal
Timestamp Scheduling family, and the rate-proportional delay property of the protocol becomes an immediate
corollary of this proof.

9. Related and future work

All protocols in the literature that assign timestamps to packets and exhibit rate-proportional delay compute
Ž .timestamps according to some virtual function V defined in 6 above. Function V has the restriction that it

must always increase as fast as real-time, and it must be at most Z. Protocols in the literature differ from one
another in their specific choice of V.

For each flow i, let p.i.n denote the packet at the head of its queue, and let S.i denote S.i.n. Also, let Smin
w xdenote the minimum of all the S.i such that the queue of flow i is not empty in the packet scheduler. In 2,3 ,

we have shown that, if we choose V to increase at least as fast as real time, and do not allow V to lag behind
S , then all protocols which choose V in this range have rate-proportional delay.min

w xIn 15,16 , it was shown that the values of V can be extended to include Z. Thus, any value of V that
Ž .increases as fast as real-time and is at most Z, as required in 6 above, guarantees rate-proportional delay. To

w xshow this, the authors of 15,16 present a virtual server similar to the one we presented in this paper.
In this paper, we have significantly extended the spectrum of protocols that satisfy the rate proportional

delay. To do so, we defined a virtual server that in addition to taking into consideration the timestamp of a
packet, it also takes into consideration the deadline of a packet. Furthermore, we extended the concepts of
packet timestamps and packet deadlines to include bit timestamps and bit deadlines. Most importantly, we have
eliminated the virtual function V, and we defined a weak safety predicate that must be satisfied by the initial
timestamp S.i.n to guarantee rate-proportional delay.

Due to the weakness of the safety predicate, a broad range of values are possible for S.i.n. For example, we
have shown that S.i.n does not need to increase as fast as real-time. To see this, simple take a look at the
example in Section 5.3. Here, the values chosen for S. j.0 and S.k.0 are much smaller than real-time. In addition,

Ž Ž ..it is easy to obtain examples in which S.i.n is given a value greater than max Z, T.i. ny1 without violating
the safety property. Finally, if a protocol uses a virtual function V, once a packet p.i.n receives an S.i.n value

Ž .greater than T.i. ny1 , then no other packet p. j.m received after p.i.n can receive an S. j.m value less than
S.i.n. This, however, is possible to do without violating the safety predicate, and thus the virtual function V is
an unnecessary restriction.

Ž .Therefore, we have defined a much broader spectrum of possible values for S.i.n than those allowed by 6 .
This allows the protocol designer a greater flexibility in choosing S.i.n, while at the same time preserving
rate-proportional delay.

In particular, in the same way that a myriad of protocols which increase S.i.n at least as fast as real-time have
been developed, we believe that there is also a myriad of protocols in which S.i.n does not increase as fast as
real-time that may be developed, and are worthy of investigation.

For example, consider a protocol in which the value chosen for S.i.n is always the smallest value possible
that satisfies the safety predicate. In this case, if a flow has not generated packets for a certain amount of time,
the flow will try to reclaim the bandwidth it has lost during its period of inactivity. However, in doing so it will
not infringe upon the basic deadline guarantees of other flows.

()J.A. CobbrComputer Networks 31 1999 2341–2360 2359

If we assume that the source of the flow has paid money for its reserved bandwidth, it is sensible to assume
that the source would like, if possible, to recapture some of the bandwidth it did not use during a period of

w xidleness. Other protocols, such as 2,4,14,16,20 , distribute the unused bandwidth among the flows which still
have packets to be forwarded, and do not allow a source that has been idle for some time to recuperate its
unused bandwidth. Which of these two choices is more appropriate will depend on the nature of the applications
supported. For example, in mobile computing, a user may become disconnected from the network due to the
unreliable wireless link, not because the user is idle. In this case, the user may want to recuperate as much of the
bandwidth it failed to use while disconnected, without violating the deadlines of other users.

Ž .Computing the minimum value of S.i.n that satisfies the safety predicate takes O N time. It would be
Ž Ž ..interesting to obtain protocols which approximate this value with lower complexity, such as O log N time, in

w x Ž Ž ..the same way that approximations to Weighted Fair Queuing 2,16 compute the value of S.i.n in O log N or
Ž . Ž .O 1 time rather than O N .
We have so far consider only the case of rate-proportional delay. It would be interesting to determine if a

similar family of protocols may be obtained that have more flexible delay assignments. That is, the contribution
to the end-to-end packet delay from each hop in the path to the destination is not forced to be LrR. This is

w xknown as rate-independent delay. Examples of protocols with rate independent delay include 5,7,8 .

References

w x1 J. Cobb, M. Gouda, Flow theory, IEEErACM Transactions on Communications, October 1997.
w x2 J. Cobb, M. Gouda, A. El-Nahas, Time-Shift Scheduling: fair scheduling of flows in high-speed networks, Proc. IEEE Int. Conf. on

Network Protocols, 1996. Also, in IEEErACM Transactions on Networking, June 1998.
w x3 J. Cobb, Flow theory and the analysis of timed-flow protocols, Ph.D. Thesis, The University of Texas at Austin, May 1996.
w x Ž .4 R.L. Cruz, A calculus for network delay. Part I: Network elements in isolation, IEEE Transactions on Information Theory 37 1

Ž .1991 114–131.
w x5 N. Figueira, J. Pasquale, Leave-in-time: a new service discipline for real-time communications in a packet-switching data network,

Proceedings of the 1995 SIGCOMM Conference, p. 207.
w x6 N.R. Figueira, J. Pasquale, An upper bound on delay for the virtual clock service discipline, IEEErACM Transactions on Networking

Ž . Ž .3 4 1995 .
w x7 N. Figueira, J. Pasquale, A schedulability condition for deadline-ordered service disciplines, IEEErACM Transactions on Networking

Ž . Ž .5 2 1997 .
w x8 D. Ferrari, D. Verma, A scheme for real-time channel establishment in wide-area networks, IEEE Journal of Selected Areas in

Ž . Ž .Communication 8 4 1990 368–379.
w x Ž . Ž .9 D. Gall, A video compression standard for multimedia applications, Communications of the ACM 34 4 1991 .

w x10 P. Goyal, S. Lam, H. Vin, Determining end-to-end delay bounds in heterogeneous networks, NOSSDAV Workshop, 1995.
w x Ž .11 M. Gouda, Protocol verification made simple, Computer Networks and ISDN Systems 25 1993 969–980.
w x12 M. Gouda, The Elements of Network Protocols, textbook in preparation.
w x13 S. Keshav, A control theoretic approach to flow control, Proceedings of the 1991 ACM SIGCOMM Conference.
w x14 A.K.J. Parekh, R. Gallager, A generalized processor sharing approach to flow control in integrated services networks: the single node

Ž . Ž .case, IEEErACM Transactions on Networking 1 3 1993 344–357.
w x15 D. Stiliadis, A. Varma, Rate proportional servers: a design methodology for fair queuing algorithms, University of California at Santa

Cruz, Computer Science Department Technical Report No. UCSC-CRL-95-58.
w x16 D. Stiliadis, A. Varma, Design and analysis of frame-based fair queuing: a new traffic scheduling algorithm for packet switched

network, ACM SIGMETRICS, 1996.
w x17 G. Xie, S. Lam, Delay guarantee of virtual clock server, IEEErACM Transactions on Networking, December 1995.
w x Ž .18 H. Zhang, Service disciplines for guaranteed performance service in packet-switching networks, Proceedings of the IEEE 83 10

Ž .1995 .
w x Ž .19 L. Zhang, Virtual clock: a new traffic control algorithm for packet-switched networks, ACM Transactions on Computer Systems 9 2

Ž .1991 .
w x20 H. Zhang, S. Keshav, Comparison of rate-based service disciplines, ACM SIGCOMM Conference, 1991.

()J.A. CobbrComputer Networks 31 1999 2341–23602360

Jorge Cobb is currently an Assistant Professor in the Department of Computer Science at the University of Texas
Ž .at Dallas. He received the B.S. in Computer Science with highest honors from The University of Texas at El

Paso in 1987. He also received an M.A. in Computer Science and a Ph.D. in Computer Science from The
University of Texas at Austin. While in the Ph.D. program at The Universtiy of Texas at Austin, he was awarded
the AT&T Ph.D. Scholarship. He has been a member of the technical program committee of the IEEE
International Conference of Network Protocols in the years of 1996 through 1999. His main research area is
computer networking, with an emphasis on scheduling for quality of service guarantees and mobile computing.

