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Abstract—Solar power forecasting improvements are mainly
evaluated by statistical and economic metrics, and the practi-
cal reliability benefits of these forecasting enhancements have
not yet been well quantified. This paper aims to quantify relia-
bility benefits from solar power forecasting improvements. To
systematically analyze the relationship between solar power
forecasting improvements and reliability performance in power
system operations, an expected synthetic reliability (ESR) met-
ric is proposed to integrate multiple state-of-the-art independent
reliability metrics. The absolute value and standard deviation of
area control errors (ACEs), and the North American Electric
Reliability Corporation Control Performance Standard 2 (CPS2)
score are calculated through a multi-timescale scheduling simu-
lation, including the day-ahead unit commitment, real-time unit
commitment, real-time economic dispatch, and automatic gen-
eration control sub-models. The absolute ACE in energy, CPS2
violations, CPS2 score, and standard deviation of the raw ACE
are all calculated and combined as the ESR metric. Numerical
simulations show that the reliability benefits of multi-timescale
power system operations are significantly increased due to the
improved solar power forecasts.

Index Terms—Area control error, multi-timescale power
system operation, photovoltaic, reliability benefit, forecast.

NOMENCLATURE

Acronyms (Alphabetically)

AACEE Absolute area control error in energy.
ACE Area control error.
AGC Automatic generation control.
BSF Baseline solar forecasting.
CPS2 Control Performance Standard 2.
DA, HA Day-ahead, hour-ahead.
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DU Day-ahead security-costrained unit commit-
ment.

ESR Expected synthetic reliability.
FESTIV Flexible Energy Scheduling Tool for

Integration of Variable Generation.
MILP Mixed-integer linear programming.
RE Real-time security-constrained economic dis-

patch.
RU Real-time security-constrained unit commit-

ment.
TSF Target solar forecasting.

Indices/Sets (Alphabetically)

b, NB Index and set for buses, b = 1, 2, . . . , NB.
i, NI Index and set for thermal units, i =

1, 2, . . . , NI.
r, NR Index and set for reserve types. r = 1, spin-

ning reserve; r = 2, non-spinning reserve; r =
3, regulation reserve; and r = 4, replacement
reserve.

j,J Index for forecasting improvement percentage
and the set of combination (xj%, yj%).

s, NS Index and set for solar units, b =
1, 2, . . . , NB.

t(·) Index for time periods. tDU = 1, 2, . . . , TDU

in DU model; tRU = 1, 2, . . . , TRU in RU
model, tRU ∈ tDU; tRE = 1, 2, . . . , TRE in RE
model, tRE ∈ tRU; and tAGC = 1, 2, . . . , TAGC

in AGC model, tAGC ∈ tRE.

Parameters (Alphabetically)

dt(·)
b Expected load of bus b at time t(·), in MW.

et
B, et

T,j Forecasting error of BSF and TSF with the jth
forecasting improvement at time t.

pt
act, pt

B, pt
CS Actual, baseline, clear-sky solar power at

time t.
pt(·)

s Solar power of unit s at time t(·), in MW.
tAGC Interval in AGC model.
ACECPS2 Sum of instantaneous ACE until the 10-

minute CPS2 interval ends, in MW-10min.
Ct(·)

i Operation cost of thermal unit i at time t(·).
ED

B , ED
T,j Day-ahead forecast error time series of BSF

and the jth possible TSF.
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EH
B , EH

T,j Hour-ahead forecast error time series of BSF
and the jth possible TSF.

ENSt(·) Energy not served at time t(·), in MWh.
HDU Scheduling horizon of the DU model.
IRr

t(·) Insufficient reserve r at time t(·), in MWh.
LC A sufficient large constant.
LStAGC

Losses on the transmission lines at time tAGC.
Pmax

i , Pmin
i Maximum/minimum capacity of unit i,

in MW.
RRr

t(·) Reserve r requirements of thermal units at
time t(·), in MW.

Rup
i , Rdn

i Maximum up/down ramping rate of thermal
unit i, in MW/min.

St(·)
i Start-up cost of thermal unit i at time t(·), in $.

SPIt Solar power index at time t.
T(·) Number of time periods. TDU = 24 with 1-

hour time resolution in DU model; TRU = 4
with 15-minute time resolution in RU model;
and TRE = 3 with 5-minute time resolution
in RE model.

Ti,on, Ti,off Minimum ON/OFF time limits of unit i.
TCPS2 Time interval of CPS2, 10 minutes.
VOIRr Value of insufficient reserve r ($/MWh).
VOLL Value of loss load ($/MWh).
Xt(·)

i,on, Xt(·)
i,off ON/OFF time of thermal unit i at time t(·).

ξ , ξ Sets of ramping and non-ramping time
intervals.

γsp, γns Bidding price of spinning and non-spinning
reserves of thermal generators, in $/MWh.

γ r
i,t(·) Bidding price of reserve r of thermal unit i at

time t(·), in $/MWh.
D Vector of expected load or demand.
KP, KS,

KD

Bus-thermal unit, bus-solar unit, and bus-load
incidence matrices.

P, PS Vector of thermal dispatch and PV generation.
PLmax Vector of power limit for transmission lines.
SF Shift factor matrix.

Variables (Alphabetically)

pt(·)
i Dispatch of thermal unit i at time t(·), in MW.

ut(·)
i 1, unit i scheduled at time t(·); and 0, other-

wise.
xj%, yj% jth forecasting improvement percentage by

which the forecast errors of no-ramping and
ramping time series are uniformly decreased.

Rr
i,t(·) Schedule of reserve r of thermal unit i at time

t(·), in MW.

I. INTRODUCTION

STEADILY rising solar power penetrations in power
system operations are now catching the attention of

independent system operators (ISOs). The variable and
uncertain characteristics of solar power can have profound
impacts on the economics and reliability of power system
operations [1].

Currently, there are various solar power forecasting meth-
ods proposed to improve forecasting accuracy. These methods
can be broadly divided into two categories. The first are
physical methods that model the physics of the atmosphere
to obtain accurate irradiance forecasts [2]. The second are
statistical methods that identify relationships based on his-
torical data to predict the future behavior of irradiance or
power. These are considered to be data-driven approaches and
are commonly divided into regressive methods and machine
learning methods. Moreover, the forecasting methods can
also be classified into direct and indirect forecasting models,
i.e., directly calculating the solar power generation using the
physical or statistical method, or first predicting solar irradi-
ation and then obtaining the solar power generation using an
irradiance-to-power model.

To quantify the benefits of various solar power forecast-
ing methods, there are different types of metrics that are
generally composed of statistical, economic, and reliabil-
ity metrics. Statistical metrics are the most widely used
metrics [3]. Economic metrics have recently been used
to assess the benefits of the improved solar forecasts.
Zhang et al. [4] suggested that improving solar forecasting
accuracy could decrease the amount of additional operating
reserves. Martinez-Anido et al. [5] found that solar power
forecasting improvements could reduce the annual operational
electricity costs with annual economic values. However, few
studies considered the power system reliability benefits of
solar power forecasting improvements. Though Lew et al. [6]
pointed out that solar power forecasting improvements could
affect the reliable balance between supply and demand, it
is still challenging to quantify these reliability benefits. This
is because the reliability standards, defined by the North
American Electric Reliability Corporation (NERC) [7], are
estimated via the area control error (ACE), which is very
strongly influenced by the performance of the automatic gen-
eration control (AGC). Yet few optimization models (i.e.,
unit commitment or economic dispatch) consider the impacts
of AGC. Therefore, the reliability benefits from solar power
forecasting improvements have not been well studied in the
literature.

The contribution of this work is to propose a methodol-
ogy for quantifying reliability benefits from improved solar
power forecasts. Though a number of papers have focused on
improving the accuracy of solar power forecasts, the impacts
of the improved solar power forecasts on power system relia-
bility are still not well studied. Based on state-of-the-art solar
power forecasts and a multi-timescale scheduling model, this
paper aims to bridge the gap by measuring and analyzing the
reliability benefits from solar power forecasting improvements,
through a large number of scenarios that cover multiple solar
forecasting methods at different locations, time ahead fore-
casts, and solar penetration levels. Though several individual
reliability metrics have been used in the literature, the trade-
off of different reliability metrics is still not well understood.
A multi-objective optimization could better explore the trade-
off of these reliability metrics (or together with economic
metrics). An alternative is to integrate these metrics and uti-
lize a single metric to represent the reliability performance of
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power system operations. The weights of individual reliability
metrics could be adaptively chosen by considering the sta-
tus and risk preferences of the particular balancing authority.
In this paper, an expected synthetic reliability (ESR) metric
is proposed to integrate individual reliability metrics that are
widely used in the literature, including the absolute area con-
trol error in energy (AACEE), control performance standard 2
(CPS2) violations, CPS2 score, and standard deviation of the
raw ACE.

The organization of this paper is as follows. In Section II,
three solar power forecasting improvements are briefly intro-
duced. In Section III, a multi-timescale power system oper-
ation model and reliability metrics are presented. The case
studies and results performed on the IEEE 118-bus system are
described in Section IV. Concluding remarks and future work
are provided in Section V.

II. SOLAR POWER FORECASTING IMPROVEMENTS:
BASELINE, TARGET, AND WATT-SUN

Most existing renewable integration studies that attempt to
gauge the impact of forecasts assume a uniform forecast-
ing improvement using a percentage-based methodology (e.g.,
25%, 50%, 75%, and 100% [8], [9]). However, these assump-
tions are simplifications that ignore the fact that improvements
may also have large reliability impacts at certain specific times
in power system operations. In practice, forecasting improve-
ments (no matter the method) do not tend to create uniform
improvements, but rather improvements during certain situ-
ations. In this paper, the actual measured solar power data
is used as the forecast in the perfect case. Three practical
forecasting methodologies are applied to obtain solar power
forecasts for analyzing the possible enhancement of reliability
performance. These methodologies consist of baseline, target,
and Watt-Sun [10], [11] solar power forecasts that are briefly
described as follows.

As part of the project work performed under the SunShot
Initiative’s Improving the Accuracy of Solar Forecasting pro-
gram, a system for improving solar forecasting, namely
Watt-Sun, has been developed by this team [10], [11]. To
truly measure the improvements that any new solar forecasting
methods provide, the baseline and target solar forecasts at dif-
ferent spatial and temporal scales were also developed in close
collaboration with utility and independent system operator
partners. Baseline and target solar forecasts mainly focus on
quantifying the difference between ramping and non-ramping
error periods [12].

A. Baseline Solar Forecasting (BSF)

1) Persistence of Cloudiness Approach for 1-Hour-Ahead
(1HA) and 4-Hour-Ahead (4HA) BSF: For 1HA and 4HA
forecasts, a persistence of cloudiness approach is adopted due
to its superiority in the shorter forecasting period. Solar power
is predicted by the power output in clear-sky and the cur-
rent measured solar power generation, as shown in Fig. 1.

Fig. 1. Persistence of cloudiness approach for BSF [6].

The expected power change in clear-sky is calculated by
multiplying the current solar power index (SPIt) and adding
the estimated forecast error, which is the power difference
between time t and time t + 1 [6]. Thus, the forecasted solar
power can be formulated as:

pt+1
B = pt

act + SPIt ×
(

pt+1
CS − pt

CS

)
. (1)

2) 1-Day-Ahead (1DA) and 2-Day-Ahead (2DA) Numerical
Weather Prediction (NWP) Model Approach: For 1DA and
2DA forecasts, a model approach is combined with a streamer
radiative transfer model (RTM) and an irradiance-to-power
model. This method is based on a state-of-the-art NWP
model, specifically the North American Mesoscale Forecast
System (NAM) [13]. The global horizontal irradiance (GHI)
and the direct normal irradiance (DNI) are first calcu-
lated by the streamer RTM. Then the California Energy
Commission (CEC) model implemented in PV-Lib [14] is used
to convert GHI and DNI to AC solar power.

B. Target Solar Forecasting (TSF)

Based on the aforementioned BSF values, the TSF is
derived by the non-ramping and ramping periods in BSF.
These ramping periods are detected by the swinging door
algorithm [15], [16]. For the non-ramping period, uniform
forecasting improvements by x% are applied to the BSF val-
ues. For the ramping period, forecasting improvements by y%
are applied to the BSF values. The objective of determining
TSF is to reduce reserves to a level that is both feasible and
economically impactful based on the consensus of balancing
authorities. A spinning/non-spinning reserve-based model is
used to calculate TSF values. The forecasting error of BSF at
time t is defined as et

B and formulated as:

et
B = pt

B − pt
act (2)

Then, the forecasting error of TSF at time t is defined as
et

T,j and formulated as:

et
T,j = (

pt
B − pt

act

)
t∈ξ︸ ︷︷ ︸

Non−ramping

×xj% + (
pt

B − pt
act

)
t∈ξ︸ ︷︷ ︸

Ramping

×yj% (3)
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Fig. 2. Schematic for calculating reliability metrics by using multi-timescale scheduling models.

Based on (2) and (3), the objective function for 1HA and
4HA solar power forecasts is formulated as:

min
et

T,j∈EH
T,j ,et

B∈EH
B ,j∈J

∣∣∣θ95%

(
et

T,j

)
− ρθ95%

(
et

B

)∣∣∣
︸ ︷︷ ︸

Spinning Reserve

γsp (4)

As the total number of forecasting improvement percentage
pairs (x%, y%) approaches infinity, the error would approach
zero. The combination (xj%, yj%) is generated by a widely
used method in design of experiments, i.e., Sobol’s quasi-
random sequence generator [17]. For 1DA and 2DA solar
power forecasting, the objective function is formulated as:

min
et

T,j∈ED
T,j,e

t
B∈ED

B ,j∈J

∣∣∣∣∣∣∣∣

[
θ70%

(
et

T,j

)
− ρθ70%

(
et

B

)]
︸ ︷︷ ︸

Spinning Reserve

γsp

+
[
θ95%

(
et

T,j

)
− θ70%

(
et

T,j

)]
γns

︸ ︷︷ ︸
Non−spinning Reserve of TSF

− ρ
[
θ95%

(
et

B

)− θ70%
(
et

B

)]
γns︸ ︷︷ ︸

Non−spinning Reserve of BSF

∣∣∣∣∣∣∣
(5)

where ρ is the target reserve cost requirement percentage
of the baseline reserve cost. In this paper, a reduction of
25% in reserve levels is assumed, which is based on a
project partner utility consensus. Thus, ρ is set as 75%.
This advanced reserve calculation algorithm was originally

developed in the Western Wind and Solar Integration Study
Phase 2 (WWSIS-2) study [6]. The spinning reserve for the
DA forecasting is defined as the 70% confidence interval
(θ70%) of the 1DA (or 2DA) solar power forecast errors. The
non-spinning reserve is defined by the difference between
the 95% confidence interval (θ95%) and the 70% confidence
interval (θ70%) of the 1DA (or 2DA) solar power forecast
errors [18]. The objective of (5) is to minimize the difference
between the target reserve cost and the 75% baseline reserve
costs. Ideally, the objective function value should be equal to 0.
The target spinning, baseline spinning, target non-spinning,
and baseline non-spinning reserve costs are expressed as:
θ70%(et

T,j)γsp, θ70%(et
B)γsp, [θ95%(et

T,j) − θ70%(et
T,j)]γns, and

[θ95%(et
B) − θ70%(et

B)]γns, respectively. The parameters of γsp
and γns represent bidding prices of spinning and non-spinning
reserves of thermal generators in $/MWh, respectively.

C. Watt-Sun Solar Power Forecasting – A Multi-Expert
Machine Learning Method

Watt-sun solar forecasting is based on a situation-dependent
multi-expert machine learning method, which combines the
linear model, random forest, and support vector machine
methods to enhance the forecast accuracy. A dozen single
machine-learning models are set-up and ingest the NWP
models for the situation dependent learning. The algorithm
that provides the best accuracy for the last two days is
selected for future solar power forecasts. In comparison to the
Dynamically Integrated ForeCast (DICast) method developed
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Fig. 3. Timeframes of FESTIV with four sub-models.

by the National Center for Atmospheric Research (NCAR),
the main difference of the Watt-sun system is that it learns
on historical forecasts [19]. Numerical results have shown a
30% improvement in solar irradiance/power forecast accuracy
compared to forecasts based on the best individual method,
and 10% improvement compared to model forecasts processed
by machine learning methods without situation categorization.
Detailed information about the Watt-sun forecast method can
be found in [10] and [11].

III. DESCRIPTIONS OF MULTI-TIMESCALE

SCHEDULING MODELS AND METRICS

A. Multi-Timescale Scheduling Models

To study the reliability impacts of solar power forecasts
on multi-timescale power system operations, we use an in-
house tool, the Flexible Energy Scheduling Tool for Integration
of Variable Generation model (FESTIV) [20], [21]. FESTIV
is a multi-timescale steady-state power system operations
simulation tool and uses several scheduling sub-models, as
shown in Fig. 2. Four power system operation sub-models are
included in FESTIV, including day-ahead security-constrained
unit commitment (DU), real-time security-constrained unit
commitment (RU), real-time security-constrained economic
dispatch (RE), and AGC model. The solar power forecasts are
updated in each scheduling sub-model during the simulation.
Fig. 3 shows how the four sub-models are coupled at differ-
ent timeframes. In this figure, t represents the time between
updates in each scheduling sub-model, I represents the interval
length, and H represents the scheduling horizon. For the DU
sub-model, the interval resolution is IDU (1 h). DU is simu-
lated every tDU (24 h) which is usually updated once per day
in the current system operation. Thus, the solar power fore-
cast in DU is also updated once per day. The optimization
horizon (HDU) in DU is 24 hours (one day). The RU sub-
model is updated every tRU (15 min) at an interval resolution
of IRU (15 min) and an optimization horizon of HRU (45 min).
Thus, the solar power forecast in RU is also updated every tRU
(15 min). The RE sub-model is updated every tRE (5 min)
at an interval resolution of IRE (5 min) and an optimiza-
tion horizon of HRE (10 min). Thus, the solar power forecast
in RE is also updated every tRE (5 min). The AGC sub-
model is updated every tAGC (6 s). HAGC and IAGC are equal
to tAGC.

1) Objective Functions: The DU sub-model allows for vari-
able startup costs that depend on the offline time of the unit
starting up. A piecewise linear approximation of the cost
curves of generators is utilized to retain a mixed-integer lin-
ear programming (MILP) formulation. The DU sub-model is
run for a day-ahead time horizon (such as 24-hour commit-
ment) and makes the initial commitment status and start-up
decisions for all generators. With the initial status as input,
the RU sub-model is repeated throughout the day to contin-
uously update the commitment status of all generators. Both
the DU and RU objectives are to minimize the total power
system production costs including the operation costs, start-up
costs, conventional reserve costs, loss load costs, and insuf-
ficient reserve costs. The objective function of DU and RU
sub-models is given in (6). The RE sub-model aims to min-
imize the production costs that consist of the same costs as
above without the start-up costs. The objective function of the
RE sub-model is stated in (7). Note that the binary variables
ut

i and ut−1
i have been determined in the RU sub-model and

are fixed as constant in the RE sub-model. Thus, the start-up
costs are not considered in the objective function of the RE
sub-model.

2) Equality and Inequality Constraints: The objective func-
tions comply with a number of prevailing constraints, includ-
ing the system load balance (8), DC transmission capacity
limits (9), minimum ON/OFF time limits (10)–(11), max/min
active power limits of thermal units (12)–(13), up- and down-
ramping rate limits (14)–(15), up- and down-ramping capacity
limits (16)–(17), and all reserves’ requirements (18) [including
the spinning (r = 1), non-spinning (r = 2), regulation (r = 3),
and replacement (r = 4) reserves]. The regulation reserve is
supplied in both the up and down operating directions with
the same attributes whereas the spinning, non-spinning, and
replacement reserves are supplied only in the up operating
direction. Prevailing RU and RE models share similar non-
integer constraints. The binary variable ut(·)

i is solved in the
DU and RU models and used as a constant in the RE model.

Specific descriptions of equality and inequality constraints
are provided as follows. Constraint (8) enforces the sum
of total thermal generation and total solar power genera-
tion to strictly equal the total expected load at any time
interval. Constraint (9) ensure that the power flowing on
transmission lines does not exceed the maximum transmis-
sion capacity. Constraints (10)–(11) enforce the feasibility of
thermal generators in terms of minimum ON/OFF time lim-
its. Constraints (12)–(17) are all unit specific for thermal
generators. Constraint (12) ensures that the power gener-
ation and its scheduled reserves are below the maximum
capacity. Constraint (13) ensures that the power generation
and its scheduled down-regulation reserve are not below the
minimum capacity. Constraints (14)–(15) ensures that the
power generation difference between successive time intervals
is below the maximum up- and down-ramping rate limits.
Constraint (16) ensures that the scheduled upward reserves are
below the maximum up-ramping rate limit. Constraint (17)
ensures that the scheduled downward reserves (regulation
reserves) are below the maximum down-ramping rate limit.
Constraint (18) ensures that the total amount of the scheduled
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reserves provided by all the thermal units meets the rth reserve
requirement.

min
T(·)∑

t(·)=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

VOLL × ENSt(·)︸ ︷︷ ︸
Loss Load Cost

+
NR∑
r=1

VOIRr × IRr
t(·)

︸ ︷︷ ︸
Insufficent Reserve Cost

+
NI∑

i=1

⎡
⎢⎢⎢⎢⎣

Ct(·)
i

(
pt(·)

i ,ut(·)
i

)
+St(·)

i

(
ut(·)

i ,ut(·)−1
i

)
︸ ︷︷ ︸

Operation and Start−up Cost

+
NR∑
r=1

γ r
i,t(·)R

r
i,t(·)

︸ ︷︷ ︸
Reserve Cost

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(6)

min
TRE∑

tRE=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

NI∑
i=1

⎡
⎢⎢⎢⎢⎣

CtRE

i

(
ptRE

i

)
︸ ︷︷ ︸
Operation Cost

+
NR∑
r=1

γ r
i,tRE Rr

i,tRE

︸ ︷︷ ︸
Reserve Cost

⎤
⎥⎥⎥⎥⎦

+ VOLL × ENStRE︸ ︷︷ ︸
Loss Load Cost

+
NR∑
r=1

VOIRr × IRr
tRE

︸ ︷︷ ︸
Insufficent Reserve Cost

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7)
NI∑

i=1

pt(·)
i +

NS∑
s=1

pt(·)
s =

NB∑
b=1

dt(·)
b (8)

−PLmax ≤ SF × [KP × P + KS × PS

− KD × D] ≤ PLmax (9)[
Xt(·)−1

i,on − Ti,on

]
·
[
ut(·)−1

i − ut(·)
i

]
≥ 0 (10)

[
Xt(·)−1

i,off − Ti,off

]
·
[
ut(·)

i − ut(·)−1
i

]
≥ 0 (11)

pt(·)
i +

NR∑
r=1

Rr
i,t(·) ≤ Pmax

i × ut(·)
i , ∀i,∀r,∀t(·) (12)

pt(·)
i − R3

i,t(·) ≥ Pmin
i × ut(·)

i , ∀i,∀t(·) (13)

pt(·)
i − pt(·)−1

i ≤ Rup
i × �t(·) + LC ×

(
2 − ut(·)

i − ut(·)−1
i

)

(14)

pt(·)−1
i − pt(·)

i ≤ Rdn
i × �t(·) + LC ×

(
2 − ut(·)

i − ut(·)−1
i

)

(15)
NR∑
r=1

Rr
i,t(·) ≤ Rup

i × �t(·), ∀i,∀r,∀t(·) (16)

R3
i,t(·) ≤ Rdn

i × �t(·), ∀i,∀t(·) (17)

NI∑
i=1

Rr
i,t(·) ≥ RRr

t(·) , ∀i,∀r,∀t(·). (18)

3) Automatic Generation Control Model: The AGC model
is a rule-based algorithm that is the final line of scheduling
defense to control resources to reduce the imbalance error [22].
Instead of optimizing the scheduling of units based on costs,
the AGC model utilizes all units that are providing regulation
reserve as scheduled by the RE model to assist in correcting

the area control error (ACE). AGC schedules the ACE cor-
rection via the proportion of the units regulating schedules
and ramp rates provided by the last RE model. As seen in
Fig. 2, AGC uses the dispatch and reserve schedules from
the RE model as its input and provides AGC schedules and
realized generation as output. The realized generation output
is determined by the prior AGC schedule and the resources
behavior rate. The reliability benefits are calculated with the
AGC model as a true steady-state simulation.

B. Reliability Metrics

Area Control Error (ACE) is the difference between the sum
of total generation and the total load at any given time period.
It is the main driver of all imbalance metrics and formulated by
the smoothed AGC mode in actual operations [23] as shown
below:

ACEt,sm = K1ACEt,raw + K2

Tn

∫ t

t−Tn

ACEx,rawdx (19)

ACEt,raw =
NI∑

i=1

ptAGC

i +
NS∑
s=1

ptAGC

s −
NB∑

b=1

dtAGC

b − LStAGC
(20)

K1 = TCPS2 − mod(t, TCPS2)

TCPS2
(21)

K2 = mod(t, TCPS2)

TCPS2
(22)

Tn = mod(t, TCPS2) (23)

where K1 and K2 are parameters used to produce the low
frequency ACE signal by passing the raw ACE signal through
a PI filter. K1 and K2 are selected as 1 and 2, respectively. Tn

is the integral length of the PI filter to smoothen the raw ACE
over the past 3 minutes, i.e., Tn=3×60=180 [23].

Absolute area control error in energy (AACEE) is the abso-
lute value of ACE at every tAGC interval, summed over the
study period in units of MWh. This gives an indication of the
total imbalance occurring for the study period in either direc-
tion. AACEE is a function of the time resolution of the RE
model (IRE), the time horizon of the RE model (HRE), the
amount of PV on the system (PPV), the load (PLOAD), and the
amount of total ramp available for managing the variability
(PRAMP) [23], given by:

AACEE = α1IRE + α2HRE + α3PPV

+ α4PLOAD + α5PRAMP (24)

[α1, α2, α3, α4, α5] =
[
∂AACEE

∂IRE
,
∂AACEE

∂HRE
,

∂AACEE

∂PPV
,
∂AACEE

∂PLOAD
,
∂AACEE

∂PRAMP

]
(25)

where α(·) is a sensitivity coefficient and calculated by the
standard deviation of output changes at different timescales.

Control performance standard 2 (CPS2) is a reliability
standard (defined by the North American Electric Reliability
Corporation (NERC) [7]) that measures the amount of intervals
where the absolute value of ACE exceeds a predefined thresh-
old. The reliability indicator ACECPS2 measures the sum of
instantaneous ACE until the 10-minute CPS2 interval (L10)
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ends for assessing the CPS2score. The unit of ACECPS2 is
MW-10min and the τ th value of ACECPS2 is given by:

ACECPS2,τ =
τ×TCPS2×60−tAGC∑
t=(τ−1)×TCPS2×60

ACEt,raw× tAGC

TCPS2 × 60
(26)

where τ is the time period index of the ACECPS2 value.
CPS2score measures the percentage of intervals without vio-

lations. A violation occurs when an interval exceeds the
50 MW-10 min ACE limit in a 10-minute CPS2 interval,
given by:

CPS2score =
(

1 − NV

NT − NU

)
× 100% (27)

where NV, NT, and NU represent the number of violation
periods, total periods, and unavailable periods, respectively.
CPS2score gives an indication of how often the system encoun-
ters severe imbalance errors. Normally, the CPS2score is greater
than or equal to 90%. The number of violation periods NV is
calculated by:

NV =
∑

τ∈HDU

fτ (28)

where fτ is a flag variable defined to indicate whether the
ACECPS2,τ value of an interval exceeds the ACE limit (i.e.,
50 MW-10 min in this paper) in a CPS2 interval (10 minutes
as defined by NERC). If one violation occurs, fτ equals 1;
otherwise, fτ equals 0. The mathematical formulation of fτ is
given by:

fτ =
{

1, if ACECPS2,τ > 50
0, if ACECPS2,τ ≤ 50

(29)

The σACE metric is the standard deviation of raw ACE val-
ues and gives an indication of the distribution of ACE values
for the study period. Generally, smaller AACEE, σACE, CPS2
violation values, and larger CPS2 scores indicate better reli-
ability performance in power system operations. Hence, an
integrated metric of the expected synthetic reliability (ESR)
is proposed by normalizing the reliability metrics, and is
given by:

ESR = λ · DIAG · Rel

= λ1CPS2N
score − λ2AACEEN − λ3σ

N
ACE − λ4N

N
V (30)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ = [λ1 λ2 λ3 λ4]

DIAG =

⎡
⎢⎢⎣

1 0 0 0
0 − 1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦

Rel = [
CPS2N

score AACEEN σN
ACE NN

V

]T
NN

V = (
NV − μNV

)
/σNV

σN
ACE = (

σACE − μσACE

)
/σσACE

AACEEN = (AACEE − μAACEE)/σAACEE

CPS2N
score = (

CPS2score−μCPS2score

)
/σCPS2score

(31)

where μ(·) and σ(·) represent the mean value and standard
deviation of each of the reliability metrics, respectively. Rel is
the reliability index vector. In this paper, four reliability met-
rics widely used in the literature are deployed as the elements
of the reliability index vector, i.e., CPS2score, AACEE, σACE,

Fig. 4. The flow chart for quantifying and analyzing reliability benefits from
improved solar power forecasts.

and NV. Note that multi-objective optimization could also be
leveraged to find the Pareto front of these four reliability
metrics. This reliability index vector can also allow more reli-
ability metrics to be added. This paper does not aim to develop
new reliability metrics, but rather to examine the trade-off of
an integrated reliability metric instead of an individual met-
ric value. λ is the weight coefficient vector of the reliability
index vector. The sum of weight coefficients must equal unity.
The proposed ESR metric is flexible, which allows balancing
authorities naturally place more weight on certain metrics than
other balancing authorities, according to their systems status
and particular risk preferences, such as renewable penetrations,
peak load, flexibility, etc. Here in this paper we have equally
weighted the four metrics (i.e., the weight coefficient is 1/4),
but each user or balancing authority can choose weightings
that match their particular risk preferences. DIAG is the diag-
onal matrix of the attribute of reliability metrics. If a larger
reliability metric indicates a better reliability performance, this
metric is defined as a positive index. If a smaller reliability
metric indicates a better reliability performance, this metric
is defined as a negative index. If the ith reliability metric is
a positive index, the element diagii equals 1. If the ith reli-
ability metric is a negative index, the element diagii equals
-1. In this case, CPS2score is a positive index and diag11 = 1.
The other three reliability metrics are negative indexes and
diag22 = diag33 = diag44 = −1.

C. Procedure for Quantifying and Analyzing
Reliability Benefits

The flow chart for quantifying and analyzing reliability ben-
efits from improved solar power forecasts is shown in Fig. 4,
which consists of three major steps:

• Step 1: Prepare the datasets of measured solar power
and different solar power forecasts (as described in
Section II).

• Step 2: The datasets are input into the multi-timescale
scheduling model to calculate different individual relia-
bility metrics and the integrated ESR metric (as described
in Sections III-A and III-B).
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Fig. 5. Comparison of ACE in the baseline, target, Watt-sun, and perfect forecast cases at 1HA forecast with a 5.08% solar penetration.

• Step 3: The impacts of solar power forecasting improve-
ments on the reliability of power system operations are
analyzed (as described in the following Section IV).

IV. CASE STUDIES AND RESULTS

Numerical simulations are performed by using
multi-timescale scheduling models based on FESTIV
and the representative IEEE 118-bus system [24]. This system
has 54 thermal units, 186 branches, and 91 load buses. The
parameters of generators, transmission network, and load
profiles are given in [25] and [26] with the same timeframe.
All tests are carried out using the General Algebraic Modeling
System (GAMS) Distribution 24.7 [27], and solved using
ILOG CPLEX 12.6 [28] on two Intel-e5-2603 1.6-GHz
workstations with 32 GB of RAM memory. We simulate 400
different scenarios by using five solar power penetration levels
(5.08%, 10.16%, 15.24%, 20.32%, and 25.40%), five locations
(two utilities: Green Mountain Power (GMP) and Tucson
Electric Power (TEP); two ISOs: ISO-New England (ISO-NE)
and California Independent System Operator (CAISO); and
one individual solar plant: Smyrna), four time ahead forecasts
(2DA, 1DA, 4HA, and 1HA), and four solar forecasting meth-
ods (baseline, target, perfect, and Watt-sun). Representative
findings are statistically analyzed and discussed as follows.

A. Overview of ACE Profiles

The ACE profiles in the baseline, target, Watt-sun, and
perfect cases at the 1HA forecast for TEP with the 5.08%

penetration level are compared in Fig. 5. It is seen that the
ACE magnitudes in the target, Watt-sun, and perfect cases
are significantly smaller than in the baseline case. The perfect
case shows much more smooth and flat profiles for both raw
ACE and CPS2 ACE. Spikes of raw ACE and CPS2 ACE are
gradually reduced by the solar power forecasting improvement
in multi-timescale power system operations. This is because
solar power forecasting improvement can help accurately com-
mit thermal units. Consequently, the reliability performance of
the multi-timescale power system operations is improved.

As shown in Fig. 5, the difference of ACE during nighttime
hours in the four cases is negligible. The variation of ACE
is very small during nighttime hours. However, the difference
of ACE is relatively more significant in the four cases during
daylight hours. Table II compares the average and standard
deviation of ACE values during daylight and nighttime hours.
Due to the variation of solar power during daylight hours, both
the average and standard deviation of ACE values are larger
than those during nighttime hours. This is because solar power
is zero during nighttime hours, and the slight variation of
ACE values is caused by the imbalance between conventional
generation and load.

Another interesting finding is that the variation of ACE
in weekend is slightly higher than that in weekdays. This
is because the average load demand in weekend (1.12 ×
105 MWh) is lower than that in weekdays (1.34×105 MWh).
The solar power variation on the weekends impacts the imbal-
ance between power generation and load demand relatively
more distinctly, comparing to the solar power variation
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TABLE I
OVERALL RESULTS OF AACEE UNDER THREE SOLAR POWER PENETRATION LEVELS

TABLE II
COMPARISON OF ACE VALUES DURING DAYLIGHT AND

NIGHTTIME HOURS IN THE WATT-SUN CASE

in weekdays due to its being a larger component of the
generation mix.

B. AACEE Enhancement

The overall AACEE results with three solar power pen-
etration levels (5.08%, 15.24%, and 25.40%) for weekly
simulations are shown in Table I. Smaller AACEE values rep-
resent a better reliability performance. For all cases, perfect
forecasts perform the best among the four forecasting methods
while baseline forecasts perform the worst except for the GMP
1HA case. At the 5.08% penetration, the highest improve-
ment for perfect forecasts is the CAISO 2DA case that has a
67.01% AACEE reduction and 655 MWh AACEE value. At
the 15.24% penetration, the highest improvement for perfect
forecasts is the TEP 1DA case with a 48.81% AACEE reduc-
tion and 851 MWh AACEE value. At the 25.40% penetration,
the highest improvement for perfect forecasts is also the TEP
1DA case with a 53.71% AACEE reduction and 1,113 MWh

AACEE value. Target forecasts perform better than baseline
forecasts and worse than perfect forecasts among different
forecast scenarios. At the 5.08% penetration, the highest
improvement for target forecasts is the GMP 2DA case with a
48.12% AACEE reduction and 926 MWh AACEE value. At
the 15.24% penetration, the highest improvement for target
forecasts is also the GMP 2DA case with a 25.47% AACEE
reduction and 1387 MWh AACEE value. At the 25.40% pen-
etration, the highest improvement for target forecasts is the
ISO-NE 2DA case with a 31.13% AACEE reduction and 1,841
MWh AACEE value. Watt-sun forecasts perform worse than
the baseline only in the GMP 1HA case, as shown in red
in Table I. This is because that Watt-sun improved the base-
line forecasts using the machine learning method instead of
applying uniform improvements in target forecasts. Though
Watt-sun is more accurate than the baseline forecasts over the
entire study period, it is possible that Watt-sun has larger fore-
cast errors at certain time periods. In TEP 4HA, TEP 1HA,
Smyrna 1HA, ISO-NE 2DA, and ISO-NE 1DA cases, Watt-sun
forecasts perform better than the baseline forecasts but worse
than the target forecasts, as shown in blue in Table I. However,
Watt-sun forecasts perform better than both baseline and tar-
get forecasts in most cases (ten cases), as shown in green in
Table I. Taking the CAISO 1DA case as an example, the root
mean square error (RMSE) of the Watt-sun case is 73.32 MW
but RMSEs of baseline and target forecasts are 150.54 MW
and 110.82 MW, respectively. Distribution of forecast errors
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Fig. 6. Distributions of forecasting errors. (a) CAISO site at 2DA and
1DA forecasts with baseline, target, and Watt-sun forecasts; (b) GMP site
at different time ahead forecasts with Watt-sun forecasts.

TABLE III
COMPARISON OF σACE VALUES FOR GMP, TEP,
AND SMYRNA AT 5.08% PENETRATION [MWh]

of Watt-sun CAISO 1DA case is shown in Fig. 6a. AACEE
values are increased with the solar power penetration, due to
more stable but expensive thermal generation is replaced by
the increasing solar power, which is much economic but more
intermittent.

C. Standard Deviation of ACE (σACE) Analysis

Table III compares the σACE values of GMP, TEP, and Smyrna
at the 5.08% penetration level. Smaller σACE values represent
better reliability performance. The results are similar to those
shown in the AACEE analysis. Target forecasts perform better
than baseline forecasts and worse than perfect forecasts among
all forecast scenarios. In most cases, Watt-sun forecasts perform
better than baseline forecasts and sometimes even better than
target forecasts. In addition, the 1HA forecast shows the smallest
σACE values for all three sites, comparing to 2DA, 1DA, and
4HA forecasts. This is because shorter time ahead forecast can
usually obtain more accurate forecast results and consequently
reduce the σACE values. However, a more accurate solar forecast
may not necessarily result in a small σACE value at all cases, as
shown in Table III. For instance, the 4HA forecast shows the
largest σACE values for the GMP and Smyrna cases, whereas
the 1DA forecast shows the largest σACE values for the TEP
case. The distribution of forecast errors of the GMP case by
Watt-sun forecasts is shown in Fig. 6b.

D. CPS2 Score and Violations

Table IV compares the CPS2 violations and CPS2 score
for CAISO, GMP, TEP, and Smyrna at the 2DA forecast

TABLE IV
COMPARISON OF CPS2 VIOLATION AND SCORE RESULTS FOR CAISO,

GMP, TEP, AND SMYRNA AT 15.24% PENETRATION AND 2DA FORECAST

and 15.24% penetration. Lower CPS2 violations and higher
CPS2 score represent better reliability performance. Perfect
forecasts outperform the other three forecasts while baseline
forecasts perform the worst. Target forecasts perform better
than baseline forecasts and worse than perfect forecasts in all
forecast scenarios. Watt-sun forecasts perform better than both
baseline and target forecasts. As shown in the CAISO case,
Watt-sun forecasts reduce the CPS2 violations from 26 to 20,
and enhance the CPS2 score from 91.61% to 93.12%. The
CPS2 violations improvement is 23.08% and the CPS2 score
improvement is 1.65%. In this case, both CPS2 score and vio-
lations metrics decrease with the improvement of solar power
forecasting. The average enhancement of Watt-sun forecasts
is 13.37% for the CPS2 violations metric and 1.59% for the
CPS2 score metric.

E. Correlation Between Solar Power Forecasting
Improvements and Reliability Benefits of Power
System Operations

Fig. 7 shows the statistical correlations between fore-
casting improvements and individual reliability metrics, i.e.,
CPS2N

score, AACEEN, σN
ACE, and NN

V, for the TEP case with a
10.16% solar penetration level. It is seen that the CPS2N

score
metrics increase with the improvement of solar power fore-
casts (i.e., the decrease of RMSE). The AACEEN, σN

ACE, and
NN

V metrics decrease with improvement of solar power fore-
casts. Since smaller AACEEN, σN

ACE, NN
V , and larger CPS2N

score
indicate better reliability performance, the improvement of
solar power forecasts could increase the reliability benefits
of multi-timescale power system operations. While 1DA fore-
casts result in better reliability performance than 2DA with the
same RMSE value, the 2DA forecasts present a larger improv-
ing rate (i.e., the rate of the linear curve). Note that there are
large enough errors that might cause a step change in reliability
performance, which would not continue the approximate linear
relationship between RMSE and the expected (or individual)
reliability metrics as shown in Fig. 7.
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Fig. 7. Statistical correlation between RMSE and individual reliability
metrics for the TEP case with a 10.16% solar penetration level.

Fig. 8. Statistical correlation between RMSE and the expected reliability
metrics of power system operations.

Fig. 8 shows the statistical correlation between forecasting
improvements and the expected reliability benefits. It is seen
that the ESR metrics increase with the improvement of solar
power forecasts (i.e., the decrease of RMSE). According to
the empirical criteria of correlationship in [29], both corre-
lation coefficients of forecasting improvements and reliability
benefits in 1DA and 2DA forecasts, (i.e., 0.7836 and 0.7966,
respectively), are greater than 0.5 and less than 0.8. There
exists a clear correlation between the solar power forecasting
improvement and the power system reliability benefit. In the
1DA forecast, a 10% forecasting improvement increases the
reliability benefit by approximately 8.72%. In the 2DA fore-
cast, a 10% forecasting improvement increases the reliability
benefit by approximately 12.88%.

V. DISCUSSION

The solar forecast performance can improve the reliability
benefits of power system operations. Our previous study [11]
has shown that the forecast error has a strong dependence on
the global horizontal irradiance (GHI), solar zenith angle, and
cloud column integrated liquid water content. Hence, advanced

forecast techniques of these three parameters in NWP mod-
els would decrease the forecast error and improve the solar
forecasting performance. Another way to improve the solar
forecasting performance is to blend different individual NWP
models. A blending model like Watt-sun has been shown to
reduce the localized forecast error of individual NWP models
by ∼30% [11], compared to the best individual model.

VI. CONCLUSION

This paper developed a methodology for quantifying and
analyzing the reliability benefits of improved solar power
forecasts in the multi-timescale power system operations. An
expected synthetic reliability (ESR) metric was proposed to
quantify the enhanced power system reliability benefits from
improved solar power forecasts. The absolute area control error
in energy (AACEE), CPS2 violations, CPS2 score, and stan-
dard deviation of the raw ACE were calculated and combined
as the ESR metric. Numerical simulation results based on the
IEEE 118-bus system showed that the expected synthetic reli-
ability (ESR) metrics increased with the improvement of solar
power forecasts and a 10% solar power forecasting improve-
ment could increase the reliability benefit by approximately
8.72%–12.88%.

In the future work, this research can be further extended
by quantifying the reliability benefits of solar power ramping
forecast improvements. In addition, the reliability quantifica-
tion method developed in this paper can also be extended
to estimate the reliability impacts of other energy efficiency
and renewable energy technologies (e.g., wind forecasting and
electric vehicle grid integration) on multi-timescale power
system operations.
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