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Abstract—With increasing wind penetration, wind power
ramps (WPRs) are currently drawing great attention to balancing
authorities, since these wind ramps largely affect power system
operations. To help better manage and dispatch the wind power,
this paper develops a data-driven probabilistic WPR forecasting
(p-WPRF) method based on a large number of simulated scenar-
ios. A machine learning technique is first adopted to forecast the
basic wind power forecasting scenario and produce the historical
forecasting errors. To accurately model the distribution of wind
power forecasting errors, a generalized Gaussian mixture model
is developed and the cumulative distribution function (CDF) is
also analytically deduced. The inverse transform method based
on the CDF is used to generate a large number of forecast-
ing error scenarios. An optimized swinging door algorithm is
adopted to extract all the WPRs from the complete set of wind
power forecasting scenarios. The p-WPREF is generated based on
all generated scenarios under different weather and time condi-
tions. Numerical simulations on publicly available wind power
data show that the developed p-WPRF method can predict WPRs
with a high level of reliability and accuracy.

Index Terms—Gaussian mixture model, probabilistic wind
power ramp forecasting, scenario generation, wind power ramps.

NOMENCLATURE

Sets, Parameters, Variables, and Functions

cov(-) Covariance function.

erf(-) Gaussian error function.

f(), F(-) PDF and CDF of the GGMM.

gi() Probability distribution function of the ith
Gaussian model.

h Predefined parameter to obtain the constant in
the GGMM CDF.

i, 9, N¢ Index, set, and total number of Gaussian

models.
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Index, set, and total number of WPFEs.
Iteration number.

Index of time periods in the forecasting hori-
zon. m, n, v, t=1, 2, 3,..., Tr.

Random number.

Index and total number of forecasting scenar-
ios.

The jth actual WPFE and its actual probability.
Sampled random WPFE.

Measured value and deterministic forecasting
value of wind power at time ¢.

Average coverage error.

Average interval score.

Constant in an indefinite integral.

Indicator of PICP in the reliability metric.
Elements of Jacobian matrix of the ith Gaussian
model and the jth forecasting error.

Lower and upper bounds of PIs.

Actual PDF value of WPFEs.

PI coverage probability.

PI nominal confidence.

Residual of the jth WPFE.

Ramp rule of a wind power ramp.

Objective function of the NLS method and
dynamic programming in OpSDA.

Score function of the length of a time interval.
Maximum forecasting horizon.

Critical value of standard Gaussian distribution.
Range parameters to control the trust-region
size and the correlation of random variables.
Stopping threshold for the RNGe.

Interval score rewarding the PIs.

Tolerance value for ramp duration forecasts.
Nominal coverage probability of PIs.
Expected value of the ith Gaussian model and
the set.

Exponential covariance function of multivariate
normal random number generator.

Standard deviation of the ith Gaussian model
and the set.

Variance of the total prediction errors, model
uncertainty, and noise data.

Weight coefficient of the ith Gaussian model
and the set.

Increment of a variable as a step size.
Standard normal distribution function.
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Matrices and Vectors

r Vector of overall parameter matrix of GGMM.
JeJH, Jacobian matrix of w, u, and o, and the
Jo,J overall Jacobian matrix of all parameters.

Aw, A, Incremental matrices of w, u, o, and actual
Ao, Ap  probability values.

MwMnND, Mean value and covariance matrices of the

Y MND multivariate normal distribution.

I. INTRODUCTION

ARGE fluctuations in wind speed in a short time period
Lcan cause significant wind power ramps (WPRs) and
threaten the power system’s reliability [1]-[3]. WPRs can
generally be divided into up-ramp, down-ramp, or non-ramp
periods. This is becoming more challenging for system oper-
ators as larger wind power penetrations are seen in power
systems worldwide [4].

A number of statistical and machine learning methods have
been developed in the literature to forecast wind power ramps
at multiple forecasting horizons. For instance, Liu et al. [5]
developed a hybrid forecasting model to combine an orthog-
onal test with support vector machine. Cutler et al. [6]
forecasted wind power ramps and evaluated the efficiency of
the Wind Power Prediction Tool (WPPT) and the Mesoscale
Limited Area Prediction System (MesoLAPS) for ramp fore-
casting. Greaves efr al. [7] forecasted up-ramps and down-
ramps with uncertain start times and incorporated a numerical
weather prediction (NWP) model to reduce the forecasting
errors. However, most of existing methods focus on the deter-
ministic ramp forecasting. Probabilistic wind power ramp
forecasting (p-WPRF) is expected to provide more informa-
tion on forecast uncertainties, and thus produce better system
schedules for balancing authorities. Among the few p-WPRF
studies [8], Taylor [9] used a multinomial logit structure and
categorical distribution to estimate the ramp event probabilities
for different thresholds. Li et al. [10] provided additional prob-
abilistic information for wind ramp occurrences by a logistic
regression technique.

Both the prevalent probabilistic and statistical scenario
forecasts can be used for wind power ramp forecasting.
Probabilistic forecasts consider the intrinsic uncertainty in the
wind power generation (or WPR) process, and give more
information on the forecasted wind power and WPRs than
the simple point forecasts [11]. However, they neglect the
interdependence structure of forecast errors among look-ahead
times, and cannot be practically used in the time-dependent
and multi-stage decision-making processes, such as the design
of trading strategies in a multi-market environment. Statistical
scenario forecasts mainly rely on the most recent informa-
tion about the interdependence structure of the prediction
errors [11]. However, they should respect the probabilistic
forecasts of the next time period. The intrinsic uncertainty in
the wind power generation (or WPR) process and the proba-
bilistic view of the forecasting problem are not considered in
statistical scenario forecasts [11]. Pinson and Girard [12] eval-
uated the quality of statistical scenario forecasts of short-term
wind power generation. Ma et al. [13] proposed a statistical
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scenario forecast method considering the information of fore-
cast error distribution and fluctuation distribution of short-term
wind power generation. In this paper, we consider the advan-
tages of both the probabilistic and statistical scenario forecasts.
Probabilistic forecasts of WPR aim to provide information
about the WPRF uncertainty. Statistical scenario forecasts
of WPR aim to provide the time-dependent and multi-stage
WPRFs that can be used in the decision-making processes.

To bridge the gap in ramp forecasting, we seek to address
two critical questions for balancing authorities with the
increasing WPRs integrated into power systems. Is it possible
to quantitatively evaluate the probabilistic information of wind
ramp occurrences, such as the ramp duration or start-time?
What is the impact of different conditions on the probabilistic
forecasting of WPRs, such as weather conditions (wind speed)
or times of a day? This paper develops a p-WPRF method to
characterize different key ramp features in different conditions.
The main innovations and contributions of this paper include:
(i) developing a novel generalized Gaussian mixture model
(GGMM) to fit the probability density function (PDF) of wind
power forecasting errors (WPFEs); (ii) designing a statistical
scenarios based p-WPRF model by using the WPFE scenar-
ios and a novel WPR detection algorithm; and (iii) calculating
and analyzing the probabilistic metrics of ramp features under
different weather and time conditions.

The overall procedure of the developed p-WPRF method-
ology consists of four major steps. First, multiple sets of
deterministic wind power forecasts are generated by a machine
learning method. Second, a novel GGMM distribution model
is developed to fit the actual PDF of WPFEs with a satisfac-
tory accuracy, and the inverse transform method of GGMM is
adopted to generate a large number of WPFE scenarios. Then,
an optimized swinging door algorithm (OpSDA) is used to
extract all the forecasting WPRs in each wind power fore-
casting scenario that is generated by adding the baseline wind
power forecast series with a random WPFE scenario. Finally,
a suite of probabilistic forecasting metrics are calculated and
compared for ramping features under different conditions.

The organization of this paper is given as follows. In
Section II, a WPFE scenario generation method is developed.
In Section III, the methodology of p-WPRF and evalua-
tion metrics are presented. Case studies and results analysis
performed on publicly available wind power data are dis-
cussed in Section IV. Concluding remarks and future work
are summarized in Section V.

II. WPFE SCENARIO GENERATION

The developed WPFE scenario generation is based on a
machine learning technique to first forecast the basic wind
power forecasting scenario and calculate the historical WPFEs.
Then a generalized Gaussian mixture model (GGMM) is used
to fit the PDF of forecasting errors. The CDF is analytically
deduced. The inverse transform method based on the CDF is
used to generate a large number of WPFE scenarios.

Recently, the Gaussian mixture model (GMM) has been
widely used to fit the distributions of wind power genera-
tion [14], [15], load [16], and WPFEs [17], [18]. However,
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Fig. 1. Procedure of the two-stage optimization model.

parameters of the GMM distribution are estimated by the
expectation maximization (EM) algorithm which is strictly
constrained by three constraints: (i) all the weights of mixture
components must be nonnegative; (ii) the sum of all weights
equals one; and (iii) the integral of each mixture component
(standard normal distribution) equals one. For the developed
GGMM, the non-linear least square (NLS) method is first uti-
lized to estimate all the parameters. All the aforementioned
three constraints in the GMM are not required any more in
the GGMM, which means more mixture Gaussian compo-
nents, even with negative weights, can be integrated in a more
generalized way.

A. Analytical Expression of the GGMM PDF

The basic wind power forecasts are generated using the
support vector machine (SVM) that has been widely used in
the forecasting community. WPFEs are then calculated and
recorded as the deviation between the basic wind power fore-
casts and the corresponding actual wind power. A GGMM
distribution [14], [16], [19] is used to fit the PDF of WPFEs.
The GGMM is a probabilistic model that assumes all the
data points are generated from a mixture of a finite num-
ber of Gaussian distributions with multiple parameters. It is
characterized by the number of mixture components, weights,
mean values, and standard deviations of each component, and
formulated as:

E Wigi x/“’LIv (71

where I' defines a mixture component of the GGMM, i.e.,
' = {w;, ui, a,»}i.\f’l. The function of each component g(x|u, o)
conforms to a Gaussian function, given by:

f(xING; T Vxje 2.Vied (1)

_ @—w)?

gixlp,0) =e 27

2

A two-stage optimization model is constructed to estimate
all the parameters of f, i.e., Ng, w;, u;, and o;. In Stage I,
the objective is to estimate parameters for the GGMM com-
ponents using the NLS method. In Stage II, the objective is
to determine the optimal number of components.

1) Stage I: The parameters of each GGMM are estimated
by using the NLS method. For each GGMM, the number of
Gaussian components is a constant, as shown in the left part of
Fig. 1. The PDF of GGMM is simplified as f(x;j|Ng; I') &
f(xj|T). This stage aims to determine the expected value (or
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mean value) set M (u; € M), the standard deviation set X
(o; € X), and the weight coefficient set Q (w; € ). The
NLS method using the trust-region algorithm [20] is adopted
to estimate parameters (w, u, and o) of mixture components
of the GGMM. Given a set of data points for WPFEs (x)
and their actual probabilities (p), i.e., (x1,p1),..., (Xj, Py,
(xNy, PNy ), the objective function, S, of the NLS aims to
minimize the sum of the squares of fitting residuals, given by:

ZR2

Taking the mean value as an example, the minimum value
of S1 occurs when the gradient is zero, given by:

Nx
0S5 OR;
— =2 E R —=
' =1 Yo

Nx

2_[p

j=1

~/(gIT)]? G)

Nx

__22 2

Since the model contains 3 xNg parameters, there are 3xNg
gradient equations. Then, each mean value of the GGMM, p;,
is refined iteratively by the successive approximation:

8 X l
f Jl 4)
o

k+1

i~ it = b+ A )

At each iteration, the GGMM is linearized by approximating
to a first-order Taylor series expansion:

Ng k
af (x;|T
|r") + %Aw
i—1 i

oy % of (xIT%)

30,'

S0 ~ (%

Ng Tk
+Zaf(’?/|r )AM

Ao (§)
0 o] (6)

i=1 i=1

The set of the derivatives df(x;j|TX)/dw;, 3f(xj|TX) /i,
and af(lel"k)/ do; constitutes the Jacobian matrix, J. Each
derivative is analytically deduced by:

(5-0t)”

of(IT*) "y
k k k (y-st)
= 8f(;j|1" ) _ oy —zui) 2(of) ®
; k
Hi (o)
2
2 _(X/' “t)
o = AT @iy —m)” Ty ©
! doi (‘Tik)3
J=[30 3 3] VI €3OV € JAVIG €1 (10)
Since the iterative residuals are given by: Ap; = p; —
f(xl |T%), the original residuals are rearranged by:
Ry = [p = £5IT9 | + [£(1T*) = £ (1T) |
Ng Ng Ng
= Apj — ZJ;;A@ - ZJ;;A;L,- — ZJ;AU,- (11)
i=1 i=1 i=1

Then substituting these expressions in (7)—(11) into the gra-
dient equations in (4), we can rearrange and get the normal
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equations:
Nx Ng
ZZJg(Jg?Awi+J;;Aui+J;}Aoi) Z ‘Apj (12)
j=1 i=1
Nx Ng
ZZJ’“(J“’Aa)pI—J Api+JG Ao,) _ Z];?Apj (13)
j=1 i=1 j=1
Nx Ng Ny
ZZJG (JwAw, +15Aﬂi +J§;~AG,-) = ZJ;J’.APJ. (14)
j 1 i=1 j:l

The normal equations are written in the matrix notation:

Aw
J'J| Ap
Ao

=J"Ap (15)

Since the estimated initial parameters may be far from the
optimum, Equation (15) is improved by using the trust-region
algorithm [20], given by:

Aw
[J7T + r1diag(ITD)]| An
Ao

=J"Ap (16)

where diag(JTJ) is the diagonal matrix with the same diag-
onal as JTJ and A is used to control the trust-region size.
Comparing with the line search algorithm, the trust region
algorithm can be used in the non-convex approximate prob-
lems (or ill-conditioned problems) due to the boundedness of
the trust regions of estimated initial parameters. This advan-
tage makes the trust region algorithm reliable and robust with
strong convergence properties [21].

2) Stage II: After estimating the parameters of each mix-
ture component of the GGMM, the second stage aims to
determine the optimal number of mixture components, NG, opt,
by minimizing the Euclidean distance between the actual PDF,

PDF,, and the PDF of the GGMM, f, ie., f(xjINg) ——
f(xj), as shown in the right part of Fig. 1. The objective
function is formulated as:

> £ (1)

xje%'

G opt

min —PDFA]°, i=1,2,...,.Ng. (17)

B. Analytical Expression of the GGMM CDF

The cumulative distribution, F, is another essential statistic
metric to generate WPFE scenarios due to its monotonicity,
which is analytically expressed as:

X

F(x[Ng; I') = /

- i=1

- Z[%;a),mery(?)} rCc (8

i=1

_ 2 [T
erf(x) = 7= | e

where Equation (18) is an indefinite integral with a constant
C, which can be solved by (20). Since WPFEs are normalized

19)
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Algorithm 1: Newton-Raphson Method for Generating the
Random Number of WPFEs
1 Initialization: obtain a random point (» € [0, 1]) and
evenly partition the WPFE, x, into N regions
([xn, x_n]gzl). Decide the region where r is:
2 if F(x,) < r < F(x,) then
3 Return n, Xo = X,; and the approximation xj is
calculated when k = 0, by:

B Flxg) —r
Flw)

F(xk) —r
Cfow)

3 [‘/Tj?wiaiemc(“iij‘)] +C—r

>

i=1

2y

Z w;e é[/\katﬂ ]2

i=1

end
Output the random number of one forecasting error:
for Iteration k from 1 to 100 do

if |xp — xx_1| < € then

‘ The sampled forecasting error is returned: X~ xy;

else
10 |
11 end
12 end

RIS B Y

The iterative process is repeated using (21).

into the range [0, 1], it can be derived that F(x < 0) = 0
and F(x > 1) = 1. Hence, we use a predefined parameter by
heuristics [# € (—o0, 0) U (1, 400)] to obtain the constant C
based on the theory of the integral [22], given by:

_ 7 h— i
C= ZNE Foned ()} s (20)
- Z[‘/Tgwiaie’f(h;f“ﬂ, h>1.

i=1

C. Random WPFE Generation Using GGMM

To sample a random WPFE, X, we design a random num-
ber generator (RNG) based on the GGMM (RNG-GGMM).
The inverse transform method has been widely used to
generate random numbers from a specific probability distribu-
tion [23], [24]. In this paper, the RNG-GGMM method utilizes
the inverse function of the GGMM CDF, formulated as:

%= F ' [F(xINg; )]
Ng

_ F_I{Z[gwiaierf($>i| +C} (22)
i=1 !

However, the inverse function in (22) cannot be analytically
deduced. Alternatively, we use the Newton-Raphson method to
obtain a numerical solution of the inverse CDF of the GGMM
distribution. The Newton-Raphson method has been used to
sample the inverse CDF of the Student’s t distribution [25].
The pseudocode of the forecasting error generation process is
illustrated in Algorithm 1. The process repeats until the range
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Fig. 2. The process of generating the series of WPFEs.

is smaller than the stopping threshold €, given by:
(23)

lxk — xk—1] < €

where € is set as 1 x 1078,

A random number z is generated by the multivariate nor-
mal random number generator, and uniformed by the standard
normal distribution, given by:

The multivariate normal random number generator mvnrnd
in MATLAB is then applied to generate Ny, scenarios with
a forecasting horizon Ty, using the multivariate normal dis-
tribution (MND), z ~ N(MmnD, ZMND). MmnDp 18 defined
as a zero Ny-by-Tw matrix. Lynp 1S a Tm-by-Tr symmetric
positive semi-definite matrix, formulated by:

dr, ®(z) €0, 1] 24

01,1 o1, o1, T
02,1 02,2 02, T,
YMND = ) (25)
: : Om.n :
orth, 1 orm, 2 orth, Tth

where the covariance o, , has been modeled by an exponential
covariance function in [12] and defined as:

|m—n|

Om,n = oV (7, 1) = e s

O0<mn<Tm (26)

where A, is used to control the strength of the correlation of
random variables r,, and r,,.

The forecasting error scenarios are generated by setting
a total number of Ny, with a specific forecast horizon of
Tw (e.g., day-ahead, hours-ahead, or minutes-ahead). A large
set of wind power forecasting scenarios is obtained by com-
bining the basic deterministic wind power forecast with all

the forecasting error scenarios. The schematic of the process
to generate the series of WPFEs is shown in Fig. 2. This
procedure is briefly described as follows:

o Step 1: A covariance matrix Xynp of the multivariate
normal distribution is created. Each element oy, , of this
matrix (o, € XMND) is calculated by (26).

o Step 2: The random number matrix Z is directly cre-
ated by the multivariate normal random numbers gen-
erator mvnrnd built in MATLAB [26], ie., Z ~
mvnrnd(MyND, 2MND, Nsc). The matrix Z is a Ng.-by-
Tt matrix of random numbers. Each element z of Z
(z € Z) is transformed into the uniform distribution by
the standard normal distribution ®(z) in (24). Then, the
uniform random number r is generated as: r D (2).
Correspondingly, the uniform random number matrix R
is also generated as: R = ®(Z).

o Step 3: Each element r of the uniform random number
matrix R is transformed into the forecast error, as shown
in the right part of Fig. 2. The corresponding WPFE X is
estimated by the inverse transform method of the GGMM
using Algorithm 1, ie., X = F‘l(r). After all uniform
random numbers are transformed to WPFEs, the series of
WPFEs is generated with respect to both the forecasting
horizon Ty, and forecasting scenarios Ny simultaneously.

III. P-WPRF METHODOLOGY AND EVALUATION METRICS
A. Wind Power Ramps Detection

Based on the generated wind power forecasting scenarios,
an OpSDA method [27] is used to detect all the WPRs at
each timescale. In the OpSDA, the conventional swinging door
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Fig. 3. Comparison of WPRs detection using SDA and OpSDA [27].

algorithm (SDA) with a predefined value is first applied to seg-
regate the wind power data into multiple discrete segments.
Then dynamic programming is used to merge adjacent seg-
ments with the same ramp direction and relatively high ramp
rates. A brief description of the OpSDA is introduced here, and
more details can be found in [27]. Subintervals that satisfy the
ramp rules are rewarded by a score function; otherwise, their
score is set to zero. The current subinterval is retested as above
after being combined with the next subinterval. This process
is performed recursively until the end of the dataset. A posi-
tive score function, S., is designed based on the length of the
interval segregated by the SDA. Given a time interval (m, n)
in the forecasting horizon and an objective function, S, of the
dynamic programming, a WPR is detected by maximizing the
objective function, S>:

Sp(m,n) = max [S.(m,v) +S2(v,n)], m<n (27)
m<v<n
s.t.
Se(m,n) > S.(m,v)+S.(v+1,n), Vm<v<n (28)
Se(m,n) = (m —n)> x RL(m,n), Vm<v<n (29)

where the positive score function, S., conforms to a superad-
ditivity property in (28) and is formulated in (29). The ramp
rule, RL(m, n), is defined as the change in wind power magni-
tude without ramp duration limits [28], [29]. Thus, the WPR
is defined as the wind power change that exceeds the thresh-
old (15% of the installed wind capacity) without constraining
the ramping duration. A brief example of WPRs detection in
one day is illustrated in Fig. 3. It is shown in Fig. 3a that the
conventional SDA only detects one WPR without any opti-
mization. As shown in Fig. 3b, the OpSDA is able to combine
the adjacent segments in the same direction and detect WPRs
more accurately.

B. PI-Based WPRF Metrics

To evaluate the performance of p-WPRF, two predic-
tive intervals (PIs) based metrics, namely reliability and
sharpness [30]-[32], are briefly introduced in this section.
Reliability is the correct degree of a p-WPRF assessed by
the hit percentage. Sharpness is the uncertainty conveyed by
the p-WPRFE.

1331

1) Reliability: Based on the set of WPRFs, a 100(1-«)%
confidence level PI of the measured WPRs can be expressed
with the lower bound L and the upper bound U; as the PI
nominal confidence (PINC), given by:

LY =3+ X — P1-a)20: (30)
Ui =5+ % + Bi-a/0i 31)
of =of +0] (32)
| e | e 2
o5, = N—Z|:)A’z+5f§—N—Z()7z+5Cf)i| (33)
SC =1 MY s=1
where o7, o;[ , and o represent the variance of the total

prediction errors, model uncertainty, and noise data, respec-
tively. 612 can be calculated by using (32) [30]. o2 can be
calculated by using (33). The noise date can be calculated by
the measured and forecasting data, i.e., ¢ =y — (¥ + X).

The future measured wind power ramps are expected to lie
within the PI bounds with a prescribed probability termed as
the nominal proportion. It is expected that the coverage prob-
ability of obtained PIs will asymptotically reach the nominal
level of confidence (ideal case) over the full WPRs. PI cover-
age probability (PICP) is a critical measure for the reliability
of the WPR PIs, formulated in (34), where the indicator of
PICP, I, is defined in (35).

1 N
PICP = = S Iy x 100% (34)
1y e v
I = {0, . [L‘;f, ue (35)

Theoretically, the PICP should be close to the correspond-
ing PINC. The average coverage error (ACE) [30] metric
should be as close to zero as possible. A smaller absolute
ACE indicates more reliable PIs of WPRs.

2) Sharpness: Sharpness is calculated as the average inter-
val size of different confident levels. A measure of sharpness,
8, is given by the mean size of PIs, formulated in (36). The
interval score § rewards the narrow PI and gives penalty if the
target does not lie within the estimated PI.

1w
§ = — S Re [L
NRF ZIZI Nw

where NRr is the total number of ramping features, including
up- and down-ramp duration, up- and down-ramp magnitude,
up- and down-ramp rate, and up- and down-ramp start-time.

The average interval score (AIS) can be employed to com-
prehensively evaluate the overall skill of WPR PIs to assess
the sharpness. Generally, smaller ACE, §, and AIS indicate a
better forecasting performance of p-WPRFE.

(g - 18)] x 100%  (36)

C. Procedure of p-WPRF

The p-WPRF methodology is developed by using a large
number of forecast scenarios, and extracting corresponding
ramps using the OpSDA method described before. The over-
all framework for generating p-WPREF is illustrated in Fig. 4,
which consists of four major steps: deterministic wind power
forecasting, forecasting scenario generation, wind power ramp
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Fig. 4. The overall framework for developing the p-WPRE.

detection, and probabilistic ramp forecasting and analysis. The
four major steps are described as follows:

o Step 1: Based on historical wind power data, a machine
learning method, (i.e., SVM), is used to generate deter-
ministic wind power forecasts.

o Step 2: Historical WPFEs are generated from the basic
forecasting model, as described in Section II. The GGMM
distribution model is adopted to fit the probability dis-
tribution of historical WPFEs and the cumulative distri-
bution of GGMM is analytically deduced. The inverse
transform method is used to simulate a large number of
WPFE scenarios, as described in Section II-C.

o Step 3: A wind power forecasting scenario is generated
by adding the basic forecasting data with each individual
WPEFE scenario. Each scenario is put into the OpSDA
algorithm to extract all the significant WPRs.

o Step 4: The p-WPREF is generated and analyzed by using
a set of probabilistic forecasting metrics, as described in
Section III-B.

IV. CASE STUDIES AND RESULTS
A. Test Case

The developed data-driven WPRF model is verified using
the Wind Integration National Dataset (WIND) Toolkit [33].
The data represents wind power generation from January 1%
2007 to December 31% 2012. The wind plants used in this
analysis are from 711 wind sites near Dallas, Texas, with a 5-
minute data resolution. The total rated wind power capacity is
9,987 MW. All case studies are carried out using the MATLAB
2016a on two Intel-e5-2603 1.6-GHz workstations with 32 GB
of RAM memory. The door width of the OpSDA is set as 0.2%
of the rated capacity.
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Fig. 5. Probability and cumulative distributions of WPFEs using seven distri-
bution models. Generalized Extreme Value: u = —0.0214, 0 = 0.0537, K =
—0.1597; Normal: p = 1.72 x 10*6,0 = 0.0522; Logistic: © = —3.09 x
1074, 0 = 0.027; t Location-Scale Distribution: © = —2.53 x 1074, o
0.0346, v = 3.11; and Hyperbolic: 7 = 4.72 x 10_3, ¢ =2.09%x107",46
7.69 x 1070, = —3.39 x 1074,

TABLE 1
ESTIMATED PARAMETERS OF GMM AND THE DEVELOPED GGMM

Compon- Weight (w) Mean (u) Standard Dev. (o)
ents No- - "GMIM GGMM GMM GGMM GMM_ GGMM
Comp. 1 03893 -0.4208 -0.0112 -0.0030  0.0044 0.0040
Comp. 2  0.5808 04211 0.0015  -0.0030  0.0007 0.0040
Comp. 3 0.0299 0.9098 0.1159 -0.0205 0.0044 0.0065
Comp. 4 / 0.5873 / 0.0034 / 0.0404
Comp. 5 / 0.2076 / -0.0089 / 0.0944

B. Performance of Different Distribution Models for WPFEs

Fig. 5 compares the probability and cumulative distribu-
tions of WPFEs from seven distributions (i.e., Generalized
Extreme Value (GEV), Normal, Logistic, t Location-Scale,
GMM, Hyperbolic, and GGMM distributions). The proba-
bility density histogram (PDH) and cumulative distribution
histogram (CDH) of the measured WPFEs are used as the
benchmark to estimate the parameters of the distribution
models. The parameters of GEV, Normal, Logistic, t Location-
Scale, and Hyperbolic distributions are estimated from the
sampled WPFEs by using the maximum likelihood estima-
tion (MLE), which can be implemented by the fitting function
fitdist built into the Statistics Toolbox in MATLAB [34].
Parameters of the GMM distribution are estimated by the
fitting function fitgmdist built into the Statistics Toolbox in
MATLAB [35] using the EM algorithm. Estimated parameters
of the GMM and the developed GGMM are listed in Table 1.
The coefficient of determination, RZ, is used to evaluate the
correlation between the observed and modeled data values.
The GEV distribution has the smallest coefficient of determi-
nation, 0.9041, and the GGMM distribution shows the largest
coefficient of determination, 0.9922. The coefficients of deter-
mination of Normal, Logistic, t Location-Scale, GMM, and
Hyperbolic distributions are 0.9352, 0.9698, 0.9828, 0.9855,
and 0.9873, respectively. Both the coefficient of determination
and Fig. 5 show that the GGMM distribution outperforms other
distributions in modeling WPFEs.

Note that the GEV distribution is often used to model the
smallest or largest value among a large set of independent
and identically distributed random values (representing mea-
surements or observations). The GEV combines three simpler
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distributions into a single form, allowing a continuous range
of possible shapes that includes simpler distributions [36]. The
mathematical formulation of the PDF for the GEV distribution
can be expressed as:

f&xlp, o, K)
_ L —1-L
=éexp —<1+/c—(x_”)> : <1+/C—(x_“)) :

o o
(37)

where w is the location parameter and estimated as -0.0214.
o is the scale parameter and estimated as 0.0537. K is the
shape parameter and estimated as -0.1597. Theoretically, if
K=0, GEV is referred to as Type I (Gumbel); if I >0, GEV is
referred to as Type II (Frechet); and if IC <0, GEV is referred
to as Type III (Weibull). Thus, the Type-III GEV is used for
comparison in this case.

C. p-WPRF Results Under Different Weather Conditions

Weather conditions (wind speed) are divided into multiple
categories according to different wind speeds. In this case
study, four wind speed categories are considered: light
wind speed (0-11 km/h), gentle wind speed (12-29 km/h),
strong wind speed (30-50 km/h), and gale wind speed (=51
km/h) [37]. To calibrate the p-WPRF results, the distribution of
WPFEs is modeled under different conditions by dividing the
wind power into multiple power bins. The conditional distribu-
tion of WPFEs is then modeled for each power bin and used

TABLE II
COMPARISON OF THE ACE RELIABILITY METRIC USING DIFFERENT
P-WPRF MODELS UNDER DIFFERENT WEATHER
CONDITIONS [UNIT: %]

p-WPRF models Wind speed
Light Gentle Strong  Gale
QFWP scenarios 18.83 21.76 24.92 19.49
WPFE scenarios w/o calibration 9.43 12.56 15.56 10.28
WPFE scenarios with calibration 2.37 4.81 7.49 2.57

to calibrate the p-WPRF results. Detailed information about
the conditional distribution of WPFEs can be seen in [38].

Fig. 6 compares the PICP curves under different wind speed
conditions using different p-WPRF models with calibration.
Table II compares the ACE reliability metric using different
p-WPRF models with the calibration. The quantile forecast of
wind power (QFWP) scenarios based p-WPRF model devel-
oped in [10] is adopted as the benchmark, as shown in Fig. 6a.
Fig. 6b shows the PICP curves from the WPFE scenarios
based p-WPRF model (developed in this paper), which are
closer to the PINC curve than those using the QFWP sce-
narios based p-WPRF. Fig. 6¢ shows the PICP curves using
the WPFE scenarios based p-WPRF with calibration, which
are closer to the PINC curve than those without calibration in
Fig. 6b. Both Fig. 6 and Table II show the superiority of the
proposed p-WPRF model, and also verify the effectiveness of
the calibration process.

As shown in Fig. 6, the light wind speed condition shows
the best reliability with the blue solid line closest to the ideal
case (red line). The strong wind speed condition shows the
worst reliability with the yellow solid line farthest from the
ideal case (red line). As shown in Fig. 7a, the light wind speed
condition shows the narrowest PIs represented by the smallest
interval score (8), and the strong wind speed condition shows
the widest PIs represented by the largest interval score (6). This
finding corresponds to the uncertainties in WPFEs as shown
in Fig. 9a, which are represented by the standard deviation o.
The light wind speed condition shows the lowest uncertainty
with the smallest standard deviation (oLighe = 20.87 MW).
The strong wind speed condition shows the highest uncertainty
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with the largest standard deviation (osyong = 58.43 MW). This
phenomenon can be explained by the nonlinearity of the wind
turbine power curve [39]. For the light, gentle, and gale wind
conditions, the wind power generation varies within a rela-
tively smaller range. However, for the strong wind condition,
the wind power generation varies within a large range, and a
small change in wind speed will cause a large change in wind
power generation. The varying large range of the wind power
generation will correspondingly increase the distributed range
of WPFEs, which presents a heavy tail and low peak distri-
bution of WPFEs under the strong wind condition (as shown
in Fig. 9a). This phenomenon shows that the WPRFs under
the strong wind condition are critically important for power
system operations, and more challenging compared to other
wind conditions.

D. p-WPRF Results at Different Times of a Day

The p-WPREF is also affected by the time of a day. For a
better illustration, four representative time periods are chosen:
15t, 9th 16™ and 24™ hours. The same calibration method in
Section IV-C is used to improve the p-WPRF results. Fig. 8
compares the PICP curves at different times of the day using
different p-WPRF models with calibration. Table III compares
the ACE reliability metric using different p-WPRF models
with calibration. The case using the QFWP scenarios-based
p-WPRF in [10] is taken as the benchmark, as shown in
Fig. 8a. The PICP curves using the WPFE scenarios-based

TABLE III
COMPARISON OF THE ACE RELIABILITY METRIC USING DIFFERENT
P-WPRF MODELS AT DIFFERENT TIMES OF DAY [UNIT: %]

Times of a day

p-WPRF models

1% hour 9™ hour 16" hour 24" hour
QFWP scenarios 19.15 17.91 18.43 19.89
‘yv];ffaff&‘;?g‘r’f 7.53 6.34 6.05 8.11
WPFE scenarios 4 o 3.79 3.67 5.96

with calibration

p-WPRF in Fig. 8b are closer to the PINC curve than those
using the QFWP scenarios-based p-WPRF model. The PICP
curves using the WPFE scenarios-based p-WPRF with calibra-
tion in Fig. 8c are closer to the PINC curve than those without
calibration.

As shown in Fig. 8, the p-WPRFs at the 9" hour and the 160
hour show the best reliability performance and are represented
by the orange and yellow solid lines, respectively, that are
closest to the ideal case (red line), though the results are fairly
similar over all of the hours. The p-WPRFs at the 1% hour and
the 24" hour show the worst reliability metric represented
by the blue and purple solid lines, respectively. As shown in
Fig. 7b, the p-WPRF at the 9" hour shows the narrowest PIs
with the smallest interval score (§), and the p-WPRF at the 1%
hour shows the widest PIs with the largest interval score (4).
This finding is consistent with the uncertainties of WPFEs,
which are represented by the standard deviation o as seen in
Fig. 9b. This finding is also correlated with that under different
weather conditions in Section IV-C. For this case, the results at
the 1% hour and 24" hour have stronger relationship with those
under the strong wind condition due to similar uncertainties
(0strong = 58.43, 0ysthour = 58.16, and oy, = 55.55). This
is because the wind speed is generally stronger at night. This
correlation between the weather condition and the time of the
day can be further explored and possibly considered in the
conditional ramp forecasting model.

In Section IV-C, the standard deviations of WPFEs under
the light, gentle, strong, and gale wind speed conditions are
20.87 MW, 45.90 MW, 58.43 MW, and 42.11 MW, respec-
tively. The AISs under the light, gentle, strong, and gale wind
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TABLE IV
CORRELATION BETWEEN UNCERTAINTIES OF P-WPRF AND RELIABILITY
& SHARPNESS METRICS UNDER DIFFERENT WEATHER CONDITIONS

Uncertainties of Up-Ramps Down-Ramps
WPRE [%] ACE [%] AIS [%] ACE [%] AIS [%]
4.01 37.17 341 29.85 447
3.17 30.83 3.35 17.44 4.24
2.71 21.71 3.22 14.99 4.09
1.72 18.67 2.77 13.29 3.99
TABLE V

CORRELATION BETWEEN UNCERTAINTIES OF P-WPRF AND RELIABILITY
& SHARPNESS METRICS AT DIFFERENT TIMES OF A DAY

Uncertainties of Up-Ramps Down-Ramps
WERE (%] ACE [%] AIS [%] ACE [%] AIS [%]
6.25 30.11 3.94 26.58 5.16
5.41 28.84 3.54 23.63 491
4.84 23.84 3.51 16.43 4.78
2.44 2243 3.47 13.95 4.68

speed conditions are 3.38%, 3.79%, 3.94%, and 3.66%, respec-
tively. In Section IV-D, the standard deviations of WPFEs for
the 15, 9, 16", and 24™ hours are 58.16 MW, 33.44 MW,
39.13 MW, and 55.55 MW, respectively. The AISs for the
1%, 9t 16", and 24™ hours are 4.55%, 4.07%, 4.14%, and
4.23%, respectively. According to the empirical criteria of cor-
relation in [40], the correlation coefficients between standard
deviations of WPFEs and AISs are 0.9905 and 0.8319 for
both cases in Sections IV-C and IV-D, respectively. It indi-
cates that there exists a high correlation (0.8~1.0) between
the standard deviation of WPFEs and the performance of the
p-WPRF model.

E. Uncertainty Analysis of WPRF in Different Conditions

For a better illustration, the uncertainties of p-WPRF in both
Sections IV-C and IV-D are sorted in descending order for
analysis. Table IV and Table V show the correlation between
uncertainties of p-WPRF and the performance metrics in
Sections IV-C and IV-D, respectively. ACE and AIS represent
reliability and sharpness metrics, respectively. The uncertain-
ties of WPRF are represented by the standard deviation of
forecasted WPRs. The p-WPRF performs better with smaller
ACE and AIS values due to the decrease of uncertainties of
p-WPRE. In Table IV, the 2.29% decrease of uncertainties of
p-WPREF can reduce ACE by 18.51% and 16.56% for up- and
down-ramps, respectively. It can also reduce AIS by 0.64%
and 0.48% for up- and down-ramps, respectively. In Table V,
the 3.81% decrease of uncertainties of p-WPRF can reduce
ACE by 7.68% and 12.63% for up- and down-ramps, respec-
tively. It can also reduce AIS by 0.47% and 0.48% for up-
and down-ramps, respectively.

F. Delivered Output and Analysis of the Developed p-WPRF

1) Ramp Duration Probabilistic Forecasts: Based on the
wind power forecasting scenarios, the number of WPRs occur-
ring within a tolerance value, ¢, is calculated and expressed
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Fig. 10. Probabilistic ramp duration forecasts illustrated with banded areas.

TABLE VI
PROBABILISTIC FORECASTING RESULTS OF RAMP DURATION

Ramp Duration Probability [%]

Start-Time  End-Time
13:25 14:55 43.93
13:20 15:00 77.46
13:15 15:05 91.91
13:10 15:10 96.53

by Ny. The forecasting probability of the WPRs within the tol-
erance value, ¢, are formulated as Pr(Ny, Ny | ¢) = Ny/Nqc.
The probability of ramp duration for one WPR is illustrated
in Fig. 10. Three cases with different ramp duration toler-
ance values are studied: without tolerance (¢=0), 5-minute
tolerance (¢ = 1), 10-minute tolerance (¢ = 2), 15-minute
tolerance (¢ = 3), and 20-minute tolerance (¢ = 4). For each
WPR, the occurrence probability is calculated within a certain
time interval. The probability of WPR occurrence is increased
with increasing the tolerance value, as illustrated by the wider
banded areas. The sensitivity of ramp duration probability to
the tolerance value is analyzed in Fig. 11. It is shown that the
probability of wind power ramp duration also increases with
increasing the tolerance value for both upward and downward
ramps. This information could be potentially used by power
system operators to approximately estimate the probability of
WPRs according to the corresponding tolerance value. For
instance, if the power system operators set a 5-minute tol-
erance value (¢ = 1), the probability of correctly forecasting
a ramp is larger than 60% for all ramps.

The probabilistic forecasting results of ramp duration with
an hour and a half period are shown in Table VI. As can be
seen, the probability of ramp duration lasting from 13:25 to
14:55 is 43.93%; the probability of ramp duration lasting from
13:20 to 15:00 is 77.46%; the probability of ramp duration
lasting from 13:15 to 15:05 is 91.91%; and the probability of
ramp duration lasting from 13:10 to 15:10 is 96.53%.

2) Ramp Start-Time Probabilistic Forecasts: In addition
to the occurrence probability of ramp duration, balancing
authorities are also concerned with the probability of ramp
start-time in order to prepare sufficient ancillary services, such
as ramp reserves [41]. Fig. 12 illustrates the probability of
up- and down-ramp start-time. For up-ramps in Fig. 12a, the
15t, 3" and 5™ up-ramps start with a probability higher than
50%, namely 58.05% (65" minute), 61.49% (355" minute),
and 98.17% (480" minute), respectively. For down-ramps in
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Fig. 12b, the 41, 5™ and 6" down-ramps start with a probabil-
ity higher than 80%, namely 90.81% (330" minute), 85.63%
(400™ minute), and 98.85% (475" minute), respectively.

3) Ramp Rate Probabilistic Forecasts: The developed
p-WPRF model can also provide probabilistic forecasting
information for balancing authorities, which can be used
to design probabilistic wind power ramping products [42].
Table VII shows the probabilistic forecasting results of ramp
rate using the developed p-WPRF model, where both ramp rate
values and the corresponding maximum probability are enu-
merated. As can be seen, the first ramp (Ramp #1) presents
the highest probability value (87.35%) with the ramp rate
of 550 MW/h. The third ramp (Ramp #3) shows the lowest
probability value (62.64%) with the ramp rate of 750 MW/h.
The occurrence probabilities of the other four ramps (i.e., 600
MW/h for Ramp #2, 620 MW/h for Ramp #4, 1,300 MW/h
for Ramp #5, and 1,050 MW/h for Ramp #6) are 66.67%,
81.03%, 75.86%, and 74.71%, respectively. These numerical

IEEE TRANSACTIONS ON SMART GRID, VOL. 10, NO. 2, MARCH 2019

08 [ . - = Wind Power| [ False Alert
£ | |ZZUpRamps | [IDelayed Alert 0.8
E 0.6 .|l Probability ;‘
g | S
n ] I 0.6 5
Boab . 3
% l‘ . ‘_‘ 0.4 o
© 1 \ ) t=
So2f | ' 02 >
nL_ |‘ | A \ .
\ - --‘-._/7':.,,‘1‘ . N
0 1 Al 1= 1 1 1 1 O
0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
Time [h]
Fig. 13. Probabilistic forecasts of start-time considering false and delayed
alerts.
TABLE VII
PROBABILISTIC FORECASTING RESULTS OF RAMP RATE
Ramp Rate  Prob. Ramp Rate  Prob.
Ramp No. [MW/h] (%] Ramp No. [MW/h] (%]
Ramp #1 550 87.35 Ramp #4 620 81.03
Ramp #2 600 66.67  Ramp #5 1,300 75.86
Ramp #3 750 62.64  Ramp #6 1,050 74.71
TABLE VIII

PROBABILITIES OF FALSE AND DELAYED ALERTS OF WPRFS

Number Actual False Alerts Delayed Alerts
of Ramps  Time & Ih] Prob. [%] Time [h] Prob. [%]
19 4.31 21 48.67
Ramp #1 20 - - 22 1.03
- - 23 9.54
88 4.19 90 18.22
Ramp #2 89 - - 91 15.46
- - 92 39.45
116 443 120 11.32
Ramp #3 118 117 38.12 121 14.69
- - 122 21.63
146 9.12 148 37.48
Ramp #4 147 - - 149 12.43
- - 150 11.55
- - 159 19.35
Ramp #5 158 - - 160 15.89
- - 161 14.77

results (the maximum probability and ramp rate values) can
be utilized in the stochastic unit commitment problem to help
reduce the unexpected costs caused by WPRs.

4) False and Delayed Alerts of WPRFs: False alerts of
WPRFs are provided before the actual ramp event occurs.
Delayed alerts of WPRFs are provided after the actual ramp
event occurs. Based on the results in Fig. 12a, Fig. 13 shows
the probabilistic forecasts of start-time considering the false
and delayed alerts with a lower tolerance. Table VIII shows the
probabilities of false and delayed alerts at different times. The
forecasts of four ramps show different levels of false alerts. For
the third ramp, the actual start-time is at the 118" hour. A false
alert occurs at the 117" hour with an occurrence probability
of 38.12%, and at the 116™ hour with an occurrence probabil-
ity of 4.43%. For the first, second, and fourth ramps, the false
alerts occur with relatively smaller occurrence probabilities of
4.31%, 4.19%, and 9.12%, respectively. Thus, more attention
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should be paid to the third ramp considering the false alert
with a high probability, which may cause unnecessary oper-
ations and control strategies. In addition, delayed alerts may
have higher impacts on the reliability and economics benefits
of power systems than false alerts. Under this circumstance,
conventional generators cannot be committed when needed for
ramping due to delayed alerts of WPRFs.

V. CONCLUSION

This paper developed a data-driven probabilistic wind power
ramp forecasting (p-WPRF) method based on a large num-
ber of wind power forecasting scenarios. A deterministic
wind power forecast was first generated by a machine learn-
ing method, and then used to calculate historical forecasting
errors. A continuous generalized Gaussian mixture model
(GGMM) was utilized to fit the probability distribution func-
tion (PDF) of wind power forecasting errors (WPFEs) and to
analytically deduce the corresponding cumulative distribution
function (CDF). The inverse transform method based on the
CDF was used to generate a large number of WPFE scenarios.
An optimized swinging door algorithm (OpSDA) was used to
extract all the WPRs for the statistical analysis of p-WPRFs.
Numerical simulations on publicly available wind power data
showed some universal and common lessons as follows:

(i) The GGMM distribution outperformed other distribu-
tions, including the widely used GMM distribution, in
modeling the probability distribution of WPFEs.

There exists a high correlation between the standard
deviation of WPFEs and the performance of the p-WPRF
model. The reduction of WPFEs could significantly
enhance the performance of the p-WPRF model.

The probability of wind power ramp duration increased
with the increasing ramp duration tolerance value for
both upward and downward ramps.

In the future, this research can be further improved by:
(i) developing probabilistic wind power ramp products in
the electricity market design; and (ii) studying the p-WPRF
method in multiple timescales. To improve the robustness
of the proposed WPRF methodology under extreme weather
conditions (especially for the strong wind condition), this
work can be further extended by: (i) improving the robust-
ness of wind power probabilistic forecasts and the forecasting
accuracy of Numerical Weather Prediction models; and (ii)
considering the uncertainty of space-time dependencies of
various nearby locations and look-ahead times.

(i)

(iii)
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