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A B S T R A C T

Effective short-term load forecasting (STLF) plays an important role in power system operations. It is challenging
to identify an ML model that has the outperformance in all scenarios. Therefore, there are a number of ag-
gregation strategies developed to improve STLF. However, the superiority of these aggregation strategies has not
been assessed. In this paper, STLF with three aggregation strategies are developed, which are information ag-
gregation (IA), model aggregation (MA), and hierarchy aggregation (HA). The IA, MA, and HA strategies ag-
gregate inputs, models, and forecasts at the pre-forecasting, model-building, or post-forecasting stage, respec-
tively. To verify the effectiveness of the three aggregation strategies, a set of 10 models based on 4 machine-
learning algorithms are developed in each aggregation category to predict 1-hour-ahead load. Case studies show
that: (i) STLF-IA presents superior performance than STLF with weather data and STLF with individual load data
consistently, and the performance can be further enhanced by the recursive feature elemination (RFE) feature
selection method; (ii) MA improves the STLF robustness by reducing the risk of unsatisfactory single-algorithm
STLF models; and (iii) STLF-HA produces the most accurate forecasts with a 0.83% normalized mean absolute
error and a 1.35% mean absolute percentage error, while keeping hierarchical aggregate consistency.

1. Introduction

Accurate short-term load forecasting (STLF) plays an important role
in power system operations. The most widely used STLF methods are
machine learning (ML) methods, including artificial neural networks
(ANNs), support vector regression models (SVR), and decision tree-
based models. It is a consensus that simply applying an ML model to a
forecasting task is not proper due to that: (i) the performance of an ML
model is significantly affected by the data, (ii) there is no single model
that can always be the best among all models, (iii) a single model can
not meet the forecasting requirements, such as the aggregate con-
sistency.1 In order to achieve better forecasting performance, a number
of methodologies2 have been developed in the literature, which could
be generally divided into three categories: the information aggregation
(IA), the model aggregation (MA), and the hierarchy aggregation (HA).

Research in the first category focuses on integrating more in-
formative and better-organized data to enhance the forecasting accu-
racy, which is defined as information aggregation (IA) in this paper. For
example, endogenous load feature is the most important input to

statistical models [2]. Additionally, meteorological variables, such as
temperature [3] and humidity [4], have been commonly adopted to
generate load forecasts. However, Refs. [3,4] only considered tem-
perature or humidity as independent variables, where their interactions
with other parameters were neglected. Moreover, residents’ life pat-
terns were used to improve the customer-level STLF in Ref. [5] by
considering the most relevant six operated appliances. Nevertheless, the
selection was conducted empirically, which might be suboptimal. Jiang
et al. [6] developed an accurate and robust STLF model based on the
date information. In addition, feature selection techniques, such as the
mutual information-based filter method that selects features based on
dependencies of the forecasting target variable [7], were also used to
optimize the inputs to forecasting models. Nonetheless, filter methods
depend on statistical relationships, which do not involve the forecasting
process. Therefore, there is a need to use wrapper methods, which
evaluate feature importance based on their impacts on the forecasting
accuracy, for automatic feature selection.

The second category contains methodologies combining forecasts
from multiple individual models, which is defined as model aggregation
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(MA). For example, Zhang et al. [8] ensembled a set of extreme
learning machines and took the median value of their outputs as fore-
casts, which showed both superior training efficiency and forecasting
accuracy over benchmark models. An STLF model that integrated in-
dividual models using weight-coefficient optimization was developed in
Ref. [9], which showed better performance than six benchmark single-
algorithm models. Hassan et al. [10] ensembled 100 ANN models with
simple average, trimmed mean, and Bayesian model averaging, and
found that the Bayesian model averaging approach performed better
than other ensemble models. A collection of ANN models were built
based on a two-stage diversity controlled resampling procedure and
then ensembled by a linear combiner in Ref. [11]. The ensemble model
was found to improve the reliability of individual household energy
consumption forecasts. Bagged-boosted ANNs were sequentially trained
and to reduce the bias and averaged to reduce the variance [12]. This
advanced MA strategy outperformed averaging, bagging, and boosting
strategies. However, the above MA methods assign fixed weights to
model members, which fail to consider the dynamic characteristics in
the forecasting [13,14].

The third category of STLF is called hierarchical forecasting, which
we define as hierarchy aggregation (HA). In this category, individual
forecasts are aggregated to improve the top-level individual forecasts in
the power system hierarchy while keeping the aggregate consistency.
Compared to the other two types of aggregate strategies, research of the
HA is limited. For example, Sevlian and Rajagopal [15] investigated the
relationship between forecasting accuracy and aggregation size, and
found the forecasting accuracy scales with load aggregation size, which

follows the Law of Large Numbers, up to a point of diminishing returns.
While the most common HA strategies in STLF is bottom-up (BU)
summation [16–18], several strategies have been developed in other
areas to reconcile the base forecasts (i.e., forecasts without reconcilia-
tions) in multiple levels so that the aggregate consistency in the hier-
archy can be satisfied. For example, a reconciliation process was per-
formed by solving a linear regression with an ordinary least squares
(OLS) estimator, which improved base forecasts for Australian tourism
forecasting [19]. A minimum trace (MinT) estimator and its variants
were developed in Ref. [20] for the same Australian tourism forecasting
and were applied to solar forecasting by Yang et al. [21].

All the three categories of aggregate strategies have been reported
to enhance the STLF accuracy. However, the superiority (i.e., which
methodology has better accuracy) of the three aggregation forecasting
strategies has not been studied in the literature. In an attempt to
comprehensively compare the aggregation strategies at different stages
in the forecasting process, STLF models with IA, MA, and HA are de-
veloped in this paper to aggregate inputs, models, and forecasts, re-
spectively. A set of 10 models based on 4 ML algorithms are built to
ensure the generality of this study. The performance of models in dif-
ferent groups is compared to show the pros and cons of the three ag-
gregation strategies. The main contributions and innovations of this
paper include:

1) Comparing STLF with different IA strategies, including: STLF with
weather information (STLF-W), with individual load (STLF-L), with
the integration of weather and individual load (STLF-I), and with

Nomenclature

Acronyms

ANN, SVR Artificial neural network, support vector regression
Bi, UTD The ith building, the summation of the 13 buildings in the

University of Texas at Dallas
GBM, RF Gradient boosting machine, random forest
GLS, OLS, MinT Generalized least square, ordinary least square,

minimum trace
IA, MA, HA Information aggregation, model aggregation, hierarchy

aggregation
LF, STLF Load forecasting, short-term load forecasting
Mia, Miab The ith model in group a, the comparison of ith model in

group a and b
RFE Recursive feature elimination
STLF-B Group of STLF with the bottom-up strategy in the hier-

archy aggregation category
STLF-F Group of STLF with features selected from both weather

information and individual building load in the informa-
tion aggregation category

STLF-HA STLF with hierarchy aggregation
STLF-I Group of STLF with both weather data and individual

building load in the information aggregation category
STLF-IA STLF with information aggregation
STLF-L Group of STLF with individual building load in the in-

formation aggregation category
STLF-M Group of STLF with model aggregation in the model ag-

gregation category
STLF-MA STLF with model aggregation
STLF-O Group of STLF with the ordinary least square reconcilia-

tion in the hierarchy aggregation category
STLF-T Group of STLF with the minimum trace reconciliation in

the hierarchy aggregation category
STLF-W Group of STLF with weather information in the informa-

tion aggregation category

Variables, vectors, and matrices

β, βOLS Unknown mean vector of the bottom-level entries and the
ordinary least square unbiased estimates of β

βGLS, βMinT Minimum variance and minimum trace unbiased esti-
mates of β

ŷ ,IA ŷ ,MA ŶH Vectors of forecasts in information aggregation and
model aggregation, forecasts of all entries in hierarchy
aggregation categories

Σ, Σ† Unknown variance of bottom-level entries and the Moore-
Penrose generalized inverse of Σ

ỹ ,i Ỹ Forecast vector provided by the first-layer model fi, com-
bination of the first-layer forecast vectors

bi/j,H, B Base forecast vector of an entry at the bottom-level and
base forecasts of entries at all levels

D, F, X, XD Decision matrix, decision matrix constructed by feature
selection, matrix with all variables, and input matrix se-
lected by the decision matrix

W, kh Sample covariance matrix and a positive scaling factor
Xw, Xc, Xl, xs Matrices of weather data, calendar data, individual

building load data, and target variable vector
Ŝ, ε Summing matrix and error vector with zero mean and

unknown variance
Ŷ ,i j H/ , Ŷ ,i H, ŶH Forecast vectors of entries in the bottom-level, mid-

level, and top level

Functions and metrics

ŷ , y, ymax Forecast value, actual value, and maximum actual value
fi, Φ Forecasting model in the first-layer and blending model in

the second-layer.
nMAE, MAPE Forecasting normalized mean absolute error and

mean absolute percentage error
Imp ,ab

A Impab
P Forecasting nMAE and MAPE improvements of model a
over model b

BE, nBE Forecasting bias error and normalized bias error
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STLF-I combined with feature selection (STLF-F);
2) Assessing STLF with MA by using different blending methods, in-

cluding simple averaging, linear regression, and ML algorithms;
3) Introducing aggregate consistency into hierarchical STLF and com-

paring STLF-HA with BU (STLF-B), OLS (STLF-O), and MinT (STLF-
T);

4) Comparing STLF with different aggregation strategies, which are
STLF-IA (including the STLF-I and STLF-F groups), STLF-MA (in-
cluding the STLF-M group),3 and STLF-HA (including the STLF-B,
STLF-O, and STLF-T groups);

5) Ensuring the generality of the assessment by using 10 ML models.

The remainder of this paper is organized as follows. STLF models
with IA, MA, and HA are developed in Section 2. Section 3 describes the
data for case studies, benchmarks, and evaluation metrics. Results of
case studies are analyzed and compared in Section 4. Section 5 con-
cludes the paper.

2. Short-term load forecasting methodologies with different
aggregation strategies

Three types of aggregation strategies (i.e., IA, MA, and HA) are
described and formularized in this section. The three aggregation
strategies aggregate distinct objects at different stages (enclosed by
dashed boxes in Fig. 1), which are pre-forecasting stage, model-building
stage, and post-forecasting stage.

2.1. Information aggregation (IA)

The first generation of STLF only depends on the load time series
itself, which is called the time series approach [22]. External in-
formation, such as meteorological data and calendar features, is in-
tegrated into the second generation of STLF [23]. With the development
of advanced metering infrastructure, smart meter data provides an
opportunity to further improve STLF accuracy. With increasing data
dimension, feature selection methods are also used to optimally de-
termine the input combination to forecasting models.

In this paper, STLF with four sets of inputs is studied and compared,
which are: (i) weather data (Xw), calendar data (Xc), and target variable
data (i.e., load at the top level, which is denoted by xs), (ii) individual
load data (i.e., load data at the bottom level, which is denoted by Xl),
calendar data (Xc), and xs, (iii) Xw, Xl, Xc, and xs, and (iv) inputs se-
lected from Xw, Xl, Xc, and xs using recursive feature elimination (RFE).
Please note that only the latest lagged features are included in the in-
puts for all the models. The STLF with IA (STLF-IA) conducts ag-
gregation at the first step in the forecasting process, as illustrated in
Fig. 1(a). STLF-IA is formularized as follows:

=y Xf^ ( )i IA i
D

, (1)

= = × × × × + + + ×[ ]X XD x X X X DD
n
s

n d
w

n d
c

n d
l

d d d k1 (1 )w c l w c l (2)

where n is the data length, dw, dc, and dl are dimensions of weather data,
calendar data, and individual load data, respectively, fi(*) is the ith
model, ŷIA is a forecasting vector in the IA category, X is a input matrix
with all variables, XD is a selected input matrix, and D is a decision
matrix. k is the decision matrix dimension, which equals to the number
of selected inputs. The matrix D has four forms in terms of two
benchmark scenarios (STLF-W and STLF-L) and two IA scenarios (STLF-
I and STLF-F).
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=+ + + × + + + + + + × + + +D Id d d d d d d d d d d d(1 ) (1 ) (1 ) (1 )w l c w l c w l c w l c (3c)

=+ + + ×D Fd d d k(1 )w l c (3d)

where I and 0 are an identity matrix and a zero matrix, respectively, F
is a decision matrix constructed by feature selection. RFE is adopted as
the feature selection method in this paper, since it has been widely used
in renewable energy or load data analyses [24–26]. RFE is a wrapper
feature selection method that selects features by recursively evaluating
the forecasting behaviour with smaller and smaller sets of features. RF
is used as the forecasting engine, where the impurity (i.e., variance for
regression trees) decrease of each feature is averaged and used to in-
dicate the feature importance. The least important features are pruned
from the current set of features in each iteration, and the set of features
that generates the best forecasting is determined as the selected optimal
feature set. More details about the RFE method can be found in
Refs. [24–26]. After determining the selected inputs using RFE, the F
matrix is constructed by replacing the element in the ith row and jth
column with 1 in the initial + + + ×0 d d d k(1 )w l c matrix, where i is the index
of the selected feature in the X space and j is the index of the same
feature in the newly constructed XD space. An example of the decision
matrix construction after RFE feature selection process is expressed as:
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
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where two elements in the initial + + + ×0 d d d(1 ) 2w l c matrix are replaced by
1. Therefore, two features are selected, which are x w

1 and x l
1 as boxed in

Eq. 2.1:
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2.2. Model aggregation (MA)

MA carries out aggregation at the model-building stage, which is
expected to take advantage of the learning power from different
models. In the literature, averaging forecasts generated by multiple
models is the first MA strategy, followed and advanced by a linear
combination of models (i.e., weighted averaging). The latest MA stra-
tegies seek to combine individual models with dynamic weights. The

3 STLF-MA is short for the category of STLF methods with MA, while STLF-M
specifically refers to a group of models built based on the STLF-MA.
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dynamic weights are adaptively assigned to base learners accordingly.
For example, the gradient boosting machine (GBM) adds subsequent
weak learners weights based on gradients of a loss function. In this
paper, the ML-based Multi-Model forecasting framework (as shown in
Fig. 1(b)) is adopted to aggregate individual forecasting
models [27,28]. The used forecasting framework contains two layers
(different from NN layers), the first of which consists of multiple ML
models while the second of which has another blending model. The
forecasting process of this method is expressed as [26]:

=y X X xf˜ ([ , , ])i i
w c s (5)

=y Y^ ( ˜ )MA (6)

where ỹi is a forecast vector provided by the first-layer model fi, Ỹ is a
combination of the first-layer forecast vectors, and ŷMA is the final
forecast vector by a blending model Φ(*) in the second layer. Four ML
algorithms with multiple training strategies, kernels, or distribution
functions are adopted, which are ANN, SVR, GBM, and random forest
(RF). Please note that all the models are used to construct the first layer.
To compare STLF-M with different blending algorithms, simple aver-
aging, linear regression, or one of the ML methods is adopted in the
second-layer as a blending model in the MA framework.

2.3. Hierarchy aggregation (HA)

Load data is hierarchically aggregated based on the power grid
network and geographical distributions. STLF-HA forecasts entries at
one or multiple hierarchical level(s), which ensures the accuracy of
every entry and the aggregate consistency among different levels.
Aggregate consistency is defined as the equality between the sum of
forecasts and the forecast of the sum. For example, in a three-level
hierarchy shown in Fig. 2, the aggregate consistency requires

=y y^ ^
i HA j i j HA, / , and =y y^ ^ ,HA i i HA, where i indicates the upper-level
entry to which the lower-level individuals belong and j is used to
identify entries within the same aggregation group. To improve the
forecasting accuracy of the top-level entry ( ŷHA in Fig. 2) while keeping
the aggregate consistency, the most commonly used STLF-HA approach
is BU. Other methods, such as reconciliation forecasting [19,20], are
widely used in other areas. In this paper, STLF-HA with BU (STLF-B)
and reconciled STLF-HA with OLS (STLF-O) and MinT (STLF-T) esti-
mators are developed and compared.

STLF-B forecasts load of the bottom-level individuals (level 3 in
Fig. 2), i.e., bi/j,HA, by using weather data, calendar data, and specific
individual load data (i.e., xl), which are aggregated to the upper-level
(level 2) until reaching the top-level (level 1). This process can be ex-
pressed by using matrix notation =Y Sb^ ,HA i j HA/ , which is further ex-
panded as [20]:

=

=

Y y y y y y y y

I

b
b
b
b

^ [ ^ ^ ^ ^ ^ ^ ^ ]

1 1 1 1
1 1 0 0
0 0 1 1

HA HA HA HA HA HA HA HA
T

HA

HA

HA

HA

1, 2, 1/1, 1/2, 2/1, 2/2,

4

1/1,

1/2,

2/1,

2/2, (7)

where ŶHA is a forecasting matrix containing all entries in the hierarchy.
S is a summing matrix, which is determined by the hierarchical struc-
ture in Fig. 2. bi/j,HA are base forecasts at the bottom level, shown in
Fig. 2. I4 is a 4 × 4 identity matrix. Please note that the objective of this
paper is to forecast the load at the top-level, ŷ ,HA which might sacrifice
the accuracy of forecasts at lower levels.

STLF-O and STLF-T leverage correlations and interactions between
entries at different levels, which are different from STLF-B. Therefore,
instead of using only the base forecasts at bottom-level (bi/j,HA), base
forecasts of all entries in the hierarchy are optimally combined to
generate the reconciled final forecasts, ŶHA. The base forecasting re-
conciliation is achieved by solving a linear regression problem [19]:

= +B St t (8)

where Bt is base forecasts of entries at all levels at time t. βt is the
unknown mean matrix of the bottom-level entries. ε is an error vector
with zero mean and unknown variance Σ. The minimum variance un-
biased estimate of βt can be obtained by using generalized least squares
(GLS) estimation as [29,30]:

= S S S B( )t
GLS

t
† 1 † (9)

where Σ† is the Moore-Penrose generalized inverse of Σ. And the re-
conciled unbiased final forecasts are expressed as:

=Y St̂ t
GLS (10)

To deal with the unknown Σ, two simplified estimators are adopted
in this paper, which are OLS and MinT. The reasons to select these two
estimators are that OLS is the most popular reconciliation method and
MinT is the best reconciliation method as reported in the litera-
ture [20,21]. The two estimators are described as follows [20]:

= S S S B( )t
OLS

t
1 (11a)

Fig. 1. Frameworks of STLF with three different aggregation strategies.

Fig. 2. A three-layer hierarchical structure.
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= S W S S W B( )t
MinT

t
1 1 1 (11b)

where Σ equals khI and khW in OLS and MinT, respectively. kh is a
positive scaling factor andW is a historical sample covariance matrix of
base forecasting errors based on the validation dataset. Assumptions
and proofs of the two simplification processes can be found in Ref. [20].
Finally, the unbiased final forecasts with the two reconciliation
methods are expressed as:

= =Y S S S S S B^ ( )t
OLS

t
OLS

t
1 (12a)

= =Y S S S W S S W B^ ( )t
MinT

t
MinT

t
1 1 1 (12b)

3. Experimental setup

In this section, experimental setups for case studies are described,
including the data description and pre-analysis, benchmarks and com-
parison settings, and evaluation metrics.

3.1. Data description and pre-analysis

In this paper, hourly load data of 13 buildings (selected based on the
data availability) at the University of Texas at Dallas (UTD) is used for
case studies [31]. The whole campus data is assumed to be the sum of
13 buildings’ load. The reasons to research with university campus load
are threefold: (i) the demand-side LF is more challenging than the
upper-level LF in power system hierarchy [32], (ii) large electricity
consumers, such as universities, are more critical in demand-side
management, and (iii) a university campus has buildings with diverse
load patterns that are interesting to explore. In addition to campus load,
hourly weather information is retrieved from the National Solar Ra-
diation Database (NSRDB).4 The weather features in the NSRDB dataset
include air temperature, relative humidity, air pressure, wind speed,
wind direction, direct normal irradiance, global horizontal irradiance,
and diffuse horizontal irradiance. Calendar features, i.e., the holiday
indicator, hour of the day, day of the week, and month of the year, are
extracted and included in all the case studies. Please note that only the
latest lagged features are included as the inputs for all the models. Both
UTD load and NSRDB weather data span from January 1st 2014 to
December 31st 2015. The training data and validation data are ran-
domly selected from each month, and the remaining data is used for
testing. The ratio of training samples, validation samples, and testing
samples is 3:1:1. We assume that by randomly partitioning days into
training or testing datasets, the model generality can be better assessed.
This data partitioning strategy has been widely used in power system
time series forecasting, such as Global Energy Forecasting Competition
(GEFCom) 2012 [33] and GEFCom 2014 [34].

Fig. 3 shows load profiles of the total 13 buildings (i.e., the top-level
entry in HA) and individual buildings (i.e., the bottom-level individuals
in HA). It is observed that the load profiles have evident diurnal pat-
terns. This is also proved by a time series analysis [28,35], showing that
all the load time series have a periodicity of 24 (1 day). Moreover, load
patterns of the 13 buildings (B1–B13) are different, which could be
further validated by load statistics as shown in Fig. 4. Among the 13
buildings, B1 is a parking structure equipped with photovoltaic panels,
which may have negative netload during the daytime, as shown in
Fig. 4. B2 is an administration building that has load with larger var-
iance from 8am to 5 pm. B3 is a library that has the largest and most
stable load among all buildings. B4 is a lecture hall, which has relatively
small but chaotic load. B5–B9 are five classroom/lab buildings with
similar patterns. B10–B13 are four student residence halls that have
diverse load patterns in contrast to other buildings. Compared to in-
dividual buildings, the whole campus load (UTD) is relatively

smoother.
While the methods can be applied to different forecasting horizons,

the forecasting time horizon in this paper is 1-hour-ahead. 1-hour-
ahead LF plays an important role in power system operations, such as
helping decision-making of real-time dispatch and energy storage
charging/discharging. 1-hour-ahead LF is also flexible and scalable to
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Fig. 3. UTD campus and building load profiles for seven days in spring.
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4 https://nsrdb.nrel.gov
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generate longer-term forecasts in a recursive or a parallel manner. The
experiments are carried out on a laptop locally with 2.6 GHz Intel Core
i7 processor and 16 GB 1600 MHz DDR3 SDRAM in R language.

3.2. Benchmarks and comparison settings

In this paper, forecasting methods with three categories of ag-
gregation strategies are investigated and compared, which are IA, MA,
and HA. Although combining all the three aggregation strategies in a
model might be able to obtain the most accurate forecasts, the three
aggregation strategies are separated in different categories for better
comparisons. The details of each category are summarized as follows
and listed in Table 1:

• Category 1: In the IA category, STLF using weather data (STLF-W),
individual buildings’ load data (STLF-L), STLF-I, and STLF-F are
compared. Note that the historical whole campus load data and
calendar data are included in all the four groups as an input.
• Category 2: The second comparison is made between STLF-M and
STLF with a single-algorithm ML model (STLF-S), both of which use
weather data and calendar data (so STLF-S is the same as STLF-W).
Please note that the historical whole campus load data is also a
predictor in the two groups. Both simple methods (simple average
and linear regression) and ML methods are adopted as blending
algorithms in the second layer of the ML-based Multi-Model fore-
casting framework.
• Category 3: The third category contains three HA strategies, which
are BU, OLS reconciliation, and MinT reconciliation. All the three
HA strategies are tested by the two-level UTD load hierarchy that
contains a top-level entry and 13 bottom-level entries. The inputs to
the individual building load forecasting models are weather data,
calendar data, and the corresponding historical individual building
load.

After investigating the effectiveness of the three aggregation stra-
tegies, models in the 6 aggregation groups (i.e., STLF-I, STLF-F, STLF-M,
STLF-B, STLF-O, and STLF-T) are further compared to show their su-
periority in STLF.

Ten state-of-the-art ML models are included in this paper for ag-
gregation strategy implementations, which diversified by different
training algorithms, kernel functions, or distribution functions.
Specifically, three ANN models with standard back-propagation (BP),
momentum-enhanced BP, and resilient BP training algorithms are se-
lected based on their fast convergence and satisfactory perfor-
mance [36]. The most popular kernels in SVR are used, which are
linear, polynomial, and radial base function kernels. GBM models with
squared, Laplace, and T-distribution loss functions are empirically se-
lected. The last model is an RF model. The model hyperparameters are
emperically determined by the validation dataset and summarized in
Table 2, including the learning rate (lr) and the maximum number of
epochs (max_epoch) in M1–M3; the minimum update value (min_d-
elta) and the maximum update value (max_delta) in M1; the mo-
mentum (momentum) in M2; the penalty weight (Cd) and insentive
parameter (εd) in M4–M6; the free parameter (δd) in M5 and M6; the
degree of the polynomial (degree) in M5; the number of boosting
iterations (ntrees), maximum tree depth (max_depth), learning rate
(lr), out-of-bag fraction (bag_frac) in M7–M9; the degree of freedom
(DF) in M9; and the number of trees (ntrees) and the number of
variables randomly sampled as candidates at each split (mtry) in M10.
It is important to note that all these models are used in the first-layer
and only one of them is used in the second-layer in MA.

3.3. Forecasting accuracy assessment

To assess the forecasting accuracy, four evaluation metrics are used,
which are normalized mean absolute error (nMAE), mean absolute

percentage error (MAPE), nMAE improvement (ImpA), and MAPE im-
provement (ImpP). The mathematical expressions of the four metrics are
respectively shown as [37,38]:
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where ŷ , y, and ymax are the forecasting value, actual value, and
maximum actual value, respectively; i is a sample index and n is the
number of samples; M is the model name; a and b are group indices to
which a model belongs. Specifically, a and b could be selected from L,
W, S, I, F, M, B, O, and T, which represent the groups of STLF-L, STLF-
W, STLF-S, STLF-I, STLF-F, STLF-M, STLF-B, STLF-O, and STLF-T, re-
spectively. For example, ImpIW

A means the improvement of STLF-I over
STLF-W based on nMAE. It is important to note that both ImpA and ImpP

are calculated based on the same model M, because the focus of this
paper is to compare STLF with different aggregation strategies, instead
of comparing STLF using different ML models. Quantifying the overall
performance of forecasting models from different perspectives, how-
ever, the four metrics are not able to detail the local accuracy of fore-
casts (e.g., all the bias are positive since the absolute value calculation).
Therefore, two other error metrics used for visualization in Section 4
are bias error (BE, which is also known as the forecasting residual) and
normalized bias error (nBE), which are expressed as:

=BE y y^i i i (17)

= ×nBE
y y

y
^

100%i
i i

i (18)

4. Results and discussion

4.1. Effectiveness of IA

Four groups of STLF models in the IA category are tested and their
forecasting errors and comparison results are summarized in Tables 3
and 4. It is observed from Table 3 that different ML models perform
distinctively. For instance, the forecasting nMAE of STLF-W models
ranges from 1.05% to 1.83%. In general, the last three models (two
GBM models and one RF model), i.e., M8–M10, forecast more accu-
rately than other models in all the four groups. This is due to the
stronger learning power of the three ensemble models. In addition, the
weather information has larger impacts on forecasting model perfor-
mance than individual building load data, since all the models in the

Table 1
Different aggregate forecasting categories and groups.

Category Group Group index Input

IA STLF-W W [Xw, Xc, xs]
STLF-L L [Xl, Xc, xs]
STLF-I I [Xw, Xc, Xl, xs]
STLF-F F [Xw, Xc, Xl, xs]

MA STLF-S S [Xw, Xc, xs]
STLF-M M [Xw, Xc, xs]

HA STLF-B B [Xw, Xc, xl]
STLF-O O [Xw, Xc, xl]
STLF-T T [Xw, Xc, xl]
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STLF-W group have smaller forecasting errors than those in the STLF-L
group, except for M4 and M9. However, the influence of the inputs on
models is varying. For example, the forecasting results could be com-
petitive (e.g., M9) or even worse (e.g., M4) by using individual building
load compared to those using weather data.

It is found from Table 4 that STLF-I models reduce forecasting errors
notably and consistently, compared with STLF-W and STLF-L models.
The accuracy improvements are more evident by aggregating weather
information data into forecasting models. Regarding different models,
M1 (an ANN model) and M8 (a GBM model) are enhanced the most by
IA. A further comparison is made between STLF-I and STLF-F models,
where the RFE feature selection further improves some of the models,

such as M9. It is concluded that IA improves STLF forecasting accuracy
notably and consistently.

4.2. Effectiveness of MA

MA forecasting evaluation results are summarized in the first 4
columns of Table 5. The comparisons of MA with STLF-S are shown in
the 5th and 6th columns of the same table. It is found that the perfor-
mance of the relatively less-accurate STLF-S models is improved more
notably by MA, such as M4 and M7. However, the best two models in
STLF-S, i.e., M8 and M10, deteriorate in STLF-M, which is partially due
to the unsatisfactory forecasts (Ỹ ) from part of the first-layer models.
Regarding second-layer blending models, two linear models, M0* and
M4, outperform other models, possibly due to the linear relationship
between the first-layer forecasts (Ỹij) and the load observations. By
comparing blending models with ML algorithms, all the ANN models
(i.e., M1–M3) and SVR with linear and polynomial kernels (i.e., M4 and
M5) perform relatively better in STLF-M. Among the four different
ensemble learning algorithm models (M7–M10), two of them (i.e., M7
and M9) have increasing accuracies while the other two (i.e., M8 and
M10) have decreasing accuracies using the MA strategy. Though three
models (i.e., M6, M8, and M10) produce worse forecasts, their fore-
casting accuracies are still competitive. Therefore, it is concluded that MA
enhances STLF robustness by reducing the risk of unsatisfactory single-al-
gorithm ML models.

Table 2
Machine learning models.

Algorithm Model Function/algorithm Hyperparameter

ANN M1 Resilient back-propagation (BP) lr = 0.01, max_epoch = 1,000, min_delta = 1 × 106, max_delta = 50
M2 Momentum-enhanced BP lr = 0.01, max_epoch = 1,000, momentum = 0.9
M3 Standard BP lr = 0.01, max_epoch = 1,000

SVR M4 Linear kernel Cd = 0.1, εd = 0.001
M5 Polynomial kernel Cd = 0.1, εd = 0.001, δd = 0.1, degree = 3
M6 Radial basis function kernel Cd = 0.1, εd = 0.001, δd = 0.1

GBM M7 Squared loss lr = 0.01, ntrees = 1,000, max_depth = 20, bag_frac = 0.5
M8 Laplace loss lr = 0.01, ntrees = 1,000, max_depth = 20, bag_frac = 0.5
M9 T-distribution loss lr = 0.01, ntrees = 1,000, max_depth = 20, bag_frac = 0.5, DF = 4

RF M10 CART aggregation ntrees = 1,000, mtry = 5

Table 3
Forecasting nMAE [%] and MAPE [%] in the IA category.

Model STLF-W STLF-L STLF-I STLF-F

nMAE MAPE nMAE MAPE nMAE MAPE nMAE MAPE

M1 1.68 2.67 1.69 2.76 1.38 2.22 1.29 2.10
M2 1.34 2.20 1.58 2.56 1.26 2.10 1.35 2.24
M3 1.36 2.20 1.70 2.76 1.36 2.22 1.32 2.13
M4 1.83 3.01 1.72 2.81 1.53 2.50 1.57 2.55
M5 1.46 2.35 1.57 2.53 1.31 2.12 1.37 2.21
M6 1.43 2.32 1.44 2.36 1.26 2.07 1.16 1.90
M7 1.67 2.71 1.83 2.95 1.67 2.70 1.67 2.69
M8 1.08 1.74 1.36 2.23 1.00 1.64 1.03 1.68
M9 1.28 2.14 1.29 2.13 1.16 1.91 1.06 1.73
M10 1.05 1.72 1.32 2.17 0.99 1.61 1.00 1.63
Average 1.42 2.31 1.55 2.53 1.29 2.11 1.28 2.09

Note: Italic values indicate the best results within the same group and bold
values indicate the smallest forecasting errors among all models.

Table 4
Forecasting improvements in the IA category according to ImpA [%] and ImpP

[%].

ImpIW
A ImpIW

P ImpIL
A ImpIL

P ImpFI
A ImpFI

P

M1 17.86 16.85 18.34 19.57 6.52 5.41
M2 5.97 4.55 20.25 17.97 −7.14 −6.67
M3 0.00 −0.91 20.00 19.57 2.94 4.05
M4 16.39 16.94 11.05 11.03 −2.61 −2.00
M5 10.27 9.79 16.56 16.21 −4.58 −4.25
M6 11.89 10.78 12.50 12.29 7.94 8.21
M7 0.00 0.37 8.74 8.47 0.00 0.37
M8 7.41 5.75 26.47 26.46 −3.00 −2.44
M9 9.38 10.75 10.08 10.33 8.62 9.42
M10 5.71 6.40 25.00 25.81 −1.01 −1.24
Average 8.49 8.13 16.90 16.77 0.79 1.09

Note: Itaic values indicate the most improvements within the same comparison
while bold values identify the most improvements in all comparisons.

Table 5
Forecasting nMAE [%], MAPE [%], ImpMS

A [%], and ImpMS
P [%] in the MA ca-

tegory.

Model STLF-S STLF-M ImpMS
A ImpMS

P

nMAE MAPE nMAE MAPE

SP M0† NA NA 1.38 2.26 NA NA
M0* NA NA 1.10 1.77 NA NA

ML M1 1.68 2.67 1.32 2.16 27.27 19.10
M2 1.34 2.20 1.36 2.24 −1.47 −1.82
M3 1.36 2.20 1.45 2.35 −6.21 −6.82
M4 1.83 3.01 1.35 2.22 35.56 26.25
M5 1.46 2.35 1.20 1.98 21.67 15.74
M6 1.43 2.32 1.76 2.85 −18.75 −22.84
M7 1.67 2.71 1.39 2.32 20.14 14.39
M8 1.08 1.74 1.24 2.06 −12.9 −18.39
M9 1.28 2.14 1.15 1.89 11.30 11.68
M10 1.05 1.72 1.16 1.91 −9.48 −11.05
Average 1.42 2.31 1.34 2.20 6.71 2.62

Note: Itaic values indicate the best results within the same group, while bold
values indicate the smallest forecasting errors or the most significant im-
provements among all models. M0† and M0* are ML-based Multi-Model fore-
casting frameworks with simple averaging and linear regression in the second
layer.
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4.3. Effectiveness of HA

The forecasting nMAE and MAPE using STLF-HA models with three
different HA methods are illustrated by barplots in Fig. 5. By comparing
entries in different levels of the hierarchy, it is found that the bottom-

level forecasting errors are canceled out by aggregating bottom-level
forecasts (B1–B13) to top-level forecasts (UTD). Taking the M1 model in
STLF-B as an example, most of the individual load (B1–B13) forecasting
nMAEs are obviously larger than 1.10%, while its forecasting error of
UTD is only 1.10%. Regarding forecasting models, though no single
model always outperforms others, three ensemble learning models
(M8–M10) perform more accurately, especially for buildings B2, B4,
and B8.

The comparisons (only the top level) between STLF-HA models with
STLF-S models (denoted as MBL, MOL, and MTL) are shown in Fig. 6. It is
observed that all the three HA strategies improve the top-level entry’s
forecasting accuracy using all 10 models, as indicated by the positive
bars of MBL, MOL, and MML. As opposed to STLF-S, HA methods improve
STLF by up to 24.63% and 26.59% based on ImpA and ImpP, respec-
tively. By comparing three HA strategies (indicated by MOB and MTB in
Fig. 6), it is found that only SVR models (M4–M6) are enhanced by OLS
and MinT strategies, which means the more advanced OLS and MinT
methods do not outperform BU consistently as expected in the selected
case studies. Overall, it is concluded that HA is able to provide more ac-
curate forecasts while keeping aggregate consistency in the hierarchy.

4.4. Superiority of different aggregation strategies

The outperformance and advantages of the three aggregation stra-
tegies over STLF-L and STLF-W have been validated in Sections 4.1–4.3.
In this subsection, further comparisons are conducted among the dif-
ferent aggregation strategies. Results of STLF with three aggregation
strategies are visualized in Fig. 7. Most STLF-B and STLF-T models
outperform their counterparts in STLF-I, STLF-F, and STLF-M groups,
such as ANN, GBM, and RF models. However, SVR models in the STLF-B
group (M4–M6) are beaten by the same models in the STLF-I and STLF-
F groups. Furthermore, two models (i.e., M4 and M7) with HA strate-
gies produce worse forecasts than those with MA strategy. The fore-
casting accuracy deterioration of the STLF-HA models is due to the
individual forecasting error accumulation effect, which is illustrated in
Fig. 8. Two contrasts shown in Fig. 8 are STLF-O with M7 (M7O) and
STLF-B with M10 (M10B), which are the worst and the best STLF-HA
models, respectively. It is observed from Fig. 8(a) that M10B generates
forecasts with smaller bias for each individual building than M7O, such
as B2 and B4. Moreover, the individual buildings’ LF errors of M7O
accumulate to larger values in contrast with those of M10B, which is
illustrated by the darker colors of the whole campus’ forecasting errors
in Fig. 8(b). Though there are some unsatisfactory models compared
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with the other two aggregation strategies, the overall improvement of
STLF-HA is obvious. Additionally, STLF-HA produces the most accurate
forecasts (0.83% nMAE and 1.35% MAPE) among all models.

The best model in each group is picked out to make further com-
parisons, which are M10 in the STLF-W/STLF-S group (M10W), M9 in
the STLF-L group (M9L), M10 in the STLF-I group (M10F), M0* in the
STLF-M group (M0*M), and M10 in the STLF-B group (M10B). Fig. 9
shows 1-week actual, forecasting, and bias error time series of the se-
lected five models. It is observed that M10B has smaller errors than the
other four models, especially during load ramps (enclosed by red boxes
in Fig. 9). To characterize forecasting performance of the five models,
forecasting errors with respect to calendar units (i.e., month of the year,
day of the week, and hour of the day) are shown in Fig. 10(a)–(c). One
interesting finding is that the calendar effect has considerable impacts
on forecasting errors. For example, errors in January, August, and
September are much larger than those in other months. This is possibly
due to the load pattern variation by the university holidays. The ca-
lendar effect on forecasting errors is even more evident by hour of the
day, as shown in Fig. 10(c). Forecasts deviate the most from 6am to
8am, during which load patterns change more considerably. However,
no evident calendar effect is found on forecasting errors by day of the
week, as shown in Fig. 10(b). This is possibly due to the diverse
building load of the university, for example, classroom and library
buildings have higher load during weekdays and residential halls have
higher load during weekends. Even though the load pattern varies a lot, it
is observed that M10B presents superior performance in every month, every

day of the week, and at every hour of the day than the best models in other
groups.

5. Conclusion

This paper developed and compared short-term load forecasting
(STLF) with different aggregation strategies, including information
aggregation (IA), model aggregation (MA), and hierarchy aggregation
(HA). The three aggregation strategies integrated distinct objectives at
different stages in the forecasting process. STLF-IA aggregates more
informative and better-organized data. STLF-MA aggregates forecasts of
different ML models and takes advantage of their learning abilities.
STLF-HA aggregates lower-level forecasts into higher level forecasts in
the hierarchical structure. Case studies based on 2-year of hierarchical
smart meter data showed that:

(i) STLF with the three aggregation strategies improved forecasting
accuracy, compared with benchmarks without aggregation.

(ii) STLF-I presented superior performance than STLF with weather
data and STLF with individual load data consistently.

(iii) MA improved the STLF robustness by reducing the risk of un-
satisfactory single-algorithm STLF models.

(iv) HA produced the most accurate forecasts while keeping hier-
archical aggregate consistency in distinctive load pattern scenarios
caused by calendar effects.
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