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ABSTRACT

A critical step in stochastic optimization models of power system analysis is to select a set of appropriate scenarios and significant numbers
of scenario generation methods exist in the literature. This paper develops a clustering based scenario generation method, which aims to
improve the performance of existing scenario generation techniques by grouping a set of correlated wind sites into clusters according to their
cross-correlations. Copula based models are utilized to model spatiotemporal correlations and the Gibbs sampling is then used to generate
scenarios for day-ahead markets. Our results show that the generated scenarios based on clustered wind sites outperform existing approaches
in terms of reliability and sharpness and can reduce the total computational time for scenario generation and reduction significantly. The
clustering-based framework can therefore provide a better support for real-world market simulations with high wind penetration.
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NOMENCLATURE

Sets

B Buses
BG ! B Buses with generators
BL ! B Load buses

G Generators
Gb ! G Generators on bus b 2 BG

GT ! G Thermal generators
GW ! G Wind generators

L Transmission lines, or branches
T Time slices
N Wind power scenarios

Parameters

Cg Slope of the cost function of generator g 2 GT , in $/
MWh

CDL System-wide load curtailment cost, $/MWh
CDR System-wide regulating up/down reserve curtailment

cost, $/MWh
CDS System-wide spinning reserve curtailment cost, $/MWh

CSU
g ;CSD

g Start-up and shut-down cost of generator g 2 GT

C0
g Intercept of the cost function of generator g 2 GT ,

in $
Db;t Demand at bus b 2 BL in time t 2 T
K Number of clusters during scenario generation

pg;0 Initial power production of generator g
PF
g;t Forecasted power at time t from non-thermal genera-

tor g 2 GnGT

Pmax
g ; Pmin

g Upper and lower bounds of power production from
thermal generator g 2 GT

RSU
g ;RSD

g Start-up/shut-down ramp rates of generator g
RU
g ;R

D
g Ramp up/down rates of generator g

RQRD
t System regulation down reserve requirement at time t

RQRU
t System regulation up reserve requirement at time t

RQS
t System spinning reserve requirement at time t

SF‘;b Power shift factor, power flow increment on branch ‘
due to power injected at bus b

TU
g ;T

D
g The minimum online/offline time of generator g

TU0
g ;TD0

g Number of initial time slices generator g must be
online/offline

uai;t Marginal CDF of x ai;t
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ufi;t Marginal CDF of x fi;t
vg;0 Initial commitment status of generator g
K‘ Power limit of branch ‘ 2 L

Variables

pg;t 2 Rþ Power production from generator g 2 G in time
t 2 T

!pg;t 2 Rþ Maximum power available from generator g 2 G in
time t 2 T

rRDg;t 2 Rþ Regulation down reserve provided by generator g 2
GT in time t

rRUg;t 2 Rþ Regulation up reserve provided by generator g 2 GT

in time t
rSg;t 2 Rþ Spinning reserve provided by generator g 2 GT in

time t
vg;t Commitment status of generator g 2 GT in time

t 2 T, binary
x ai;t; x

f
i;t

Samples of random variables Xa
i;t and Xf

i;t

x a;ni;t
Realization of variables Xa

i;t in scenario n

Xa
i;t ;X

f
i;t

Random variables indicating actual and forecasted
wind power at site i in time t

zPg;t 2 Rþ Production cost of generator g 2 GT in time t 2 T

zSDg;t 2 Rþ Shut-down cost of generator g 2 GT in time t 2 T

zSUg;t 2 Rþ Start-up cost of generator g 2 GT in time t 2 T

zD
t 2 Rþ Load and reserve curtailment cost in time t 2 T

db;t 2 Rþ Load curtailment at bus b in time t
dRDt 2 Rþ System-wide regulating down reserve curtailment in

time t
dRUt 2 Rþ System-wide regulating up reserve curtailment in

time t
dSt 2 Rþ System-wide spinning reserve curtailment in time t

I. INTRODUCTION
Stochastic programming represents a potentially promising tech-

nique to address uncertainties associated with wind power1–3 and has
been studied widely in the recent decades4–6 in a variety of fields.7–10

However, one challenge in its practice is to select a set of appropriately
weighted scenarios to represent the space of uncertainty. Such techni-
ques usually involve fitting forecasted wind power or forecast errors to
specific distributions,11 where scenarios are then generated by sam-
pling the derived distributions.12 Such distributions can be either para-
metric distributions, such as Gaussian5 and Generalized Gaussian
distributions,13 the Beta distribution,14,15 the Weibull distribution,16

and the logit-normal distribution,12 or non-parametric distributions.17

Ma et al.18 characterized forecast errors using empirical distributions
and the inverse transformation method is applied to obtain a set of
scenarios. Cui et al.13 developed a generalized Gaussian mixture model
to fit forecast errors of aggregated wind power from hundreds of wind
farms and the fitted distribution is used to sample scenarios for proba-
bilistic wind ramp forecasting.

While sampling methods can be applied to these distributions to
generate scenarios for a single wind farm or aggregated power output
of multiple wind farms,5,11,13,15,17,18 an increasing number of studies
have placed emphasis on spatiotemporal correlation in scenario

generation.19–21 Typically, such correlation is modeled with multivari-
ate joint distributions. For example, Pinson et al.12 employed a multi-
variate Gaussian distribution to describe correlations between wind
power forecasts made at different lead times, and this method has
been widely adopted in numerous studies recently. Other commonly
used methods include Cholesky decomposition,22 moment matching
techniques,23 and the generalized dynamic factor model.24 In addition,
machine learning-based methods are also employed to generate sce-
narios in the latest studies. Such methods include artificial neural net-
work (ANN),25 quantile regression convolutional neural network
(QRCNN),26 radial basis function neural network (RBFNN),18 genera-
tive adversarial networks (GAN),27,28 and support vector machine
(SVM).29 Particularly, techniques that are used to generate probabilis-
tic forecasts can be used to produce discrete scenarios by sampling the
predictive distributions to avoid reliance on prior distributions.30

Nevertheless, modeling high dimensional multivariate non-Gaussian
distributions can be challenging, and a common approach is to use
copula.31 By applying the marginal cumulative distribution functions
to stochastic variables, the original variables are transformed from the
original space into a common uniform domain, in which correlations
among the original variable can be further characterized using copulas.
The copula-based methods have been used extensively in the literature
recently.12,32–35 For example, Zhang et al.19 modeled spatiotemporal
correlations of clustered wind farms using a copula based model and
implemented a scenario generation method. A similar method is
developed by Tang et al.20 and the Gibbs sampling method is adopted
to generate scenarios for a stochastic economic dispatch (ED) model.

The above methods represent a considerable number of sce-
nario generation approaches. However, real-world power systems
usually involve hundreds or even thousands of wind farms, while
sampling random variables of such high dimensions is usually
computationally prohibitive, especially when spatial-temporal
correlation is explicitly considered. Recently, data mining techni-
ques have been applied to power system studies to process large
volumes of data in a diverse set of literature studies.36,37

Typical applications include cable layout design, evaluation of
transfer capabilities, reliability of networks, and also wind power
forecasting.38 In the study by Vallee et al.,37 a clustering method is
developed to group 94 wind areas into 14 clusters, which are then
used to generate samples of wind speed to evaluate system reliabil-
ity through a non-sequential Monte Carlo simulation.

In this paper, we present a scenario generation framework based
on cluster analysis, where wind sites are grouped into clusters by corre-
lation. The framework is aimed to improve the quality of generated
scenarios at less time expense by maximizing intra-cluster correlation
and minimizing inter-cluster correlation. By clustering wind sites into
a number of smaller clusters, existing methods can be employed to
generate scenarios for each cluster. The generated scenarios of wind
power are then reduced and used as inputs to a stochastic day-ahead
unit commitment (DAUC) model, which uses a hedging strategy to
clear the day-ahead market to determine commitment statuses of ther-
mal units. Given the commitment statuses of thermal generators, a
real-time ED model is then solved to evaluate the system cost-
effectiveness and reliability. A synthetic, 2000-bus network built on
the footprint of the Electric Reliability Council of Texas (ERCOT)39 is
employed to demonstrate the applicability of the proposed method in
real-world power systems. Our approach represents an enhanced
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framework based on existing methods and can be applied to real-
world power systems with high wind penetration.

The main contributions of our work include (i) enhancing
existing scenario generation methods by substantially improving the
quality of generated scenarios with reduced time consumption, (ii)
demonstrating the proposed framework with a real-world sized power
system and scrutinizing the trade-off between the number of clusters
and a variety of evaluation metrics, and (iii) using the generated sce-
narios as inputs to a stochastic power market simulation of a synthetic
network built on the footprint of the Texas power system and assess-
ing its impact in market operation and scheduling. The proposed
framework can be extended by integrating with other scenario genera-
tion methods and applied to real-world power systems with high wind
penetration.

The remainder of this paper is organized as follows: Sec. II details
the developed clustering-based framework. Section III formulates the
power market simulation model. Section IV summarizes the data and
assumptions. Sections V and VI present the generated scenarios and
the power market simulation, respectively. Section VII concludes this
paper.

II. CLUSTERING BASED SCENARIO GENERATION
A. Cluster analysis

While numerous studies suggest that including correlations
across wind farms can provide better support for existing scenario
generation methods,19–21 these studies typically include all wind farms
in a single group. However, wind farms in a real-world power network
usually scatter over a wide area since geographical diversification can
effectively decrease fluctuations in aggregate output and improve over-
all economic viability.40,41 In addition, correlations normally decay
with distances, which results in a weak correlation between two wind
farms if they are remotely located. Therefore, it is questionable
whether the generated scenarios can benefit from including weakly
correlated wind farms and a more appropriate approach is to group
wind farms into clusters based on their cross-correlations.42

Cluster analysis groups data objects based only on information
provided by the data itself, where data objects in one cluster often
share similar characteristics and are distinct from other clusters. The
similarity or distance between data objects is usually expressed in
terms of proximity measures, such as ‘p norms, or the cohesion of the
cluster. In this study, we use Pearson’s correlation coefficient qðx i; x jÞ
as the proximity measure since the wind farms are clustered based on
correlation, i.e., wind farms in the same cluster should be more closely
correlated with each other, while correlations between two clusters are
less strong. The formula for qðx i; x jÞ is given by the equation below:

qðx i; x jÞ ¼
covðx i; x jÞ

rx irx j
: (1)

A variety of methods exist in cluster analysis.43 In this study, we
use the k -means method. The k -means method is a widely used
prototype-based, partitional method that selects the mean of all data
objects in a cluster as the prototype. Let C denotes a set of data objects,
which can be grouped into K clusters and let x 2 Ck denotes the data
objects in the k th cluster, the objective function of the k -means method
becomes

min
XK

k¼1

X

x 2Ck

distðck ; x Þ; (2)

where distðÞ represents the selected proximity measure. Note that
since higher q represents stronger correlation, hence higher similarity,
the objective function minimizes 1& q instead:

min
XK

k¼1

X

x 2Ck

1& qðck ; x Þ½ (: (3)

To solve the optimization problem, one can exhaustively enumerate
all possible ways of grouping objects into K clusters. However, this is
often computationally prohibitive and heuristic iteration-based algo-
rithms are typically used. Such heuristic algorithms often require initial
conditions (i.e., centroids) as input and iteratively converge to a solu-
tion where the objective value no longer decreases. Although the heu-
ristic algorithms can converge within an acceptable amount of time,
they are sensitive to initial conditions and often converge to a local
minimum rather than a global minimum. Therefore, multiple runs
with randomly selected initial conditions are typically required. In this
paper, the k-means function in MATLAB is employed and repeated
ten times using different initial cluster centroids.

B. Scenario generation
After all wind sites are grouped into K clusters, existing scenario

generation methods can be applied to each cluster. Given a cluster
with N wind sites, the spatial correlations of wind power production
across all sites in the cluster can be modeled using a multivariate joint
probability distribution, whose cumulative density function (CDF)
and probability density function (PDF) are given below:

Fa1)))aN f1)))fN ðx a1;t ;…; x aN;t ; x
f
1;t ;…; x fN;tÞ

¼ ProbðXa
1;t * x a1;t ;…;Xa

N;t * x aN;t;X
f
1;t * x f1;t ;…;Xf

N;t * x fN;tÞ;
(4a)

fa1)))aN f1)))fN ðx a1;t ;…; x aN;t ; x
f
1;t ;…; x fN;tÞ

¼
@2NFa1)))aN f1)))fN

@Xa
1 ) ) ) @Xa

N@X
f
1 ) ) ) @X

f
N

; (4b)

where Xa
i;t and X

f
i;t denote actual and forecasted wind power at site i dur-

ing time t, respectively. Note that the forecasts can be deterministic fore-
casts with any lead time and in our analysis, day-ahead forecasts are
used. Therefore, scenario generation given wind power forecast becomes
sampling the distribution of actual wind power ðXa

1;t ;…;Xa
N;tÞ condi-

tioned on the forecasted wind power ðx f1;t ;…; x fN;tÞ,

Fa1)))aN jf1)))fN ðx
a
1;t ;…; x aN;tÞ

¼ ProbðXa
1;t * x a1;t ;…;Xa

N;t * x aN;t jX
f
1;t ¼ x f1;t ;…;Xf

N;t ¼ x fN;tÞ;
(5a)

fa1)))aN jf1)))fN ðx
a
1;t ;…; x aN;tÞ ¼

@NFa1)))aN jf1)))fN
@Xa

1 ) ) ) @Xa
N
: (5b)

Here, we follow Tang et al.20 by modeling the multivariate distri-
bution with marginal distributions of individual variables and a copula
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to link their interdependence. The spatial correlation is modeled with
the copula, while the temporal correlation is modeled with a multivari-
ate Gaussian distribution. Next, Gibbs sampling is adopted to simulate
sampling of the multivariate random variable by sequentially sampling
each component.

1. Gibbs sampling

The Gibbs sampling method is a Markov chain Monte Carlo
algorithm44,45 and the idea is to iteratively sample only one variable or
a block of variables at a time from its distribution conditioned on the
remaining variables. Suppose we have a two-dimensional random var-
iable (X, Y), the Gibbs sampler generates a sequence (known as a
Gibbs sequence) by sampling each component conditioned on the
other component:

yð0Þ; x ð0Þ; yð1Þ; x ð1Þ; yð2Þ; x ð2Þ;…; yðk Þ; x ðk Þ:

The initial value yð0Þ is specified and the rest of the sequence is
obtained by iteratively sampling,

XðjÞ + f ðXjY ðjÞ ¼ yðjÞÞ;
Y ðjþ1Þ + f ðY jXðjÞ ¼ x ðjÞÞ:

The process of generating a Gibbs sequence is Gibbs sampling. It
shows that under certain conditions, the distributions of Xðk Þ and Y ðk Þ

converge to f(X) and f(Y) (i.e., their marginal distributions), respec-
tively, as k !1. Without knowing the joint distribution, we can gen-
erate a set of samples that follow their marginal distributions. It can
also be extended to high dimensional space as well. Therefore, Gibbs
sampling converts sampling a multivariate distribution into sequen-
tially sampling a set of univariate distributions, i.e., sampling the mul-
tivariate distribution in Eq. (5a) becomes sampling
Faija1;…;ai&1aiþ1;…; aN f1;…;fN iteratively. A detailed procedure is given in
Algorithm 1. Note that, in this analysis, we use the forecasted wind
power x fi;t to initialize x

a
i;t .

2. Spatial correlation

To obtain the univariate distributions required in Algorithm 1,
we start from the conditioned probability distributions from Eq. (4a).
By applying Bayes’ theorem, the CDF of Xa

i;t conditioned on other var-
iables in Algorithm 1 is

Faija1)))ai&1aiþ1)))aN f1)))fN ðx
a
i;tÞ

¼
ProbðXa

i;t * x ai;t ;X
a
j 6¼i;t ¼ x aj 6¼i;t ;X

f
1;t ¼ x f1;t ;…;Xf

N;t ¼ x fN;tÞ

ProbðXa
j 6¼i;t ¼ x aj 6¼i;t;X

f
1;t ¼ x f1;t ;…;Xf

N;t ¼ x fN;tÞ
;

j 2 f1;…;Ng: (6)

By applying the copula function, the equation becomes

Fai ja1)))ai&1aiþ1)))aN f1)))fN ðx
a
i;tÞ

¼

@2N&1C2N

@Fa1 ) ) ) @Fai&1@Faiþ1 ) ) ) @FaN@Ff1 ) ) ) @FfN

!!!!
Fai ðx

a
i;tÞ

0

@2N&1C2N

@Fa1 ) ) ) @Fai&1@Faiþ1 ) ) ) @FaN@Ff1 ) ) ) @FfN

!!!!
1

0

; (7)

which only includes a copula function C2N and marginal distribution
functions associated with each variable Fai . Note that detailed deriva-
tion can be found in Appendix.

Once the univariate CDF is determined, Algorithm 1 is imple-
mented sequentially to produce samples. In this study, the logit-
normal distribution is used to fit the marginal distributions of wind
power,11 and the copula is selected from among Gaussian, student t,
and the Archimedean family based on the Bayesian information crite-
rion (BIC).13

3. Temporal correlation

Samples produced from the above method represent simulta-
neous power production from multiple spatially correlated wind
farms. However, as suggested by Pinson et al.,12 power production
from a wind farm at different times are also temporally correlated,
which can be modeled as follows: Given wind farm i and let uai;t
¼ Faiðx ai;tÞ 2 ð0; 1Þ denote the CDFs associated with its actual power
production at t¼ 1 to T, suppose Yi ¼ ðYi;1;Yi;2;…;Yi;TÞ is a T-dim
variable whose entries are given by Yi;t ¼ U&1ðuai;tÞ, then, Yi can be
modeled using a multivariate Gaussian distribution

Yi + N ð0; RiÞ;

where U&1 is the inverse of the standard Gaussian CDF function, 0 is
a T-dim vector of zeros, and Ri is a covariance matrix whose entries
are given by

Riðt1; t2Þ ¼ covðYi;t1 ;Yi;t2Þ ¼ exp & jt2 & t1j
v

" #
: (8)

Therefore, Eq. (8) implies that the temporal correlation decays expo-
nentially with time and is dictated by the parameter v. In this study,
the value of v is selected by fitting Ri to historical data using the
method of least squares.

C. Scenario reduction
After jNj scenarios are generated for each of the K clusters, the

generated scenarios can be directly used as inputs to the stochastic
programming models. However, the exhaustive combination of all sce-
narios from K clusters results in jNjK scenario, which can be computa-
tionally prohibitive as K increases. Therefore, the number of generated
scenarios must be reduced to an adequate number before the model

Algorithm 1. Gibbs sampling.

procedure GIBBS SAMPLER

Initialize x a;0i;t  x fi;t ; 8i ¼ 1;…;N
for scenario n 2 N do Sample:

Xa
1;t jx

a;n&1
2;t ;…; x a;n&1N;t ; x f1;t;…; x fN;t

Xa
2;t jx

a;n
1;t ; x

a;n&1
3;t ;…; x a;n&1N;t ; x f1;t ;…; x fN;t

…
Xa
N;t jx

a;n
1;t ;…; x a;nN&1;t ; x

f
1;t;…; x fN;t

end for
end procedure
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can be solved in a time efficient manner. Numerous scenario reduction
techniques exist in the literature,46–49 where similar scenarios are
aggregated based on particular distance measures. However, most of
these reduction techniques do not involve clusters. In addition, the
process of scenario generation itself can also be time-consuming, par-
ticularly given the great number of scenarios if the scenarios in all clus-
ters are exhaustively combined. Therefore, we adopt the method of
forward reduction from Dupacova et al.49 and apply it in a heuristic
way to reduce the number of scenarios from jNjK to 10.

For convenience, we define a T-dim vector xa;nk to represents sce-
nario n in the k th cluster,

xa;nk ¼
XNk

i¼1
x a;ni;1 ;…;

XNk

i¼1
x a;ni;T

 !

; 8n 2 N; (9)

where Nk is the number of wind sites in the k th cluster. Therefore,
each scenario in a cluster is represented by the sum of wind power
from all wind sites in that cluster. Let’s denote the original set of sums
as Sk ¼ fxa;nk ; k ¼ 1;…;K; n 2 Ng and use S as the reduced set.
Using the above definition, the detailed implementation is given in
Algorithm 2.

Note that during the k th iteration, a new cluster Sk is added and
S is updated by taking the Cartesian product of S and Sk , i.e., the ele-
ment in S is updated by taking all ordered pairs ðxa;j; xa;nk Þ, where
xa;j 2 S; j ¼ 1;…; 10 and xa;nk 2 Sk ; n 2 N. Therefore, the dimension
of set S increases by T after each iteration and after all iterations,
dim S ¼ K ) T . Upon completion of Algorithm 2, each single element
in set S includes the sums of wind power output from all clusters.
Based on the indices of the selected scenarios in S, site-specific wind
power output can then be picked up and used in the power market
simulation.

D. Performance evaluation
To evaluate the performance of the generated scenarios, two pre-

diction interval (PI) based metrics are introduced: reliability and
sharpness. These metrics are used widely in probabilistic forecast to
assess the quality of the PIs.50 Probabilistic forecasts can take a variety
of forms,51,52 such as PDFs, quantiles, and scenarios. While the evalua-
tion metrics are often defined based on PDFs, other forms can be con-
verted into PDFs as needed. Since the generated scenarios can be
viewed as realizations of probabilistic wind power forecasts, the PIs are
estimated based on the generated scenarios and the PI-based metrics
are then adopted to evaluate the quality. In addition, the continuous

ranked probability score (CRPS) is also employed to measure the qual-
ity of our scenarios.

1. Prediction interval

Given the forecasted mean x and variance r2 of a random vari-
able X probabilistically forecasted random variable x and its variance
r2, a PI with 100ð1& aÞ% confidence level can be given by ½La;Ua(,

La ¼ x & z1&a=2r; (10)

Ua ¼ x þ z1&a=2r; (11)

where z1&a=2 is the 100ð1& a=2Þ percentile of the standard Gaussian
distribution. Note that the random variable X here can be the wind
power production at site i in time t, i.e., Xa

i;t , while x and r2 in Eqs.
(10) and (11) are the estimated first and second moments from the
generated scenarios. Since the PI of normalized wind power is
bounded in ½0; 1(, anything out of the interval will be floored at 0 and
capped at 1, i.e., the resulting distribution is assumed to be censored
Gaussian. Note that a previous study50 suggests that even if the actual
distribution is non-Gaussian, the assumption of a censored Gaussian
can still be applied with satisfactory performance.

2. Reliability

Given confidence level 100ð1& aÞ%, PIs can be derived from the
generated scenarios for each random variable. The future measured
wind power is expected to lie within the PI. The given confidence level
is also known as the PI nominal confidence (PINC), and it is expected
that the probability of the obtained PIs covering the measured wind
power x ai;t will asymptotically reach the nominal level of confidence.
Therefore, the reliability of the PIs is measured by PI coverage proba-
bility (PICP),

PICPa
i;t ¼

1
N ) T

XN

i¼1

XT

t¼1
Iai;t , 100%; (12)

where the indicator of PICP, Iai;t , is defined by

Iai;t ¼
1; x ai;t 2 La

x ;U
a
x½ (

0; x ai;t 62 La
x ;U

a
x½ (:

(

(13)

Ideally, the PICP should equal the PINC, i.e., the average cover-
age error (ACE)50 should be as close to zero as possible. In our analy-
sis, we use the average absolute coverage error over the entire forecast
time horizon T and across all N wind sites as the indicator of
reliability,

ACEa ¼ 1
N ) T

XN

i¼1

XT

t¼1
jPINC & PICPa

i;t j; (14)

where PINC ¼ 100ð1& aÞ.

3. Sharpness

The definition of PICP implies that a high PICP can be realized
by widening PIs. Therefore, another metric, sharpness, is introduced
to measure the size of PIs. Sharpness is evaluated in the form of

Algorithm 2. Heuristic scenario reduction.

procedure SCENARIO REDUCTION

Initialize S empty set1
for k ¼ 1;…;K do

Add scenarios from cluster k : S S , Sk
Reduce S into 10 scenarios using forward reduction

end for
Return the final scenarios S ¼ fxa;j; j ¼ 1;…; 10g

end procedure
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interval score. Given the width of a PI: xa
i;t ¼ Ua

i;t & La
i;t , the interval

score Scai;t is

Scai;t ¼
&2axa

i;t & 4ðLa
i;t & x ai;tÞ; if x ai;t < La

i;t

&2axa
i;t ; if x ai;t 2 La

i;t ;U
a
i;t

$ %

&2axa
i;t & 4ðx ai;t & Ua

i;tÞ; if x ai;t > Ua
i;t ;

8
>><

>>:

where Scai;t rewards a narrow PI and gives penalty if the PI fails to
cover the realized value x ai;t .

Similar to the definition of ACE, we use an average interval score
(AIS) to evaluate the sharpness of the generated scenarios over time
horizon T and across all N wind sites,

AIS
a ¼ 1

N ) T
XN

i¼1

XT

t¼1
Scai;t : (15)

4. Overall metric

Clearly, there is a trade-off between reliability and sharpness,
since a wider PI may result in a higher coverage rate at the cost of a
lower interval score, and vice versa. We, therefore, introduce a syn-
thetic evaluation metric (SEM) as the linear combination of ACE and
AIS to give a comprehensive evaluation of the PI,

SEM
a ¼ k1ACE

a & k2AIS
a
: (16)

Note that a lower SEM indicates a better overall performance since a
negative AIS is used here. k1 and k2 are weighting coefficients, and we
assume k1 ¼ k2 ¼ 0:5 to put equal emphasis on both reliability and
sharpness. The weighting coefficients can be varied by decision makers
to put more weights on either aspect.

5. Score

There are numerous numerical scores proposed to measure the
quality of probabilistic forecasts.53 We use the CRPS score, a proper
score that is designed to measure both the reliability and sharpness of
a probablistic forecast.54 Suppose the predicted CDF of the wind
power production in site i at time t is F̂ i;tðx Þ and the observed wind
power is x ai;t , the definition of CRPS can be given by the following
equation by measuring the difference between the predicted and
observed CDFs,

CRPSi;t ¼
ð

F̂ i;tðx Þ & 1x - x ai;t
h i2

dx ; (17)

where 1x - x ai;t : fx jx 2 Rg ! f0; 1g is the indicator function of event
x - x ai;t . We further take the average over all wind sites and all time
intervals to measure the overall performance,

CRPS ¼ 1
N ) T

XN

i¼1

XT

t¼1
CRPSi;t : (18)

Note that the predicted CDF is required before calculating the CRPS.
In the realm of weather prediction, the predicted CDF can be obtained
by three methods: parametric method, non-parametric method, and
ensemble forecast.51 By giving a set of discrete scenarios, our study falls
in the category of ensemble forecast. Therefore, to estimate the

predicted CDF, the empirical CDF is derived from the generated sce-
narios by using the following equation:

F̂ i;tðx Þ ¼ En2N 1x - x a;ni;t

' (
; (19)

where x a;ni;t denotes the generated wind power scenarios for wind site i
at time t.

III. POWER MARKET SIMULATION
A critical motivation of this study is to apply the enhanced

approach of scenario generation to real-world power systems with
high renewable penetration. Power markets in real world are typically
operated on multiple timescales ranging from days ahead to real time.
Typically, as the markets evolve forward, forecasts with shorter lead
times are used as they become available. In most real-world power
markets, the day-ahead market is often cleared one day before using
day-ahead forecasts and the schedules are updated in the real-time
market several hours ahead of the actual operation by using more up-
to-date forecasts. The imbalance between the forecasts and the actual
values is then offset by deploying operating reserves, which is known
as the load frequency control (LFC) process. The purpose of the power
market simulation is to show the market benefits from the improve-
ment in forecasts due to clustering. However, we believe that including
forecasts with multiple lead times would be unnecessarily complex to
illustrate the benefits of the methods utilized in this work. Therefore,
although forecasts with different lead times are used in real-world
markets, we only focus on day-ahead forecasts and assume that the
real-time market is cleared based on actual values to neglect the LFC
process. In addition, we assume that both markets are operated on a
24-h horizon at an hourly resolution. To simulate the two markets, we
develop a day-ahead unit commitment (DAUC) model and a real-
time economic dispatch (RTED) model. The DAUC model takes in
day-ahead wind power forecasts and determines the commitment sta-
tuses of all thermal units. Next, the RTED model is solved based on
actual wind power production to determine the final financial settle-
ment. In addition, the DAUC model is solved both deterministically
and stochastically. The stochastic run solves for a hedging strategy that
explicitly considers future uncertainties associated with wind power,
which is represented by scenarios. By contrast, the deterministic run
solves each wind scenario independently and all decision variables
vary by scenarios. Once the DAUC model is solved, commitment sta-
tuses of all thermal units are fixed and the RTED model is solved by
using the actual wind output. We then compute the financial settle-
ment only based on the solutions from the RTEDmodel.

A. The deterministic DAUC model
The DAUC model is formulated as a mixed integer program by

following Ref. 55 and enhanced by constraints associated with regulat-
ing and responsive reserves. In addition, active power flow on trans-
mission lines is calculated using shift factors and bounded by a set of
pre-defined line limits. The objective of the model is to minimize total
costs, which include actual production costs, fixed costs, and load and
curtailment costs. The full DAUC model formulation is given below.
Note that decision variables in each scenario (n) are independent of
other scenarios in the deterministic runs.

System load balance
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X

g2G
pn
g;t þ

X

b2BL

dn
b;t ¼

X

b2BL

Db;t ;8t 2 T: (20)

Maximum andminimum power generation

Pmin
g ) vg;t * pn

g;t * !pn
g;t * Pmax

g ) vg;t ;8g 2 GT ; (21a)

pn
g;t * !pn

g;t; 8g 2 G; (21b)

!pn
g;t * PF;n

g;t ;8g 2 GnGT : (21c)

Note that if wind unit g 2 GW is installed at site i, the maximum avail-
able wind power PF;n

g;t is given by multiplying the normalized wind
power x a;ni;t with the rated capacity of unit g.

Maximum available power of thermal generators accounting for
ramp rates

!pn
g;t & pn

g;t&1 * RU
g ) v

n
g;t&1 þ RSU

g ðv
n
g;t & vn

g;t&1Þ þ Pmax
g ð1& vn

g;tÞ;

8g 2 GT ; t 2 T; (22a)

!pn
g;t * Pmax

g ) vn
g;tþ1 þ RSD

g ðv
n
g;t & vn

g;tþ1Þ; 8g 2 GT ; t 2 T: (22b)

Power generation during ramp-down or shut-down

pn
g;t&1 & pn

g;t * RD
g ) v

n
g;t þ RSD

g ðv
n
g;t&1 & vn

g;tÞ þ Pmax
g ð1& vn

g;t&1Þ;

8g 2 GT ; t 2 T: (23)

Active power flow, 8‘ 2 L,

&K‘ *
X

b2B
SF‘;b

X

g2Gb

pn
g;t & dn

b;t & Db;t

" #
* K‘: (24)

Up-time of thermal generators, 8g 2 GT ,

XT
U0
g

t¼1
ð1& vn

g;tÞ ¼ 0; (25a)

XtþT
U
g

s¼t
vn
g;s - TU

g ðv
n
g;t & vn

g;t&1Þ;

8t 2 TU0
g þ 1;T & TU

g þ 1
h i (25b)

XT

s¼t
vn
g;s & ðv

n
g;t & vn

g;t&1Þ
h i

- 0; 8t 2 T & TU
g þ 2;T

h i
: (25c)

Down-time of thermal generators, 8g 2 GT ,

XTD0
g

t¼1
vn
g;t ¼ 0; (26a)

XtþT
D
g

s¼t
ð1& vn

g;sÞ - TD
g ðv

n
g;t&1 & vn

g;tÞ;

8t 2 TD0
g þ 1;T & TD

g þ 1
h i

; (26b)

XT

s¼t
ð1& vn

g;sÞ & ðv
n
g;t&1 & vn

g;tÞ
h i

- 0;8t 2 T & TD
g þ 2;T

h i
: (26c)

Reserve availability, 8g 2 GT ,

rS;ng;t þ rRU;ng;t * !pn
g;t & pn

g;t ; (27a)

rRD;ng;t * pn
g;t & Pmin

g ) vn
g;t : (27b)

Spinning reserve balance, 8t 2 T,
X

g2GT

rS;ng;t þ dS;nt ¼ RQS
t : (28)

Regulating up/down reserve balance, 8t 2 T,
X

g2GT

rRU;ng;t þ dRU;nt ¼ RQRU
t ; (29a)

X

g2GT

rRD;ng;t þ dRD;nt ¼ RQRD
t : (29b)

Cost of thermal generators, 8g 2 GT ; t 2 T,

zP;ng;t ¼ C0
g ) v

n
g;t þ Cg ) pn

g;t ; (30a)

zSU;ng;t - CSU
g ðv

n
g;t & vn

g;t&1Þ; (30b)

zSD;ng;t - CSD
g ðv

n
g;t&1 & vn

g;tÞ: (30c)

Curtailment cost, 8t 2 T,

zD;n
t ¼ CDL

X

b2BL

dn
b;t þ CDRðdRU;nt þ dRD;nt Þ þ CDS ) dS;nt : (31)

Constraint (20) ensures system-wide load balance. Different
from Ref. 55, we include slack variable dn

b;t for each load bus b 2 BL to
reduce the chances of infeasibilities. Equations (21a) and (21b) allow
thermal units to operate within their output limits, while the output of
renewable units is limited by power forecast in Eq. (21c). In addition,
Eqs. (22a) and (22b) limit the maximum output from thermal genera-
tors during start-up and shut-down. The output of thermal units is
further limited by Eq. (23) during ramp-down or shut-down. In Eq.
(24), the active power flow on transmission line ‘ is calculated using
shift factors SF‘;b and is limited by line limit K‘. The minimum
online/offline time of thermal generators are limited by Eqs. (25) and
(26). The amount of available reserves (rS;ng;t for responsive reserve,
rRU ;ng;t and rRD;ng;t for up/down regulating reserves) from thermal units is
provided in Eq. (27) and requirements of reserves are met in Eqs. (28)
and (29). Similar to the load balance constraint, slack variables are also
introduced to account for reserve shortages.

Costs of thermal generators consist of production costs and fixed
costs. Typically, production costs of thermal generators are repre-
sented by quadratic functions; here for simplicity, they are modeled as
linear functions of power production pn

g;t , as shown in Eq. (30a). The
fixed costs, as given by Eqs. (30b) and (30c), include start-up and shut-
down costs, which are determined solely by commitment statuses. In
addition to the costs of thermal units, the objective function also
includes curtailment costs, which are used to avoid load shedding and
reserve shortages, as given in Eq. (31). Finally, the objective function in
the deterministic run is given in Eq. (32) by summing up all costs:

min : zn ¼ zD;n
t þ

X

g2GT ;t2T

zP;ng;t þ zSU;ng;t þ zSD;ng;t

' (
: (32)
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B. The stochastic DAUC model
To account for uncertainties associated with wind power, a two-

stage stochastic DAUC model is developed based on the deterministic
DAUC model. We assume that the commitment statuses (vn

g;t) are the
only first-stage decision variables and must remain equal across all sce-
narios, while all other variables are the second-stage decision variables
and are thus scenario-dependent. Therefore, a non-anticipativity con-
straint is introduced in the following equation:

vn
g;t ¼ vn0

g;t ;8g 2 GT ; t 2 T; n 6¼ n0: (33)

The objective function of the stochastic run is given by Eq. (34),
where the probability-weighted costs are minimized. The fixed costs
are equal across all scenarios, since they are only dependent on the first
stage variables. By contrast, the production costs and curtailment costs
are functions of the second stage variables, which are scenario depen-
dent; therefore, Eq. (34) minimizes their probability-weighted expecta-
tion. Note that probabilities of scenarios (Prn) are determined in the
scenario reduction process

minẑ ¼
X

g2GT ;t2T

zSUg;t þ zSDg;t
' (

þ
X

n

Prn ) zD;n
t þ

X

g2GT ;t2T

zP;ng;t

 !
:

(34)

C. The RTED model
After the DAUC model is solved, the RTED model is solved by

fixing the commitment status of all thermal units and replacing the
forecasted wind power with actual values. In addition, the minimum
online/offline time constraints in Eqs. (25) and (26) are also removed.
Therefore, the RTED model is formulated as a continuous linear pro-
gram, due to the removal of all binary variables. The full model con-
sists of Eqs. (20)–(24) and (27)–(31), and the objective function is
represented by Eq. (32). Note that while each deterministic scenario
results in an independent set of commitment status, hence an indepen-
dent RTED run, the stochastic run returns only one set of commit-
ment status for all scenarios and is followed by one single RTED run.

IV. DATA AND ASSUMPTIONS
To simulate real-world power systems, we use a well-developed,

publicly available synthetic network developed by Ref. 39, which is
built on the footprint of the Electric Reliability Council of Texas
(ERCOT). The 24-h load profiles from the IEEE 118 bus system are
mapped into load profiles of the Texas system. Note that the load pro-
file of one load bus in the 118 bus system may be mapped into multi-
ple load buses in the Texas system, due to the latter’s significantly
larger size. In addition, the load profiles are scaled up or down to
match the original load magnitudes of the Texas system.

Generating units in the Texas system can be grouped into six cat-
egories based on their fuel types, as shown in in Table I. Most techno-
economic parameters of thermal units, such as the maximum and
minimum output and ramp rates, are directly drawn from the original
dataset. The production cost functions are mapped from the units
with similar fuel types and rated capacities in the IEEE 118 bus system.
The minimum online and offline time of a thermal units is determined
primarily by its prime driver, while the start-up and shut-down costs
are also affected by fuel costs. Since the original dataset does not give

the types of prime drivers, the prime drivers are determined by their
capacities following Ref. 56. Fuel costs are drawn from US EIA’s
Monthly Energy Review.57 Note that we assume that all nuclear units
are constantly online. In addition, wind and solar units have zero pro-
duction and start-up/shut-down costs.

For simplicity, we assume that outputs from all solar and hydro
units are zero. Neglecting solar and hydro power may affect the com-
mitment statuses of thermal units; however, we do not think it intro-
duces a systematic error given their small capacity shares. As can be
seen from Table I, both hydro power and solar PV only contribute
marginally to the total capacity in both the real-world and the syn-
thetic systems. In addition, it allows us to focus on the uncertainties
associated with wind power.

We assume that load curtailment cost is $9000/MWh, according
to the value of load loss (VOLL) used by ERCOT.58 We use $2000/
MWh, the low system-wide offer cap (LCAP) provided by the Texas
Public Utility Commission,59 as the penalty price for responsive
reserve shortage and $5500/MWh, the average of LCAP and VOLL, as
the penalty price for the regulating up/down reserve shortages. The
penalty prices are selected such that responsive reserves are curtailed
ahead of regulating reserves, and load will be the last to be curtailed.60

Historical data from ERCOT indicate that the regulating up/down
reserves account for 1%–2% of system-wide load, while the responsive
reserves range from 5% to 11%. Therefore, we assume 10% for respon-
sive reserve margin and 2% for both up and down regulating reserve
margins.

The data drawn from NREL’s Wind Integration National Dataset
(WIND) toolkit62 are used as input to the scenario generation model.
The WIND toolkit provides synthetic wind turbine output power as
well as meteorological data for more than 126 000 sites in the contigu-
ous United States from 2007 to 2012. The data from 2007 to 2011 are
used as input to the cluster analysis. The WIND toolkit simulates wind
power production every 5min and applies an NWP model to provide
hourly power forecasts at multiple lead times. In our study, the day-
ahead forecast is selected to generate scenarios for the day-ahead mar-
ket. Since the temporal granularity is every 5min for the actual power

TABLE I. Number and capacity of units by fuel types in the real-world Texas power
system61 and the synthetic power system from Ref. 39. Note that the data from EIA
reflect the whole Texas power system, while ERCOT covers over 90% of Texas load,
hence the disprepancy.

Synthetic ERCOT system Real-world Texas system

Fuel type
No. of
units

Capacity
(MW) Share

Capacity
(MW) Share

Coal 39 14 502 15% 23 589 19%
NG 367 63 810 66% 69 386 56%
Nuclear 4 5139 5% 4960 4%
Wind 87 9587 10% 22 583 18%
Solar PV 22 651 1% 1240 1%
Hydro 25 2603 3% 670 1%
Biomass 0 0 0% 425 0%
Other 0 0 0% 659 1%
Total 546 96 292 100% 123 512 100%
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data and hourly for all forecasts, we calculate the hourly average of the
actual wind power in the training dataset to match the time resolution
of the day-ahead forecast. To capture seasonal variations of load pro-
files in the power market simulation, one day is selected from each sea-
son in 2012: February 10, 2012 (winter), May 10, 2012 (spring),
August 10, 2012 (summer), and November 10, 2012 (fall). The Gibbs
sampler is trained using actual wind power and wind power forecast
from January 1, 2007 to the day before each target day. Next, scenarios
are generated by the Gibbs sampler based on the day-ahead forecasts
for the target day. The 87 wind units in the Texas system are mapped
from 45 sites (shown in Fig. 1) in the WIND toolkit based on their
geographical coordinates. Therefore, all wind units in one site have
identical normalized wind power, although they may have different
rated capacities. Figure 2 shows a heat map of the cross-site correlation
coefficients across all 45 wind sites in this study, indicating strong
correlations.

V. RESULTS: CLUSTERING-BASED SCENARIO
GENERATION

In this section, the clustering based framework developed in
Sec. II is applied to the 45 wind sites from the Texas system over the
four target days. The wind sites are first divided into a given number
(K) of clusters and the Gibbs sampler is applied to each cluster inde-
pendently. Since Gibbs sampling requires a large number of iterations
before the samples reach a stationary distribution, 9000 samples are
generated for each cluster and the first 8000 samples are discarded
(known as the “burn-in” process) and only the last 1000 samples are
kept for market simulation. The performance metrics are then derived
from the generated scenarios and scrutinized. The goal is to examine
the relation between the number of clusters and the quality of gener-
ated scenarios. The optimal number of clusters is jointly determined
by the performance metrics and time consumption. In this study, the
number of clusters K ranges from 1 to 20. Note that since when K¼ 1,
all wind sites are put into one single group, it is equivalent to the case
where cluster analysis is not applied. Therefore, the case when K¼ 1
represents our baseline case. The implementation is coded in

MATLAB and executed on a high performance computing platform
to exploit its parallel computing capability. A compute node equipped
with a 20-core Xeon E5–2698 CPU and 256 GB memory is used,
where the model training and scenario generation are both
parallelized.

Figures 3 and 4 show the results from an ex-post validation anal-
ysis by scrutinizing the autocorrelation coefficients and cross correla-
tion coefficients. The autocorrelation coefficients of historical wind
power from site i are given by the following equation:

qiðDtÞ ¼
covðx ai;t ; x ai;tþDtÞ

rðx ai;tÞ ) rðx ai;tþDtÞ
; (35)

where Dt is time lag and x ai;t and x ai;tþDt are taken from the training

dataset. Since the generated scenario x a;ni;t can be viewed as an estimator
of x ai;t , the estimated autocorrelation coefficient q̂iðDtÞ can be given by

the above equation when x ai;t is substituted by x
a;n
i;t . The autocorrelation

is caused by temporal correlations in the wind power time series. By
comparing qiðDtÞ and q̂iðDtÞ from all 45 sites, Fig. 3 indicates good
agreement between the model input and output. The declining trends
indicate weaker temporal correlations as time lag increases, as modeled
in Eq. (8).

As presented in Fig. 2, the wind sites are strongly correlated. As
spatial correlation is modeled by copula functions, the resulting sce-
narios should present strong correlations across sites. We examine the
linear correlation coefficients using the generated scenarios and com-
pare it with the original coefficients from historical data. The correla-
tion coefficient is given by

qi;j ¼
covðx ai;t ; x aj;tÞ
rðx ai;tÞrðx aj;tÞ

: (36)

Similar to the autocorrelation coefficients, the estimated cross correla-
tion coefficients q̂i;j are given when x ai;t are substituted by x a;ni;t . Due to
the large number of sites, we calculate the relative differences between
qi;j and q̂ i;j,

jqi;j & q̂i;jj
qi;j

: (37)
FIG. 1. Locations of all wind sites in the synthetic ERCOT power grid.

FIG. 2. Correlation coefficients across all 45 wind sites in the study.
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Figure 4 visualizes the relative differences as heat maps, where each pixel
represents one pair of sites. By comparing it with Fig. 2, it shows approxi-
mation errors using the copula functions. However, it also indicates that
while greater errors are presented when the spatial correlations are weak,
most errors for pairs with strong spatial correlations are not significant,
indicating good agreement between the model input and output.

The results from the winter day (February 10, 2012) are shown in
Fig. 5. As illustrated in Fig. 5(a), the diagonal indicates the ideal results
where PICP equals PINC; therefore, greater distance between the PICP
and the diagonal implies lower reliability. It shows that the reliability is
affected by both the number of clusters and PINC. In most cases, the dis-
tance between PICP and the diagonal is greater when PINC¼ 50%. This
inspires us to examine the average distance between the PICP and the
diagonal over the entire PINC range, i.e., ACE, which measures the over-
all reliability by taking the mean. Figure 5(c) shows the ACE as a function
of K. As can be seen, the ACE drops from around 15% to less than 1%
when K increases from 2 to 9, and rebounds to 4% when K increases to
20. The considerable drop of ACE before K¼ 9 implies improved reli-
ability due to clustering, which can be further attributed to the exclusion
of sites that are weakly correlated. By contrast, the rise of ACE beyond
K¼ 9 indicates less reliable scenarios with further refined clusters, proba-
bly due to the exclusion of those sites that present strong correlations.

Similar results are presented by interval scores. Figure 5(b) exhib-
its monotonically increasing interval scores as PINC increases.
In addition, the interval scores are also largely affected by K. Similar to

FIG. 3. Autocorrelation coefficients as a function of time lag. Blue curves represent
autocorrelation coefficients from the generated scenarios, while black curves repre-
sent the coefficients from the training dataset.

FIG. 4. Relative differences between the modeled cross-variable correlation coefficients and the original correlation coefficients in Fig. 2.
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ACE, AIS gives a comprehensive evaluation to the interval scores of a
given K by taking the mean over the entire PINC range. As presented
in Fig. 5(d), the AIS reaches its peak at K¼ 6 and declines thereafter.
Since higher interval scores indicate better performance in terms of
sharpness, the results suggest K¼ 6 for the optimal sharpness.

As displayed in Fig. 5, both metrics suggest that a medium num-
ber of clusters results in the optimal performance of the generated sce-
narios. However, the two metrics do not agree on the optimal number
of clusters: the highest reliability is present when K¼ 9 while K¼ 6
maximizes sharpness. Therefore, SEM is introduced and used as a
comprehensive evaluation metric by factoring in both reliability and
sharpness. Figure 6 shows the SEM values and the CRPS scores as a
function of K in all four representative days. As can be seen, the winter,
spring, and fall days exhibit very similar profiles, where the SEM is
minimized when a medium number of clusters is selected. For exam-
ple, the SEM is minimized when K ¼ 10, 12, and 10 in the winter,
spring, and fall day, respectively. Although the summer day presents a
slightly different profile, where the SEM is minimized at K¼ 15 and
only rebounds slightly when K increases to 20, the minimum SEM still
indicates the optimal overall performance of the generated scenarios
when a medium number of clusters is selected. Interestingly, the CRPS
scores present different profiles from the SEM: the scores remain low
before K¼ 10 and increase when K> 10. Therefore, both the SEM
and CRPS scores suggest against a high number of clusters, which can

reduce the quality of the generated scenarios due to failure to account
for correlations across wind farms. In addition, the CRPS scores also
suggest benefits from clustering: the CRPS scores are at their lowest
when K ranges from 2 to 4 in all seasons except for winter.

The generated scenarios can be directly used as inputs to the sto-
chastic DAUC models. However, the number of generated scenarios
must be reduced to an adequate number before the model can be
solved in a time efficient manner. We follow the procedures in
Algorithm 2 to reduce the generated scenarios. Figure 7 shows the
time consumption as a function of K. The total time consumption is
composed of scenario generation time and scenario reduction time. As
shown in all four representative days, the total time consumption sees
a trade-off between scenario generation and scenario reduction. The
time consumed by scenario generation contributes to over 90% of the
total time consumption when K< 3, while scenario reduction con-
sumes over 65% of the total time when K increases to 20. In addition,
as K increases, the time consumption of scenario generation presents a
decreasing trend, while scenario reduction presents an increasing
trend. For example, the average time consumption of scenario genera-
tion across all four days decreases from 140min to 25min when K
increases from 1 to 20. By contrast, the average time consumption of
scenario reduction increases from less than 1min to more than 50min
over the same range of K. It is not surprising to observe the trade-off,
since as K increases, each cluster is more likely to see a smaller number

FIG. 5. Performance evaluation of the
generated scenarios for the winter day
(February 10, 2012): (a) PICP as a func-
tion of PINC. The diagonal (dashed line)
represents the ideal result, where PICP ¼
PINC. The red and blue curves represent
the closest and farthest PICP profiles to
the diagonal. (b) Interval scores as a func-
tion of PINC. The red and blue curves rep-
resent the profiles with the highest and
lowest mean interval scores, respectively.
(c) ACE and (d) AIS as a function of K.

Journal of Renewable
and Sustainable Energy ARTICLE scitation.org/journal/rse

J. Renewable Sustainable Energy 12, 036301 (2020); doi: 10.1063/5.0006480 12, 036301-11

Published under license by AIP Publishing

https://scitation.org/journal/rse


of wind farms, which reduces the scenario generation time. However,
the number of iterations in scenario reduction is directly related to the
number of clusters, and an increased K leads to longer scenario reduc-
tion time.

The trade-off of time consumption between scenario generation
and reduction again suggests that a medium number of clusters should
be selected. In addition, a medium number of clusters can also signifi-
cantly reduce the total time consumption. As shown in Fig. 7, the total
time consumption tends to be minimized when 5 * K * 10.

In addition, Table II compares the baseline (K¼ 1) with the
clustered cases (K> 1). The comparison indicates that the
clustering-based framework can significantly improve the gener-
ated scenarios in terms of SEM and time consumption. As can be
seen, the SEM in the clustered cases (K¼ 2–20) can be reduced by
up to 33%, while the total time consumption can be reduced by
over 60%. In addition, the CRPS score can also benefit marginally
from clustering. Therefore, the clustering-based framework can
significantly enhance the quality of the generated scenarios and
reduce the total time consumption.

VI. RESULTS: POWER MARKET SIMULATION
As mentioned in Sec. III, the DAUC model will be solved deter-

ministically and stochastically. Each deterministic run solves only one
wind scenario, while the stochastic run solves all scenarios simulta-
neously. The 1000 wind scenarios generated in Sec. V with the mini-
mum SEM values are reduced to ten scenarios and are represented
with “1” to “10.” Note that the stochastic run with scenarios generated
from the clustered case is denoted by “SC” and we use “SU” to denote

the stochastic run with scenarios generated from the baseline, i.e., the
unclustered method. In the clustered cases, the numbers of clusters are
selected based on the minimum SEM. In addition, another run
(denoted by “A”) takes the actual wind power as inputs to the DAUC
model as if we have perfect foresight into the future. In summary, the
DAUC model is solved 13 times, including 11 deterministic solves and
two stochastic solves. Next, the RTED model is solved by using the
actual wind power and committing all thermal units, where the com-
mitment statuses are given by the DAUCmodel. In this study, Pyomo
Stochastic Programming (PySP),63 an open-source Python library, is
employed to implement the stochastic programming models and
Gurobi is used to solve them. On the same compute node as used in
Sec. V, it takes 20–25min to solve a deterministic run, around 8 h to
solve a stochastic run, and less than 5min to solve a RTEDmodel.

Results of the power market simulations are presented in Fig. 8
and Table III. As shown in Fig. 8, scenario A is always the least expen-
sive in all seasons due to perfect foresight of wind power. Meanwhile,
the more expensive total costs in other scenarios can be largely attrib-
uted to uncertainties associated with the forecast. In addition, great
variations of total costs are presented in the deterministic scenarios.
For example, in the fall day, the total cost from scenario 2 is 66% more
expensive than that of scenario A, while scenario 3 is only 7% more
expensive. Overall, the increased costs in the deterministic runs range
from 2% to 103% across all seasons and scenarios, implying great
uncertainties when the day-ahead market is cleared based on the
deterministic wind power forecast. In contrast, the total costs of sce-
nario SC only increase by 4%, 2%, and 4% in the spring, summer, and
fall days, respectively. Note that although scenario SC results in a 50%

FIG. 6. SEM and CRPS as a function of
the number of clusters (K) for all four
cases in our study. (a) February 10, 2012,
(b) May 10, 2012, (c) August 10, 2012,
and (d) November 10, 2012.
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more expensive total cost in the winter day, it is still lower than most
of the deterministic runs in the same day, which range from 49% to
103%. The comparison between scenarios SC and SU indicates that
the total costs are increased when the clustering-based framework is
applied. However, the increases are only marginal in most cases: the
total costs increase by 1%–3% in seasons 2, 3, and 4.

A closer examination of the cost breakdown indicates that the
differences in total costs are primarily driven by variations in reserve
shortages. As shown in Fig. 8, production costs are almost equal across
all scenarios in the same day, while costs of reserve shortages vary sig-
nificantly. Note that regulating reserve requirements are well met in all
scenarios and shortages of responsive reserves are shown in Table III.
Similar to the results of total costs, scenario A always results in the
least amount of shortages and scenario SC results in less shortages
than most deterministic scenarios. Therefore, the stochastic program
represents a better strategy for market scheduling than the determinis-
tic approach in terms of reliability and economy.

VII. CONCLUSION AND DISCUSSION
This paper presents an enhanced scenario generation framework

by integrating existing approaches with cluster analysis. As demon-
strated in the results, the generated scenarios can benefit significantly
from the clustering based framework in terms of reliability, sharpness,
and time consumption. While only one scenario generation approach
is investigated in this study, the framework can also be extended to
many other scenario generation techniques. Therefore, this framework
can provide proper support to real-world power system analysis with
large-scale wind penetration.

Several insights can be drawn from our study. First, as shown in
Sec. V, the SEM of the generated scenarios is optimal when a medium
number of clusters is used, due to trade-off between intra-cluster and
inter-cluster correlations. In addition, the time consumption is also
affected by the number of clusters: a small cluster with less members

FIG. 7. Time consumption as a function of
the number of clusters (K) for all four
cases in our study.

TABLE II. Comparison between the baseline (K¼ 1) and the clustered cases
(K> 1). Note the minimum SEM, CRPS, and time consumptions in the clustered
cases are listed. The optimal K only applies to the clustered cases, i.e., K> 1.

Winter Spring Summer Fall

SEM Optimal K 10 12 16 10
Baseline 32% 32% 30% 23%
Clustered 26% 27% 20% 16%

Improvement 20% 16% 33% 28%
CRPS Optimal K 2 4 2 3

Baseline 0.249 0.242 0.277 0.191
Clustered 0.259 0.231 0.268 0.186

Improvement &4% 5% 3% 3%
Total time (min) Optimal K 8 6 8 7

Baseline 123 125 134 178
Clustered 49 49 51 54

Improvement 61% 61% 62% 70%
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requires less time for scenario generation; however, the increased
number of clusters leads to an increased amount of time for scenario
generation. Although the CRPS scores suggest a smaller optimal num-
ber of clusters, they also indicate that the quality of the generated sce-
narios clustering can be improved by clustering. The results also imply
that it may negatively affect the quality of generated scenarios when all
wind farms are grouped into one single cluster regardless of the
strength of correlations, which highlights the necessity of the
clustering-based framework.

In addition, as indicated in the power market simulation, the
hedging strategy given by the stochastic DAUC model presents great
advantage over most deterministic runs in terms of both economy and
power system reliability. The reserve shortages are effectively reduced
without significantly increasing the total costs. Note that even though
some deterministic runs may result in lower total costs than the hedg-
ing strategy, i.e., scenario 4 in the winter day, it is more likely to result
in greater loss by adhering to the deterministic strategy, since all other
deterministic runs lead to greater total costs and reserve shortages. By
contrast, the stochastic strategy outperforms most deterministic runs
in terms of both economy and power system reliability.

Several caveats exist. Figure 8 indicates reserve shortages are pre-
sent across all scenarios, which can be attributed to multiple factors.
First, we assume ancillary services are only provided by thermal units,
while other types of qualified resources, such as hydro or even load
resources, are excluded. In addition, the economic loss due to reserve
shortages may be underestimated as a result of the fixed penalizing

prices, since the dynamic scarcity pricing mechanism in ERCOT allows
the prices to rise when a shortage of operating reserves is present.58

Finally, ERCOT may procure replacement ancillary service capacity
from a supplemental ancillary services market (SASM),60 which is not
co-optimized with the energy market. Therefore, the reserve shortages
do not necessarily reflect resource insufficiency. However, although this
study may benefit from including the above factors, the main emphasis
is placed on demonstration of the clustering-based scenario generation
framework, and modeling of the above factors is beyond our scope.

Besides, we should note that although the stochastic run provides
a comparatively better strategy for the power market operation, the
time consumption is less acceptable to the operators. In this study, it
takes around 8h to solve its extensive form using state-of-the-art com-
mercial solvers, while it takes 1.5 h to execute day-ahead reliability unit
commitment (RUC) in ERCOT.60 The slow performance is largely
intrinsic to mixed integer programs (MIPs), which is proved to be NP-
hard.64 Therefore, in the future, additional techniques such as in
Refs. 65 and 66 should be employed for a better and more stable time
performance.

Another caveat, as shown in Fig. 8, is the more expensive total
costs when the clustering-based framework is used to generate scenar-
ios for stochastic runs. However, this does not indicate that the
clustering-based framework is outperformed by the baseline in terms
of solution quality, since only one number of clusters (K) are examined
in each season due to the extremely long computational time of sto-
chastic runs. Ideally, the solution quality should be examined over a

FIG. 8. Cost breakdown of market simulations for all four representative days by scenarios. White represents production costs and black represents reserve shortage costs.

TABLE III. Shortages of responsive reserve in all seasons (MWh).

Season 1 2 3 4 5 6 7 8 9 10 A SC SU

Winter 6321 4034 5824 3047 3146 4095 5474 6411 4471 5141 0 3134 0
Spring 4432 1586 4571 2632 2062 3795 4716 3921 1556 4326 803 1253 803
Summer 735 2935 2949 1336 3972 905 523 978 432 191 0 177 0
Fall 2479 3583 365 807 3304 1498 2758 2124 2891 2138 0 223 0
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range of cluster numbers. In addition, the optimal K is selected when
the SEM is minimized and an underlying hypothesis is that a better
SEM of probabilistic scenarios is related to a better solution quality of
stochastic optimization. The fact that SEM is weakly correlated with the
solution quality implies that further examination of other evaluation
metrics and comprehensive studies should be conducted to examine the
relationship between the evaluation metrics of probabilistic forecasting
and the solution quality of stochastic optimization. Moreover, a real-
world decision-maker may need a unique and comprehensive evalua-
tion metric to determine the best set of scenarios, which should account
for a variety of factors, such as scenario quality (reliability and sharp-
ness), computational time, and solution quality. In fact, there has been
little research into the trade-offs between the quality of stochastic opti-
mization solutions and the quality of probabilistic scenarios and such
studies are critical given the discrepancies presented in our study.67

Finally, the clustering strategy in Sec. II is based purely on the cross-
correlations across wind sites, which only captures the spatial correlation
and fails to capture time dependencies. While temporal correlations are
accounted for in the scenario generation in the form of autocorrelation,
the quality of the generated scenarios could benefit from taking into
account more complex dependence structures. Particularly, the spatiotem-
poral dependencies across wind sites can be complex, and a localized
understanding of this structure may provide more targeted information to
improve forecasts. For example, previous research suggests that the char-
acterization of spatial correlation across wind sites can be improved by
identifying the wind regime that is dominated by a wind direction since
sites that are located along the wind direction are more likely to be corre-
lated.68 Future studies will explore more clustering methods and criteria,
such as distance-based methods, as studies have suggested superior perfor-
mance when advanced techniques are adopted.69,70
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APPENDIX: DERIVATION OF EQUATIONS

Copulas are employed to model the multivariate distributions
in the denominator and numerator of Eq. (6). According to Sklar’s
theorem,71 any multivariate joint distribution can be written in
terms of the marginal distributions of each component and a copula
that describes the dependence structure between the components.
Therefore, the joint CDF in Eq. (4a) becomes

Fa1)))aN f1)))fN ðx a1;t ;…; x a1;N ; x
f
1;t ;…; x f1;NÞ

¼ C2Nðua1;t ;…; uaN;t ; u
f
1;t ;…; ufN;tÞ; (A1)

where the copula C2N : ½0; 1(2N ! ½0; 1( is a continuous, real-valued
function and uaj;t ; u

f
j;t 2 ½0; 1( are marginal CDFs associated with Xa

j;t

and Xf
j;t ,

uaj ¼ Fajðx aj;tÞ ¼ ProbðXa
j;t * x aj;tÞ; (A2a)

ufj ¼ Ffjðx
f
j;tÞ ¼ ProbðXf

j;t * x fj;tÞ: (A2b)

Similarly, the joint PDF in Eq. (4b) can be expressed as

fa1)))aN f1)))fN

¼
@2NFa1)))aN f1)))fN

@Xa
1;t ) ) ) @Xa

1;N@X
f
1;t ) ) ) @X

f
1;N

¼ c2N )
YN

j¼1
ðfaj ffjÞ ; (A3)

where c2N : ½0; 1(2N ! Rþ is the 2Nth order partial derivative of
C2N ,

c2N ¼
@2NC2N

@Fa1 ) ) ) @FaN@Ff1 ) ) ) @FfN
; (A4)

and faj and ffj are marginal PDFs associated with Xa
j;t and Xf

j;t ,

faj ¼
dFaj
dXa

j;t
; (A5a)

ffj ¼
dFfj
dXf

j;t

: (A5b)

Using the above copula representation, the numerator in (6)
can be expressed as follows using the copula function,

ProbðXa
i * x ai ;X

a
j 6¼i;t ¼ x aj 6¼i;t ;X

f
1;t ¼ x f1;t;…;Xf

N;t ¼ x fN;tÞ

¼
ðx ai

0
fa1)))aN f1)))fN dX

a
i ¼

ðx ai

0
c2N )

YN

j¼1
ðfaj ffjÞdXa

i

¼ @2N&1C2N

@Fa1 ) ) ) @Fai&1@Faiþ1 ) ) ) @FaN@Ff1 ) ) ) @FfN

!!!!
Fai ðx

a
i Þ

0

)

YN

j¼1
ðfaj ffjÞ

fai
; j 2 1;…;Nf g: (A6)

Similarly, the denominator can be written as the following
equation:

ProbðXa
j 6¼i;t ¼ x aj 6¼i;t ;X

f
1;t ¼ x f1;t ;…;Xf

N;t ¼ x fN;tÞ

¼ ProbðXa
i * þ1;X

a
j 6¼i;t ¼ x aj 6¼i;t ;X

f
1;t ¼ x f1;t ;…;Xf

N;t ¼ x fN;tÞ

¼ @2N&1C2N

@Fa1 ) ) ) @Fai&1@Faiþ1 ) ) ) @FaN@Ff1 ) ) ) @FfN

!!!!
1

0
)

YN

j¼1
ðfaj ffjÞ

fai
;

j 2 f1;…;Ng: (A7)

Finally, the equation in Eq. (6) becomes the form in Eq. (7),
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Faija1)))ai&1aiþ1)))aN f1)))fN ðx
a
i;tÞ

¼
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a
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