
Abstract-- Path protection requires finding a working path 
and a protection path that are link disjoint. In this paper, we 
consider the dynamic lightpath protection problem in WDM 
mesh networks where a single risk factor may cause multiple 
links to fail simultaneously. The objective is to find link-disjoint 
lightpaths that are also risk disjoint. A similar problem has 
recently been proven to be NP-Complete.  We give an alternative 
proof of the NP-completeness, and formulate the problem as an 
Integer Linear Program. We then develop heuristic algorithms 
and evaluate the performance of the algorithms through 
computer simulation.  We show that we can achieve satisfactory 
performance using the heuristic techniques. 

Index terms-- Optical network, lightpath protection, shared 
risk link group, risk disjoint, integer linear program (ILP) 

I. INTRODUCTION 

In wavelength division multiplexing (WDM) networks, end 
users can communicate with one another via all-optical 
channels called lightpaths [1][2]. Because of the high data rate 
on lightpaths, it is imperative to develop appropriate 
protection and restoration schemes to prevent or reduce data 
loss [3][4]. 

In protection schemes, backup resources are pre-computed 
and reserved for each connection before a failure occurs [5][6]. 
In restoration schemes, an alternate route is discovered 
dynamically for each interrupted connection after a failure 
occurs [7][8]. Compared to restoration schemes, protection 
schemes have faster recovery time and provide guaranteed 
recovery ability but require more network resources.  

Protection schemes can be divided into path protection and 
link protection based on the level of network resources 
involved in the protection. In path protection, a working path 
and a disjoint protection path are established for each 
connection. In link protection, separate backup resources are 
reserved for each individual link on the working path. Path 
protection usually has lower resource requirements and lower 
end-to-end propagation delay for the recovered route [5][7]. 

Protection schemes can be further divided into dedicated 
protection and shared protection based on whether backup 
resources are shared by more than one connection. In 
dedicated protection, each link or node can be reserved as a 
backup resource for at most one connection. In shared 
protection, a link or node can be reserved as a backup 
resource for multiple connections, as long as those 
connections do not fail simultaneously. Dedicated protection 
requires more network resources but is simpler to implement, 
while shared protection is more resource efficient but requires 
complex signaling and network management [2]. 

The path protection problem can be considered under either 
static or dynamic traffic. Under static traffic, the entire set of 
connection requests is known. The routes and the wavelengths 
for the working and protection lightpaths of all connections 
must be determined[5][9][10][11][12]. Under dynamic traffic, 
connection requests arrive one at a time and each connection 
exists for only a finite duration. Subsequently, routes and 
wavelengths are determined individually for the working and 
protection lightpaths of each connection request. 

In an optical network without wavelength conversion 
capability [13][14], the establishment of a lightpath is subject 
to the wavelength continuity constraint, i.e., a lightpath is 
required to be on the same wavelength channel throughout its 
entire path. In this paper, we address the dynamic lightpath 
protection problem in WDM networks with full wavelength 
conversion. In this case, a lightpath may consist of different 
wavelengths on each link. 

A network failure may be caused by either a link failure or 
a node failure. Most modern node devices have built-in 
redundancy which greatly improves their reliability. Therefore 
link failure is more of a concern than node failure, and we 
only consider link failure in this paper. In order to find two 
link-disjoint lightpaths, we may intuitively use a simple two-
step solution, i.e., we find one shortest path first, then remove 
all links on that path and find the second shortest path. These 
two paths are guaranteed to be link disjoint. However, this 
solution fails in so-called “trap” topologies[15].  

The correct approach is to use Suurballe's algorithm and its 
variations [16][17], if the probabilities of link failures are 
independent. The total cost of the resulting two link-disjoint 
lightpaths is minimal among all such path pairs. The 
algorithm runs in O(n2log n) time, where n is the number of 
nodes. However, in a network where a single factor can cause 
more than one link failure, the two lightpaths found with this 
approach may still fail simultaneously. For instance, in optical 
transport networks, multiple fiber links are bundled into the 
same underground conduit, or span. A cut to the conduit can 
cause all the fiber links to fail. To describe this type of 
network phenomenon, transport network carriers use the 
notation of Shared Risk Link Group (SRLG) [18][19]. The 
fiber links in the same conduit belong to the same SRLG 
because they all share the same risk of a conduit cut. 
Therefore, in addition to being link disjoint, the path 
protection problem in optical transport networks has the extra 
constraint of being SRLG disjoint. 

For some special SRLG configurations, such as forks and 
express links, there exist algorithms with polynomial time 
complexity [15][17]. If the configurations are arbitrary, it has 
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been recently proved that the problem of finding two SRLG-
disjoint paths is NP-complete [20][21].  In this paper, we give 
an alternative proof using 3SAT reduction. Since the risk-
disjoint constraint also applies to path protection in WDM 
networks and other path-routed networks, we introduce the 
concepts of Risk ID and Risk Set to extend the NP-
completeness result beyond the scope of fiber span failure. 

The work in [12] proposes a heuristic to solve the path 
protection problem under the optical fiber duct-layer 
constraint, which is a special case of the SRLG-disjoint 
constraint. The heuristics in [22] and [23] use a simple two-
step approach. The solution proposed in [24] selects the 
working and protection lightpaths for each incoming 
connection request from the predefined alternate paths. In this 
work, we develop heuristic algorithms for the case in which 
risks are arbitrarily distributed. The heuristics are adaptive to 
the real-time network status. 

The rest of the paper is organized as follows. Section II 
gives an alternative 3SAT reduction to prove the NP-
completeness of the dynamic path protection problem under 
the SRLG-disjoint constraint. The result is then extended to 
WDM mesh networks and general path-routed networks. In 
Section III, we formulate the problem as an ILP and develop 
heuristic solutions. Section IV presents computer simulations 
results for the heuristic solutions and compares the 
performance of the heuristics. Section V concludes the paper. 

II. NP-COMPLETENESS OF THE DYNAMIC LIGHTPATH 
PROTECTION PROBLEM UNDER THE RISK-DISJOINT 

CONSTRAINT 

For dedicated protection, the problem is formally defined 
as follows. Given network G = (N, L), where N is the set of 
nodes and L is the set of fiber links, and given the SRLGs on 
all links in L, find two paths from source node s to destination 
node d such that the two paths are SRLG-disjoint and do not 
share any links on the paths of existing connections. 

A. Proof of NP-Completeness for Dedicated Protection 
We reduce the NP-complete 3SAT problem [25] to the 

target problem. The 3SAT problem is stated as follows. Given 
a collection C = {C1, C2, …, CM} of clauses on a finite set V = 
{v1, v2, …, vN} of variables such that |Cj| = 3 for 1 ≤ j ≤ M, 
where clause Cj is the boolean “or” of three literals and is 
satisfied by a truth assignment if and only if at least one of the 
three literals is true, is there a truth assignment for V that 
satisfies all the clauses in C? 

We construct a graph G for an arbitrary instance of 3SAT 
C, such that the graph contains two SRLG-disjoint paths P1 
and P2 from node s to node d, if and only if there is a truth 
assignment satisfying all clauses. Following are the steps for 
the graph construction: 
1. Create source node s and destination node d. 
2. Corresponding to the N variables in V, create N+1 nodes 

zi, 0 ≤ i ≤ N. There is a link from s to z0 and from zN to d. 
Between zi-1 and zi, there are nodes xi

1, yi
1, xi

2, yi
2,…, xi

M, 
yi

M, and 1
ix , 1

iy , 2
ix , 2

iy , …, M
ix , M

iy , which correspond to 

the M clauses in C. There are links zi-1xi
1, xi

1yi
1, yi

1xi
2, 

xi
2yi

2, … , xi
Myi

M, yi
Mzi and links zi-1

1
ix , 1

ix 1
iy , 1

iy 2
ix , 

2
ix 2

iy , … , M
ix M

iy , M
iy zi. Links xi

jyi
j and j

ix j
iy  each 

belongs to a unique SRLG other than SRLG-1 and 
SRLG-2. All other links created in this step belong to 
SRLG-1. 

3. Corresponding to each clause Cj, create nodes uj and wj, 1 
≤ j ≤ M. There is a link from s to u1 and from wM to d. 
There is also a link from wj to uj+1. Other links are 
formed according to the following rules:  
a. A link from uj to xi

j exists, and a link from yi
j to wj 

exists, if and only if variable vi is in clause Cj.  
b. A link from uj to j

ix exists, and a link from j
iy to wj 

exists, if and only if variable iv is in clause Cj.  
All links constructed in this step belong to SRLG-2. 

s

u1 w1 u2 w2

x1
1    y1

1  x1
2   y1

2         x2
1    y2

1  x2
2   y2

2          x3
1   y3

1   x3
2  y3

2

z0 z1 z2 z3

d

1   x1
1 y1

1 x1
2 y1

2  x2
1 y2

1 x2
2  y2

2  x3
1 y3

1 x3
2 y3

2

 Figure 1. A graph constructed from a 3SAT instance. 
An example is given in Fig 1. In this example, we construct 

graph G for a 3SAT instance C = {C1, C2}, V = {v1, v2, v3}, 
C1 = v1 v 2v v v3, C2  = 1v v v2 v v3. The dotted links belong to 
SRLG-1 and the dashed links belong to SRLG-2. Each solid 
link belongs to a unique SRLG other than SRLG-1 and 
SRLG-2. For a truth assignment v1=1, v2=1, v3=1, the 
corresponding risk-disjoint paths are: p1  (s-z0- 1

1x - 1
1y - 2

1x - 2
1y - 

z1 - 1
2x - 1

2y - 2
2x - 2

2y -z2 - 1
3x - 1

3y - 2
3x - 2

3y -z3-d) and p2  (s -u1-x1
1-y1

1 

- w1-u2-x2
2-y2

2-w2 -d). 

Lemma 1: If C is satisfiable, then there exist two SRLG-
disjoint paths from node s to node d in graph G. 
Proof: Let boolean values be assigned to v1, v2,  … , vN  that 
satisfy C. The two paths should be routed as follows: 
• P1 traverses all zi nodes for 0 ≤ i ≤ N. Between node zi-1 

and zi, the path is routed via xi
j-yi

j (1 ≤ j ≤ M) if and only 
if vi = 0; It is routed via j

ix - j
iy otherwise.  

• P2 traverses all uj, wj nodes for 1 ≤ j ≤M.  Between node 
uj and wj, the path is routed as follows. By construction, 
link ujwj corresponds to clause Cj which has three literals. 
Each of the literals corresponds to a path from uj to wj 
that goes either through xi

j-yi
j if the literal is in the form 

of vj, or through j
ix - j

iy  if the literal is in the negation 
form, jv .  

Because C is satisfied, at least one of the three literals in Cj 
must be 1. Let the variable in that true literal be vj. Then 
• if the literal is in the form of vj, then vj = 1, and route P2 

passes through nodes xi
j, yi

j; 

Globecom 2004 1771 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society



• if the literal is in the form of jv , then vj = 0, and route P2 
passes through nodes j

ix , j
iy . 

If more than one literal is true, then randomly pick one of 
the true literals and route P2 accordingly. 

Thus, P1 doesn’t traverse any of the nodes uj, wj for 1 ≤ j ≤ 
M, and P2 doesn’t traverse any of the nodes zi for 0 ≤ i ≤ N. 
Furthermore, if P2 traverses node xi

j, yi
j, then P1 traverses j

ix , 
j

iy , and vice versa. Therefore P1 and P2 each belongs to a 
different set of SRLGs. 

Lemma 2:If there exist two SRLG-disjoint paths from s to d in 
the constructed graph G, then C can be satisfied.  
Proof: 
1. Since there are only two links originating from the source 

node s, the two links must each belong to a separate path. 
Let sz0 be part of P1 and su1 be part of P2. 

2. Since P2 already belongs to SRLG-2, P1 must not traverse 
any of the nodes uj, wj for 1 ≤ j ≤ M, otherwise it would 
also belong to SRLG-2 and violate the SRLG disjoint 
constraint. Therefore, if P1 traverses xi

1 for 1 ≤ i ≤ N, then 
it must also traverse yi

1, xi
2, yi

2, … ,  xi
M,  yi

M, zi. Similarly 
if P1 traverses 1

ix for 1 ≤ i ≤ N, then it must also traverse 
1
iy , 2

ix , 2
iy ,  … , M

ix , M
iy , zi. 

3. Since P1 already belongs to SRLG-1, P2 must not traverse 
any of the nodes zi for 0 ≤ i ≤ N, otherwise it would also 
belong to SRLG-1 and violate the SRLG disjoint 
constraint. Furthermore, if P2 traverses node uj (1 ≤ j ≤ 
M) and xi

j (1 ≤ i ≤ N), it must also traverse yi
j and then 

back to wj. Similarly, if P2 traverses node uj and j
ix , it 

must also traverse j
iy  and then back to wj.  

4. Loops are not allowed. Therefore once P2 reaches wj (1 ≤ 
j ≤ M), it must go to ui+1 if j < M, or to d if j = M. 

5. If P2 traverses nodes xi
j, yi

j, 1 ≤ j ≤ M, 1 ≤ i ≤ N, it must 
not also traverse nodes k

ix and k
iy , k ≠ j, and vice versa; 

otherwise P1 is “blocked” and cannot reach the 
destination node d without violating the link disjoint 
constraint.  

6. If P2 traverses nodes xi
j, yi

j, 1 ≤ j ≤ M, 1 ≤ i ≤ N, then P1 
must traverses nodes traverses 1

ix for 1 ≤ i ≤ N, then it 
must also traverse 1

ix , 1
iy , 2

ix , 2
iy , …, j

ix , j
iy , …,  M

ix , 
M
iy .  Similarly if P2 traverses nodes j

ix j
iy , then P1 must 

traverses nodes xi
1, yi

1, xi
2, yi

2, …, xi
j, yi

j, … , xi
M, yi

M. 
7. Assign values to v1, v2, … , vN as follows: 

• If P2 traverses nodes xi
j, yi

j, 1 ≤ j ≤ M, 1 ≤ i ≤ N, then 
assign vi = 1, making clause Cj to be true. 

• If P2 traverses nodes j
ix , j

iy , 1 ≤ j ≤ M, 1 ≤ i ≤ N, 
then assign vi = 0, making clause Cj to be true. 

• Variables that are not assigned a value in the first 
two steps are randomly assigned either 1 or 0. 

• This assignment satisfies C. 
Combining Lemma 1 and Lemma 2, we see that the 3SAT 

problem is reducible to the problem of finding SRLG-disjoint 

paths. Therefore this problem is NP-complete.  

B. Proof of NP-Completeness for Shared Protection 
With shared protection, one or more protection paths may 

traverse a common fiber link. If the problem with shared 
protection is solvable, then the problem with dedicated 
protection can also be solved since it is a special case of that 
with shared protection.  

C. Dynamic Path Protection in WDM Mesh Networks and 
General Path-Routed Networks 

In WDM mesh networks, a single risk factor may cause 
multiple lightpaths to fail simultaneously in situations such as 
the case in which portions of several lightpaths are on the 
same fiber link when the link is cut. Therefore the risk-
disjoint constraint is applicable and the NP-completeness 
persists. This is true for MPLS networks as well. To expand 
the concept of SRLG to the general path-routed networks, we 
propose the following concepts: 
• Risk ID: For each risk factor that may cause a failure in a 

network, we assign a unique integer number called the 
Risk ID.  

• Risk Set: The collection of Risk IDs of the links on a path 
is called the Risk Set of that path. The Risk Set represents 
all the factors that may cause a path to fail. The risk- 
disjoint constraint requires that a working path and its 
protection path contain no common Risk Ids in their Risk 
Sets.  

The concepts of Risk ID and Risk Set are a generalization 
of SRLG. Now the dynamic path protection problem under 
the risk-disjoint constraint in a general path-routed network 
can be defined as follows. Given network G = (N, L), where N 
is the set of nodes and L is the set of links, and given the Risk 
IDs of each link, find two risk-disjoint paths from source node 
s to destination node d. The proof in Section II.A and Section 
II.B can be easily generalized to prove the NP-completeness 
of this problem. 

III. ILP FORMULATION AND HEURISTIC ALGORITHMS 

A. ILP Formulation 
For the ILP formulation, the objective is to find two risk-

disjoint lightpaths for a connection request. An alternative 
objective is to minimize the total hop count of the two risk-
disjoint lightpaths. The following are given as inputs to the 
problem. 

• N: number of nodes in the network. 
• L: collection of all links in the network. 
• Wij: number of free wavelengths on link ij∈L. 
• S = { s1, s2, …, sk, …, sT }: collection of all Risk IDs in 

the network. T is the number of Risk IDs in the network. 
• k

ijr : 1 if link ij has Risk ID sk; 0 otherwise. 

• s, d: source node and destination node. 
The ILP solves for the following variables. 
• sdw

ijα : 1 if wavelength w on link ij is taken by the working 
lightpath from source s to destination d; 0 otherwise.  
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• sdw
ijβ : 1 if wavelength w on link ij is taken by the 

protection lightpath from source s to destination d; 0 
otherwise.  

Objective: Find a working lightpath and a protection 
lightpath that satisfy the risk-disjoint constraint.  

∑ ∑
∈∀ Lij

W

w

sdw
ij

ij

α + ∑ ∑
∈∀ Lij

W

w

sdw
ij

ij

β  > 0                 (1) 

Constraints: 
Flow-conservation without the wavelength continuity 

constraint: 
 1, if l = d 
-1, if l = s ∑ ∑

=

N

i

W

w

sdw
il

il

1

α -∑∑
=

N

j

W

w

sdw
lj

il

1
α  = {  0, otherwise 

1 ≤  l  ≤ N   (2) 
 1, if l = d 
-1, if l = s ∑ ∑

=

N

i

W

w

sdw
il

il

1

β -∑∑
=

N

j

W

w

sdw
lj

lj

1

β = {  0, otherwise 
1 ≤  l  ≤ N   (3) 

Link-disjoint constraint: 

∑
ijW

w

sdw
ijα +∑

ijW

w

sdw
ijβ  ≤  1 ,    1≤ i, j ≤N             (4) 

Risk-disjoint constraint: 
k

ijr ∑
ijW

w

sdw
ijα  +  k

mnr ∑
mnW

w

sdw
mnβ  ≤  1, 

 ,Tk ≤∀  ,Lij ∈∀  Lmn ∈∀        (5) 

B. Heuristic Algorithms 
We discussed the simple two-step heuristic in Section I. 

This solution may fail in the “trap” topologies because the 
first shortest path is obtained without considering the disjoint 
path being routed next. We develop the Joint-Search Two-
Step Algorithm (JSTSA) to overcome this problem by using 
Suurballe’s algorithm to jointly route both paths. As the first 
step of this algorithm, we increase the cost of those links with 
high-occurring Risk IDs; hence those links are avoided 
whenever possible, which makes it more likely to find risk-
disjoint paths. In order to further reduce blocking probability, 
we also increase the cost of the links with high traffic load so 
that traffic load is better balanced across all links. The 
remaining steps are included in the pseudo code in Fig. 2 and 
Fig. 3. 

Compared to the simple two-step heuristic and other 
existing heuristic solutions, the Joint-Search Two-Step 
Algorithm is superior not only because it may find two 
disjoint paths in topologies where the simple two-step 
algorithm fails, but also because it is fully adaptive to network 
status and works on networks with arbitrary risk distribution. 
If every Risk ID occurs only once in the network, this 
algorithm is equivalent to Suurballe’s algorithm. It also has 
the same order of time complexity as Suurballe’s algorithm. 

We can further improve the performance of the Joint-
Search Two-Step Algorithm with shared protection [26]. With 
shared protection, a network can accommodate more 
connections, and the blocking probability is reduced.  

find_protection_path(working path pw) 
{ 

 remove the network links along pw; 
 remove the network links used by other working paths; 
 remove the links that have common Risk IDs with pw; 
run Dijkstra’s algorithm(s, d). If Succeeds, return path pp.            
Otherwise return FAILURE; 

} 

Figure 2. Subroutine find_protection_path() 

for (all network links) 
{ 
    for (all Risk ID r that occurs more than once in the network) 
        increase cost cl on link l if l contains r; 

    Adjust link cost based on its traffic load; 
} 
 
if ( run Suurballe’s algorithm(s, d) and find two routes r1 and r2) 
{ 
     r1p = find_protection_path(r1); 
     r2p = find_protection_path(r2); 

      compare the total cost of the two path pairs, i.e.,  (r1, r1p) and 
(r2, r2p), and choose the one with smaller total cost; 

} 
else 
    return(FAILURE); 

Figure 3. Joint-Search Two-Step Algorithm (JSTSA) 

IV. SIMULATIONS 

Computer simulations were conducted to evaluate the 
performance of the algorithms proposed in Section III. We use 
the 16-node, 25-link NSFNET backbone topology (Fig. 4) for 
the simulations. Other network topologies are also used and 
yield similar results. The cost of every link is assumed to be 1, 
and the capacity on each link is 8 units. Every node has full 
wavelength conversion capability. A working lightpath and a 
protection lightpath each take one unit of capacity. 
Connection requests arrive according to a Poisson process, 
and holding times are exponentially distributed. The primary 
performance metric is the blocking probability. 

Since an optimal solution is infeasible due to the NP-
completeness of the problem, we run Suurballe’s algorithm 
without the risk-disjoint constraint and use the resulting 
blocking probabilities as a lower bound. Note that the disjoint 
lightpaths obtained from Suurballe’s algorithm may not be 
risk disjoint. The results are obtained with confidence level 
between 90% to 95% and confidence interval around 5%. The 
results are depicted in Fig. 5. 

The simulation results show that, first of all, shared 
protection significantly improves the blocking probabilities, 
regardless of the traffic load. Secondly, when the traffic load 
is low, the Joint-Search Two-Step Algorithm is significantly 
better than the simple two-step algorithm. As the traffic load 
increases, the blocking probabilities of the two algorithms 
converge. The performance of the Joint-Search Two-Step 
Algorithm stems from its incorporation of Suurballe’s 
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algorithm and the minimization of the total cost of the 
working lightpath and its protection lightpath. 
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Figure 4. 16-node NSFNET backbone network. 

The numbers indicate Risk IDs. 
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Figure 5. Blocking probability versus load under low 
traffic load. The blocking probabilities of the simple two-
step algorithm and the JSTSA converge at higher load. 

V. CONCLUSION 

In this paper we first considered the problem of dynamic 
path protection in optical transport networks under the SRLG-
disjoint constraint. We proved that the problem is NP-
complete. The problem was then generalized to WDM mesh 
networks and general path-routed networks with the 
introduction of two new concepts - Risk ID and Risk Set.  

To solve the NP-complete problem, we developed an ILP 
formulation and heuristic algorithms. We conducted computer 
simulations to evaluate the heuristic algorithms and compared 
their blocking probabilities under various traffic loads. The 
simulation reveals that, the Joint-Search Two-Step Algorithm 
is superior to the simple two-step algorithm. The simulations 
also confirm that shared protection significantly improves 
blocking probability over dedicated protection. 

One possible area of future work would be to further 
improve the performance of the Joint-Search Two-Step 
Algorithm. The algorithm currently adjusts the link costs 
based on the occurrences the Risk IDs of the network links. 
We may include other factors to make the adjustment more 
intelligent. Another area of improvement might be using 
traffic grooming on the working lightpaths and protection 
lightpaths to reduce network complexity and cost. 
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