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Abstract— A fault-tolerant scheme, called dual homing, is gen-
erally used in IP-based access networks to increase the availability
of the network. In dual homing, a host is connected to two dif-
ferent access routers; therefore, it is unlikely that the host will be
denied access to the network as the result of an access line break,
a defective power supply in the access router, or congestion of the
access router. However, dual homing itself cannot provide surviv-
ability due to possible failures in a WDM core network. To provide
survivability in the core network, protection and restoration tech-
niques must be used. The dual homing architecture introduces
new issues for protection and restoration design, especially when
providing survivability against two independent failures, one in
the access network and another in the core network. This paper
studies the protection design in the core network given the dual-
homing infrastructure in WDM mesh networks. Several solutions
are proposed, and the performance of the different solutions are
compared. We also prove that one of the proposed algorithms gives
a solution that, in the worst case, is at most �

�
times the cost of the

optimal solution.

I. INTRODUCTION

IP-over-WDM networks are considered as the major com-
ponents of the next-generation Internet. One important issue in
IP-over-WDM networks is survivability. Survivability is the ca-
pability of the network to function in the event of node or link
failures. Dual homing is generally used to increase survivabil-
ity in the access network. In dual homing, a host in the access
network can be connected to two IP routers, which are con-
nected to underlying edge optical cross connects (OXCs) of the
core network. Fig. 1 illustrates the IP-over-WDM dual-homing
network architecture. The main objective of dual homing is to
provide enhanced survivability to protect against access node
failures caused by system malfunction, scheduled outage, or an
access link failure. Dual-homing architecture design has been
widely studied in self-healing ring networks [1], [2], [3].

The survivability in WDM networks is implemented using
protection and restoration techniques. Protection is a static
mechanism to protect against failure, where the resource for
both the primary and the backup lightpaths are reserved prior
to the data communication. Restoration on the other hand, is a
dynamic mechanism where the backup lightpath is not set up
until the failure occurs. Survivability using these techniques is
usually provided to handle single link failures in the core net-
work. Existing literature on protection and restoration in WDM
networks can be found in [4], [5].

There have been several efforts for providing survivability
for a dual-homed IP-based access network over WDM-based
core networks [6], [7]. In all these works, the authors con-
sider providing survivability separately at the IP layer as well
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Fig. 1. Dual-homing architecture.

as the WDM layer. In [6], the authors discuss how to sup-
port dual-homing in passive optical networks; while [7] studies
survivability in IP-over-WDM networks and provides different
protection types (unprotected, protected, and dual homing) for
each IP link in order to keep the networks connected in the event
of link failure. The focus of our paper is to provide an integrated
solution for providing survivability in an IP-over-WDM mesh
network.

In this paper, we integrate dual homing and protection, using
dual homing to protect against a single access node failure, and
protection to handle a single link failure in the optical core. We
consider the problem of providing protection in the core net-
work, given the dual-homing architecture. We assume that the
failures in the access network and the core network are inde-
pendent, which means that the failure of the access node and
the failure of the link in the core network can occur simulta-
neously. By considering the dual-homed IP-over-WDM archi-
tecture (Fig. 1), we observe that, at any given time, each host
transmits data to the destination only through one of the dual
homes. Based on this observation, we see that only one of the
primary paths will be utilized at any given time. Also, this prop-
erty leads to fewer restrictions on the disjointness constraint
between the two primary and two backup paths from the dual
homes to each of the destinations. We observe that by providing
an integrated solution, we can obtain significant cost benefits
as compared to handling survivability separately at each of the
layers (IP and WDM). In our study, we focus on the Dynamic
Dual-Homing Protection problem, wherein connection requests
arrive one at a time and the requests are handled one after the
other.

The rest of the paper is organized as follows. The network ar-
chitecture of Dual-Homing Protection is described in Section II.
The detailed problem description is presented in Section III. In
Section IV, we propose a number of different heuristics to solve
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the Dynamic Dual-Homing Protection problem. In Section V,
we evaluate the performance of all the proposed algorithms. We
also prove that one of the proposed algorithms gives a solution
that, in the worst case, is at most �

�
times the cost of the optimal

solution. Finally, the conclusion and future work are presented
in Section VI.

II. NETWORK ARCHITECTURE

In this paper, we consider an integrated IP-over-WDM net-
work as shown in Fig. 1, where a host in the access network
is connected to two IP routers in the IP-based access network.
Each IP router is connected to an optical cross connect (OXC),
which in turn is connected to other OXCs that constitute the
all-optical WDM core network. Dual homing is provided at the
access level to provide survivability against a single IP router
(node) or access link failure. In dual homing, two link-disjoint
paths connect the host to its dual homes. The dual-homed IP
routers are connected to the underlying OXCs. The OXCs con-
vert the IP packets into optical signals and transmit packets over
the WDM layer to the corresponding destinations.

In the event of an access node failure, we assume that the IP
router fails, but the OXC connected to the router continues to
carry express optical traffic. Therefore, by using dual homing,
the access traffic can be shifted to the other home (access node),
which in turn transmits the data traffic to the destination. We
also observe that in the event an access link failure, the access
network is survivable with dual homing. Hence, dual homing
provides survivability against single link or node failure in the
access network. In the event of a link failure in the core, we
adopt link-disjoint dedicated path protection to provide surviv-
ability. In dual homing, we have two source OXCs, with only
one source OXC transmitting data to a specific destination OXC
at any given time. Therefore, we observe that, in most solutions,
the primary paths between the two source OXCs to the destina-
tion OXCs need not necessarily be disjoint. Additionally, since
we have to protect against a single-link failure in the core, it
is best to maximize sharing of links between the two primary
paths, so that we have fewer links to protect (while calculat-
ing a combined backup path). The detailed description of the
problem and the solutions are given in the following sections.

III. PROBLEM DESCRIPTION

A WDM network can be modeled as an undirected graph
������, where � is the set of OXCs and � is the set of
WDM links. Let the wavelength cost of a WDM link � � �

be ����. Let the maximum number of wavelengths in each link
be � . Let each dynamic connection request, denoted by, 	,
be given by ��
�� 
��� ��, where 
� and 
� are two OXCs con-
nected to the dual-homed access routers of Host �, and � is the
destination OXC that in turn is connected to an IP router that
connects to the destination Host. Algorithms for determining
the dual-homes for a Host � are given in [8]. Let the primary
lightpath from 
� to � be denoted by ��� and the link-disjoint
backup lightpath from 
� to � be denoted by ���. Similarly, the
primary lightpath from 
� to � is denoted by ��� and the link-
disjoint backup lightpath from 
 � to � is denoted by ���. Let ��
be the set of all links used in the primary and backup lightpaths
for the connection request 	. �� is given by ��� � ��� � ��� � ���.

If the core network is reliable, ��� and ��� are not necessarily
disjoint as shown in Fig. 2(a). Even if ��� and ��� are disjoint,
they cannot protect simultaneous failures in the access network
and the core network, as shown in Fig. 2(b). If the access node
of 
� is down, and one link in ��� is also down, data cannot be
sent to �. In order to provide dual-homing protected service,
we need ��� and ��� to protect the lightpaths ��� and ���. We have
the following observations:

- ��� and ��� are not necessarily disjoint.
- ��� and ��� are not necessarily disjoint.
- ��� and ��� are not necessarily disjoint.
- ��� and ��� are not necessarily disjoint.
- ��� and ��� must be disjoint.
- ��� and ��� must be disjoint.

Fig. 2(c) illustrates these observations.
In this paper, we study the dynamic dual-homing protection

problem in which the objective is to route ���, ��� , ���, and ��� for
an arriving connection request 	 such that the wavelength cost
is minimized. We assume that each connection request is for a
single wavelength on any link, that full-wavelength conversion
capability is available at each OXC in the core network, and
that the wavelength conversion cost is not significant. We only
consider the wavelength cost in the total cost. Therefore, given
a new connection request 	, the objective of the dynamic dual-
homing protection problem to find � � such that total cost �� is
minimum, where,

�� �
�

����

����� (1)

The computational complexity for this problem is still open,
and is believed to be NP-hard.

IV. DYNAMIC DUAL-HOMING PROTECTION ALGORITHMS

We now propose several heuristics for dynamic dual-homing
protection. These heuristics can be classified into two cate-
gories: one category is based on a minimum cost network flow
model and the other category is based on a minimum Steiner
tree model. The minimum cost network flow model computes
minimum-cost link-disjoint paths which satisfy the disjointness
between the primary path and the backup path [9]. On the other
hand, the minimum Steiner tree model considers the sharing
among the primary paths and sharing among the backup paths.

The first heuristic is based on the minimum cost network flow
model. It finds the optimal link-disjoint primary and backup
lightpaths from one of the dual homes to the destination, and
then finds the optimal link-disjoint primary and backup light-
paths from the other dual home to the destination. The solution
obtained by MCNFH is as shown in Fig. 3(a).

The second heuristic is also based on the minimum cost net-
work flow model and is a generalization of the first heuristic in
which we first select a random node known as the branching
node. From each of the dual homes we compute two minimum-
cost link-disjoint paths to the branching point, and from the
branching node we compute two minimum cost link-disjoint
paths to the destination. This process is repeated, selecting
each node as the branching node, and then selecting the min-
imum cost solution. The first heuristic is a special case of sec-
ond heuristic in which the destination is chosen as the branch-
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Fig. 2. Dual homing and protection architectures.

ing node. The solution obtained by MDSPH is as shown in
Fig. 3(b).

The last heuristic is based on the minimum Steiner tree
model. It finds the minimum Steiner tree connecting the dual
homes to the destination, then provides path protection from
each home to the destination. The solution obtained by MSTH
is as shown in Fig. 3(c). We now describe each of the algo-
rithms in detail.

A. Minimum Cost Network Flow Heuristic (MCNFH)

The minimum cost network flow heuristic (MCNFH) first
finds the minimum cost link-disjoint primary and backup light-
paths from one of the dual homes to the destination, then
changes the link cost and finds the minimum cost link-disjoint
primary and backup lightpaths from the other dual home to
the destination. We can use the minimum cost network flow
(MCNF) algorithm to find the minimum-cost link-disjoint pri-
mary and backup lightpaths from one home to the destination.
Initailly, we assign the capacity of link to be unity in order to
force the primary and the backup lightpaths from 
� to � as well
as from 
� to � to be disjoint. � gives the total cost for the pri-
mary and backup lightpaths from 
� to � as well as from 
� to
�, and � gives the links used for those lightpaths. Note that
the order in which the paths are computed has a bearing on the
total cost. Hence, we first find the primary and backup light-
paths from one dual home to the destination, and then find the
primary and backup lightpaths from the other dual home to the
same destination. We repeat the process by finding the primary
and backup lightpaths from other dual home to the destination,
and then finding the primary and backup lightpaths from the

(a) Protected dual-homing architecture using MCNFH.
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(c) Protected dual-homing architecture using MSTH.
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Fig. 3. Dynamic dual-homing protection using different heuristics.

first dual home to the same destination. Of the two resulting
solutions, we choose the one that results in the minimum cost.
The detailed algorithm is given below.

1) Call the MCNF algorithm to find ��� and ���, of cost
���
�� ��, and let �� � ��� � ���.

2) Assign ���� � � � � � �� (encourage sharing).
3) Call the MCNF algorithm to find ��� and ���, of cost

���
�� ��. Let � � ���
�� �� � ���
�� �� and �� �
�� � ��� � ���.

4) Hence, we obtain the minimum cost (�) primary and
backup paths from 
� and 
� to �. Now, we repeat the
above step by selecting the other dual home, 
� as the
first node for which the primary and backup paths to the
destination is computed.

5) Call the MCNF algorithm to find ��� and ���, of cost
���
�� ��, and let �� � ��� � ���.

6) Assign ���� � � � � � �� (encourage sharing).
7) Call the MCNF algorithm to find ��� and ���, of cost

���
�� ��. Let �� � �� � ��� � ��� .
8) If �� � ���
�� �� � ���
�� ���, then � � ���
�� �� �

���
�� �� and � � ��. Otherwise, � � ��.

MCNFH gives a solution that, in the worst case, is at most �

�

times the cost of the optimal solution (the proof is given in the
Appendix).

B. Minimal Disjoint Segment-Pair Heuristic (MDSPH)

The minimal disjoint segment-pair heuristic (MDSPH) is
based on the observation that in order to minimize the wave-
length cost, the two primary paths are either disjoint or there
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is a branching node which connects two homes and the desti-
nation. If the two primary paths are disjoint, we can take the
destination as the branching node. The MDSPH tries to find the
branching node such that the total wavelength cost used in both
primary paths and backup paths is minimum. Let �� be the set
of links used in the primary paths and backup paths, when node
�� � � is chosen as the branching node. Let �� be the total
wavelength cost when the links in �� are used for connection
request 	�. Let �� be the branch node with minimum wave-
length cost for the primary paths and backup paths. MDSPH
works as follows.

1) Set � � �, �� � �
2) For each Node �� � � , assign �� to be the branching node

and do the following:
(a) Find two link-disjoint paths using MCNF from 
 � to

��, let the cost be ��
�

and the links used be ������.
�� � �� � �������

(b) Find two link-disjoint paths using MCNF from 
 � to
��, let the cost be ��

�
and the links used be ������.

�� � �� � �������
(c) Find two link-disjoint paths using MCNF from � � to

�, let the cost be ��
�

and the links used be������.
�� � �� � �������

(d) if (� � ��
�
� ��

�
� ��

�
) then � � ��

�
� ��

�
� ��

�

and �� � ��

In the algorithm described above, � gives the total cost of
the solution found by MDSPH, and �� gives the branch node.
If �� � ��, then �� includes all links used for the primary paths
and backup paths.

MDSPH always finds a solution if a feasible solution exists.
The solution obtained can be no worse than MCNFH, since
MCNFH is a special case of MDSPH where the destination
serves as the branching node.

C. Minimum Steiner Tree Heuristic (MSTH)

The minimum Steiner tree heuristic is based on the fact that
the minimum Steiner tree is the best approach to connect three
nodes with minimum cost. The idea behind the minimum
Steiner tree heuristic (MSTH) is to find a minimum cost tree
which is designated as the primary tree and which provides path
protection to the dual homes.

Although the minimum Steiner tree problem is NP-hard in
the general case, it is polynomial-time solvable when there are
only three nodes covered. We know that any tree covering three
nodes will have at most one branching (or splitting) node. Once
the branching node is determined, the minimum cost Steiner
tree is obtained by finding the shortest paths from the branching
point to each of the end nodes (dual homes and the destination).
In order to find the optimal branching node in a network with�
nodes, we can consider each Node �� � � to be the branching
point and then form a tree, ��, resulting in � different trees.
The optimal Steiner tree, ���	, is given by the minimum cost
tree of the � different enumerated trees.

1) Find the optimal Steiner tree connecting the dual homes
and the destination node. This minimum cost tree is des-
ignated as the primary lightpaths, ��� and ��� respectively.

2) Assign the cost of the links in ��� to�.
3) Find the shortest path ��� from 
� to �

TABLE I
TIME COMPLEXITY: DUAL-HOMING PROTECTION ALGORITHMS.

Algorithm Time Complexity

MCNFH O(��)
MDSPH O(��)
MSTH O(��)

4) Assign the cost of the links in ��� and in ��� to 0.
5) Assign the cost of the links in ��� to�.
6) Find the shortest path ��� from 
� to �
In Table I, we compare the time complexities of the proposed

dual-homing protection heuristics. We see that the MCNFH has
a worst-case time complexity ��� ��, the generalized MDSPH
has a worst-case time complexity ��� ��, and the MSTH has a
worst-case time complexity ��� ��.

V. SIMULATION RESULTS
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Fig. 4. (a) The average cost versus number of nodes in the network (N),
and (b) The average cost versus maximum nodal degree (D) for the proposed
algorithms.

In this section, we develop a simulation model in order to
analyze the performance of the proposed heuristics for the dy-
namic dual-homing protection problem. We are interested in
comparing the average total cost of the solutions obtained us-
ing MCNFH, MDSPH, and MSTH. The important simulation
parameters include the network size, � , the maximum outgoing
degree at each node, . Given a group of parameters ����,
we randomly generate a network with � nodes. The outgoing
degree of each Node �, is uniformly distributed in ��� �� � � � � �.
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The cost of each link is set to unity. We randomly select two
nodes to be the dual homes for a new connection request and
another node to be the destination.

For each group of parameters, instances are generated until
1000 instances have feasible solutions by using MCNFH. All
these instances are also solved by MDSPH and MSTH. Fig. 4(a)
plots of average cost for the proposed algorithms versus differ-
ent values of N, when  is set to 10. In order to show the ad-
vantage of the integrated solution, we compare the algorithms
with a baseline case wherein sharing between any of the pri-
mary and backup paths is not allowed. By considering that a
dual-homed IP layer exists above the WDM core network, we
can see that the cost of providing protection in the core network
using MCNFH, MDSPH, and MSTH is significantly lower than
the baseline case. We also observe that MCNFH and MDSPH
incur the same cost for the network scenarios considered. The
performance of MSTH is also close to that of the network flow-
based algorithms. The cost obtained by MSTH is better than
MCNFH and MDSPH, for larger networks. By using the 4/3
approximation result, we also give a tight lower-bound for the
dynamic dual-homing protection problem.

Fig. 4(b) plots of average cost versus the for the proposed
algorithms versus different values of D, when � is set to 100.
We observe that MSTH outperforms MCNFH as D increases,
since in MSTH, as the network connectivity (D) increases there
is a higher possibility of the dual homes sharing common links
on their primary tree. We have assumed that the two dual homes
are randomly chosen to be any of the nodes in the network. In
the case we consider a practical setup where the dual homes are
close to each other, there would be a higher possibility of the
dual homes sharing common links on their primary tree, so as
to reduce the total cost.

VI. CONCLUSION

We investigate the survivability issue in IP-over-WDM net-
works when a dual-homing architecture is provided in the ac-
cess network. Our goal is to provide survivability for such an
infrastructure subject to two independent failures, one failure
from the access network and one failure from the core network.
Three new heuristics, namely MCNFH, MDSPH, and MSTH
are proposed. We also derive a tight lower-bound on the opti-
mal solution for the dynamic dual-homing protection problem.
We observe that by following an integrated approach that con-
siders the dual-homed IP-over-WDM architecture as compared
to an independent solution at each layer (IP and WDM), we can
significantly reduce the cost incurred to provide protection in
the WDM core network.

Areas of future work include introducing the concept of
shared path protection into our integrated approach. In this pa-
per, we consider that the source host is connected to dual homes
but the destination is connected to a single home. It would be
interesting to see how the proposed algorithms perform in a sit-
uation wherein both the source and destination hosts are con-
nected to dual homes. Also, in the simulation model, we have
assumed that the dual homes are chosen randomly for each re-
quest. We would like to consider a more practical scenario in
which the dual homes are close to each other. This scenario
may result in the primary and backup paths sharing a higher

number of common links, thereby further reducing the cost of
the integrated approach.

APPENDIX

MCNFH: A 4/3-APPROXIMATION ALGORITHM

Conjecture 1: We conjecture that the dynamic dual-homing
problem is NP-hard.

A. The Minimum Cost Network Flow Heuristic (MCNFH) vari-
ation

In what follows, we present a 4/3-approximation algorithm
for the dynamic dual-homing problem and show that the cost of
the obtained solution is at most 4/3 times the cost of an optimal
solution. The minimum cost network flow (MCNF) algorithm
is a polynomial time algorithm for finding the minimum cost
edge-disjoint paths between any two nodes of a given graph.
MCNFH uses the MCNF algorithm as a subroutine to find a fea-
sible solution for dynamic dual-homing problem. The MCNF
algorithm, when given a Graph �, Source �, and Destination
, returns the minimum cost edge-disjoint paths from � to .
Given below are the details of MCNFH.

MCNFH(�� 
�� 
�� �)
1) �� � MCNF(�� 
�� �) + MCNF(�� 
�� �).
2) �� � MCNF(�� 
�� �) + MCNF(�� 
�� 
�).
3) �� � MCNF(�� 
�� �) + MCNF(�� 
�� 
�).
4) Return the lowest cost solution among ��� ��, and ��.
From the algorithm above, we can see that each of the three

solutions (��� ��, and ��) makes exactly two calls to MCNF, and
each call to the MCNF algorithm satisfies the requirement of
finding two edge-disjoint paths from a source to a destination.
For ��, the two calls independently find two edge disjoint paths
each from 
� and 
� to �. For �� (or ��), while the first call
finds two edge-disjoint paths from 
� to � (
� to � resp.), the
second call finds two edge-disjoint paths from 
� to 
� (
� to 
�
resp.), thereby finding two edge-disjoint paths from 
� to � (
�
to � resp.) indirectly. The final solution returned by MCNFH
is feasible as it contains two edge-disjoint paths each from 
�
and 
� to �.

B. Approximation Analysis

We now show that any solution returned by MCNFH is at
most 4/3 times the cost of an optimal solution.

Lemma 1: In any optimal solution ��� , there exist two
nodes � and � (� and � could be the same node, and � and/or
� could be 
�� 
�, or �) such that the paths 
� to �, 
� to �, 
�
to �, and 
� to � are all edge-disjoint. If there is no such � and
�, then the cost of ��� is at least 3/4 times the cost of the
solution obtained from MCNFH.

Proof: In any feasible solution, let ��� and ��� be the two
edge-disjoint paths from 
� to �, and let ��� and ��� be the two
edge-disjoint paths from 
� to �. If � were chosen to be � and
�, the paths ���� �

�

�� �
�

� and ��� might not necessarily be edge-
disjoint. If they are edge-disjoint, the proof is complete. But
if they are not edge-disjoint, then one of the following must be
true:

1) Only paths ��� and ��� are not edge-disjoint.
2) Only paths ��� and ��� are not edge-disjoint.
3) Only paths ��� and ��� are not edge-disjoint.
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4) Only paths ��� and ��� are not edge-disjoint.
5) (1) and (2).
6) (3) and (4).
7) (1), (2), and (3).
8) (1), (2), and (4).
9) (3), (4), and (1).

10) (3), (4), and (2).
11) (1), (2), (3), and (4).

For the first 6 cases, we now show (not necessarily in the
same order) how to find � and � such that the lemma is true.

Case 5: Intially, set � and � to �. Obviously, ��� and ��� meet
at �, and ��� and ��� meet at �. Since ��� and ��� are not edge-
disjoint, there exists a common node �� (�� could be 
� or 
�)
where ��� and ��� meet for the first time. Set � to ��. Similarly,
since ��� and ��� are not edge-disjoint, there exists a common
node �� (�� could be 
� or 
�) where ��� and ��� meet for the first
time. Set � to ��. Since, in any feasible solution, ��� and ��� (and
��� and ���) must be edge-disjoint, the paths 
� to �, 
� to �, 
�
to �, and 
� to � are all edge-disjoint.

Case 6: This case is symmetric to Case 5.
Cases 1-4: Cases 1 and 2 are sub-cases of Case 5, and Cases

3 and 4 are sub-cases of Case 6. Thus, the analysis for Case 5
holds for Cases 1 and 2. Similarly, the analysis for Case 6 holds
for Cases 3 and 4.

Now, for Cases 7 to 11, we show that either the cost of ���

is at least 3/4 times the cost of the solution obtained from MC-
NFH or there exists two points � and � in ��� such that the
paths 
� to �, 
� to �, 
� to �, and 
� to � are all edge-disjoint.

Case 7: The two possible scenarios that one can imagine for
this case are considered below.
(a) ��� shares edges with ��� even before ��� meets ��� or ���

meets ��� (see Fig. 5): Let �� represent a feasible solution
for the problem �� which asks for two edge-disjoint paths
each from 
� and 
� to �. Let �� represent a feasible solu-
tion for the problem �� which asks for two edge-disjoint
paths each from 
� to � and 
� to 
�, and let �� represent
a feasible solution for the problem �� which asks for two
edge-disjoint paths each from 
� to � and 
� to 
�. Using
the edges in ��� , we can easily construct ��, ��, and
�� by finding two edge-disjoint paths each from the two
source nodes to the destination node as shown in Fig. 6(a)-
(c). From Figs. 5 and 6(a)-(c), it can be easily verified
that the sum of the costs of ��� ��, and �� is clearly 4
times the cost of ��� . Solutions ��� ��, and �� returned
by lines 1,2 and 3 of MCNFH are feasible for problems
��� ��, and ��, respectively. Since the MCNF algorithm
finds minimum cost edge-disjoint paths for a given pair
of nodes, the cost of �� � ��, �� � ��, and �� � ��.
Also, since MCNFH outputs a lowest cost solution, say
�
, among ��� ��, and ��,

	�
 � �� � �� � �� � �� � �� � �� � 
 	����

The above inequality shows that ��� is at least 3/4 times
the cost of the solution obtained from MCNFH.

(b) ��� shares edges with ��� after ��� meets ��� (see Fig. 7):
Since ��� shares edges with ��� after ��� meets ��� , once ���
meets ��� for the first time at a certain node �, both ��� and

��� are made to share the part of the path ��� from � to �.
Since ��� and ��� are edge-disjoint, the part of path ��� from
� to � is edge-disjoint from ���. Let � be the first node at
which ��� meets ��� for the first time. Since ��� meets ��� for
the first time after �, and ��� now uses the part of the path
��� from � to �, ��� is edge-disjoint from ��� . Thus, the paths

� to �, 
� to �, 
� to �, and 
� to � are all edge-disjoint.

��� & ���

��� & ���


�


�

� �

�

�

�

��� & ���

���

���

���

���

Fig. 5. ��� shares edges with ��
�

even before ��
�

meets ��
�

or ��� meets ���.

�

�

��

��

��

�

(c)

(b)

(a)

�� to �

�� to �

�

�

�

��

��

��

�� to ��

� to ��

�

�

�

��

��

��

�� to ��

� to ��

Fig. 6. (a) �� constructed by two edge-disjoint paths each from � � and �� to
�. (b) �� constructed by two edge-disjoint paths each from � and � � to �� . (c)
�� constructed by two edge-disjoint paths each from � and � � to �� .

Cases 8-10: Cases 8-10 are symmetric to Case 7, and thus
the analysis for Case 7 holds for these cases as well.

Case 11: ��� shares edges with ��� and ���, and ��� shares edges
with ��� and ��� (Fig. 8): Without loss of generality, let � �� meet
��� for the first time even before ��� meets ���. Set the node where
��� and ��� meet for the first time to be �. From �, let ��� and ���
use the part of the path ��� from � to �. Since ��� uses the part
of the path ��� from � to �, and ��� and ��� are edge-disjoint, ���
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�


�

� �

�

�

�

���

���

���

�

��� & ���

��� & ���
��� & ���

���

���

Fig. 7. ��� shares edges with ��
�

after ��
�

meets ��
�
.

does not share edges with ��� anymore. Let � be the point where
��� meets ��� for the first time. From �, let ��� and ��� use the part
of the path ��� from � to �. Since ��� uses the part of the path ���
from � to �, and ��� and ��� are edge-disjoint, ��� does not share
edges with ��� anymore. Thus, the paths 
� to �, 
� to �, 
� to
�, and 
� to � are all edge-disjoint.


�


�

�

�

���

���

���

���

�

��

�

�

��� & ���

��� & ���
��� & ���

��� & ���

Fig. 8. ��� shares edges with ��� and ��
�
, and ��

�
shares edges with ��� and ��

�

Theorem 1: The final solution returned by MCNFH is at
most 4/3 times the cost of an optimal solution.

Proof: If the optimal solution ��� falls under Cases
7(a)-10(a) of Lemma 1, then, by Lemma 1, the cost of the solu-
tion returned by MCNFH is at most 4/3 times the cost of��� .

If ��� falls under Cases 1-6, 7(b)-10(b) or 11 of Lemma 1,
we show that the ��� can be converted into the canonical
form, shown in Fig. 9. For these cases, by Lemma 1, there
always exists two points � and � in ��� , such that the paths

� to �, 
� to �, 
� to �, and 
� to � are all edge-disjoint. Let
��� and ��� be the paths from 
� and 
� to �, respectively, which
pass through �. Let ��� and ��� be the paths from 
� and 
� to �,
respectively, which pass through �. By definition, paths ��� and
��� , and ��� and ��� must be edge-disjoint and thus there exists
two edge-disjoint paths from � and � to �. There is a possibil-
ity that � and � are � itself, and thus paths from � and � to �

are non-existent. In such a scenario, we interpret paths from �

and � to � to be of cost zero (paths with no edges). Paths ���
and ��� must share a path from � to �, otherwise ��� is not
optimal, which is a contradiction, likewise with paths ��� and ���
sharing a path from � to �. Thus, there exist two edge-disjoint
paths from � and � to �, and any optimal solution that falls
under Cases 1-6, 7(a)-10(a), and 11 can be converted into the
canonical form shown in Fig. 9. We now show that the solution
returned by MCNFH is 4/3 times the cost of��� (represented
in canonical form).

Consider Fig. 9. Let the cost of the path from 
� to � be  ,

� to � be �, 
� to � be � , 
� to � be �, � to � be �, and � to
� be !. Since the cost of the path is the same regardless of the

�

����

���

���

 

!�

�

�
�

���

��� & ���
��� & ���

�


�


�

Fig. 9. Canonical form.

direction of traversal, without loss of generality, the direction
of edges are not considered in the following analysis.

MCNFH considers three solutions and outputs the lowest
cost solution, say �
, among the three possible solutions ��� ��,
and ��. Clearly, �� is a feasible solution for the problem which
asks for two edge-disjoint paths each from 
� and 
� to �, ��
is a feasible solution for the problem which asks for two edge-
disjoint paths each from 
� to � and 
� to 
�, and �� is a feasible
solution for the problem which asks for two edge-disjoint paths
each from 
� to � and 
� to 
�. Since the MCNF algorithm finds
the minimum cost edge-disjoint paths from a source to a desti-
nation, the cost of any other pair of edge-disjoint paths between
that source and destination is at least the cost of the solution
obtained by the MCNF algorithm. Thus,

Cost of �� �  � !� �� �� � � � � !� �

Cost of �� �  � !� �� �� � � � �  � �

Cost of �� �  � !� �� �� � � � � �� �

Since MCNFH outputs the lowest cost solution �
 among
the three possible solutions ��� ��, and ��,

	�
 � �� � �� � ��

� 
� � !� �� �� � � � � !� ��

� 
 	 Cost of ���
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