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Abstract
This study analyzes the impact of noisy background variations and
Lombard effect (LE) on large vocabulary continuous speech recog-
nition (LVCSR). Robustness of several front-end feature extraction
strategies combined with state-of-the-art feature distribution normal-
izations is tested on neutral and Lombard speech from the UT-Scope
database presented in two types of background noise at various levels
of SNR. An extension of a bottleneck (BN) front-end utilizing normal-
ization of both critical band energies (CRBE) and BN outputs is pro-
posed and shown to provide a competitive performance compared to
the best MFCC-based system. A novel MFCC-based BN front-end is
introduced and shown to outperform all other systems in all conditions
considered (average 4.1% absolute WER reduction over the second
best system). Additionally, two phenomena are observed: (i) combina-
tion of cepstral mean subtraction and recently established RASTALP

filtering significantly reduces transient effects of RASTA band-pass
filtering and increases ASR robustness to noise and LE; (ii) histogram
equalization may benefit from utilizing reference distributions derived
from pre-normalized rather than raw training features, and also from
adopting distributions from different front-ends.
Index Terms: speech recognition, Lombard effect, UT-Scope
database, bottleneck features, quantile-based cepstral distribution nor-
malization, histogram equalization.

1. Introduction
Acoustic signal variations due to the presence of environmental noise
as well as speech production adjustments introduced by speakers to
communicate effectively in noise, called Lombard effect (LE), are
known to degrade the performance of automatic speech recognition
(ASR) [1, 2]. While an extensive effort to increase ASR robustness
to noise has been carried out by the speech community, the impact of
speech changes due to LE has received far less attention. A number
of speech production parameters are affected by LE [1–5] and their
drift from neutral (modal) speech values introduce mismatch with the
ASR acoustic models trained typically on neutral speech. So far, the
efforts to reduce the impact of LE on ASR have been mostly limited to
small vocabulary ASR tasks (see [6] for overview). Many techniques
increasing ASR robustness to adverse environments and speaker vari-
ability are available, operating in the acoustic features domain (e.g.,
noise suppression, modified feature extraction filter-banks, cepstral
distribution normalizations, temporal filtering, etc.), acoustic model
domain (e.g., acoustic model adaptation, parallel model combination,
model codebooks), and ‘in-between’ (e.g., vocal tract length normal-
ization, VTLN, transforming features in frequency domain based on
the likelihoods from acoustic models). Some of them were shown to
be partially successful also in reducing the impact of LE, e.g., modified
filter-banks [7,8], cepstral normalizations and VTLN [6], and temporal
filtering [9].

While additional pre- and post-processing stages, such as noise
suppression or VTLN, are expected to further boost the system per-
formance, it is believed that careful front-end design conducted in the

∗This project was funded by AFRL through a subcontract to RADC
Inc. under FA8750-09-C-0067 (Approved for public release, distribution un-
limited), and partially by the University of Texas at Dallas from the Dis-
tinguished University Chair in Telecommunications Engineering held by J.
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initial stage will provide a good asset for building a fully-loaded LE-
robust LVCSR system. In our recent study [9], cepstral compensations
and newly proposed modification of the popular RASTA [10] (rela-
tive spectra) temporal filtering were shown to improve robustness of
a MFCC-based recognizer exposed to noise and LE. The objective of
this paper is to compare performance of several existing feature extrac-
tion strategies combined with state-of-the-art cepstral compensations
and temporal filtering when being exposed to varying speech modal-
ity (neutral vs. LE speech) and various levels of environmental noise
in LVCSR tasks. In particular, the focus is on mel frequency cepstra
(MFCC) [11], perceptual linear predictive (PLP) cepstra [12], percep-
tually motivated minimum variance distortionless response (PMVDR)
cepstra [13], and bottleneck (BN) features [14]. It is noted that to our
best knowledge, this represents the first effort to evaluate the BN per-
formance in varying noise conditions and Lombard effect in LVCSR
context. BN features are extracted from a hidden layer of a neural net-
work (NN) that makes use of a longer temporal context of critical band
energies (CRBE) or cepstral features. Inspired by the encouraging per-
formance improvements observed for ‘non-mainstream’ combinations
of cepstral features and normalizations in our initial experiments, we
explore the use of similar normalization strategies on CRBE within
the BN framework. In addition, we propose to extend the BN front-
end for additional normalization of BN outputs, which is shown to
provide further performance gains. Finally, a front-end that utilizes
the best performing normalized cepstra as inputs to the BN framework
is proposed and shown to provide superior performance to all other
front-ends across all evaluation conditions.

2. Feature Extraction Front-Ends
2.1. Feature Normalizations

Feature distribution normalizations, typically applied to log spectral
energies or cepstral coefficients, are popular means to reduce the im-
pact of speaker and channel variations and environmental noise on
speech systems.

The following feature distribution normalizations are utilized
in our study: cepstral mean normalization (CMN), cepstral mean–
variance normalization (CVN), cepstral gain normalization (CGN)
[15], recently proposed quantile-based cepstral dynamics normaliza-
tion (QCN) [6], feature warping (Gaussianization, FW) [16], his-
togram equalization [17], relative spectral (RASTA) filtering [10], and
recently proposed RASTALP filtering [9]. Due to the deconvolu-
tion properties of log spectra/cepstra, convolutional signal distortions
caused by changes in environmental acoustics, microphone/channel
path, as well as speech production changes (speech intensity, spec-
tral slope, etc.) can be modeled as shifts in feature distribution means
and variances. Furthermore, the presence of additive noise has also
direct impact on distribution means and contours [6]. CMN and CVN
are popular means used to reduce the impact of distribution mean and
variance changes. CGN is a modification of CVN where rather than
variance, an amplitude interval bound by the global maximum and
minimum in the speech segment is normalized. CGN was found to pro-
vide superior performance to CVN in ASR tasks on noisy neutral [15]
and LE speech [9]. QCN extends the concept of CVN and CGN; the
dynamic range of cepstral sample occurrence is estimated from his-
togram quantiles and subsequently, the samples are normalized to a
zero inter-quantile mean and unit inter-quantile distance. This method
is motivated by the observation that mean and variance normalization
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may not be as efficient in aligning training and test distributions of
different skewness (caused by signal distortions), while normalizing
distributions by their selected low and high quantiles can assure good
‘dynamic range’ alignment for two distributions of any shape. Feature
warping (FW) and histogram equalization (HEQ) normalize all distri-
bution moments – towards Gaussian or reference distribution, respec-
tively. RASTA band-pass filtering aims at suppressing speech signal
components that vary either too slow or too fast to be attributed to
speech. The slow varying component suppression can be viewed also
as another realization of CMN (CMN suppresses a DC component). In
our recent study [9], a modified RASTA filter that approximates only
the low-pass portion of the original RASTA by a smoothing function
was introduced (denoted here as RASTALP ). The goal is to remove
the ‘CMN function’ from RASTA and allow for combining other types
of normalization that do not necessarily center distributions to their
means (such as QCN) with the filtering of fast varying components
due to noise. Compared to RASTA, RASTALP is realized by a fil-
ter of significantly lower order, which helps reduce transient effects
typical for RASTA filtering (see Fig. 1).
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Figure 1: Transient effects due to RASTA filtering – raw, RASTA-filtered, and
RASTALP -filtered c0 tracks. Note increased transients due to RASTA filtering
(middle plot) compared to RASTALP .

2.2. Feature Extraction Strategies

MFCC [11] and PLP [12] feature extraction front-ends predominate in
current ASR speech systems. While there were many alternative fea-
ture extraction strategies proposed since the introduction of MFCC and
PLP and shown to perform comparably or better in selected tasks, it
seems to be quite difficult to overly improve on the ‘baseline’ features.
One of the potential competitors may be found in so called bottleneck
(BN) features [14]. BN feature extraction makes use of a neural net-
work (NN). While NN-based speech features have been used for over
a decade [18], they typically do not reach the performance/robustness
of cepstral features. However, they were shown to provide comple-
mentary information to cepstral features and boost the performance
when combined together [19]. A typical NN-based extractor uses NN
or a set of NN’s to estimate class (phone or sub-phone) posteriors from
longer-term signal characteristics. Inputs to the NN (raw features) are
usually formed by several consecutive frames of either critical band
energies (CRBE) or cepstral features. The context can span from ±4
up to ±50 frames. Cepstral mean–variance normalization or RASTA
filtering can be applied to the CRBE/cepstral tracks [20,21]. The class
posterior probabilities are usually transformed by log non-linearity and
decorrelated by PCA to better fit expectations of the following GMM–
HMM acoustic model. In the case of BN, outputs of a hidden layer in
a multi-layer NN are used rather than the class posteriors. This layer
is typically smaller than other layers and is called a bottleneck.

Our BN framework is based on [14] (see Fig. 2). 22 critical band
energies (CRBE) or 13 static cepstral coefficients form the raw fea-
tures. Subsequently, selected normalizations and temporal filtering
from the set described in Sec. 2.1 are applied to each feature dimen-
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Figure 2: Proposed extended bottleneck front-end framework.

sion (track). Then, the context of ± 15 frames representing the tempo-
ral evolution in each feature track is weighted by a Hamming window
and projected on 16 discrete cosine transform (DCT) bases. A 5-layer
NN is trained by standard back-propagation algorithm to classify 136
sub-phone classes corresponding to the states of the HMM acoustic
model. The training data are force-aligned by an MFCC baseline sys-
tem. The NN has 250 000 weights and 30 neurons in the bottleneck
layer. The two adjacent hidden layers have equal sizes. For the pur-
pose of feature extraction, only the first half of the NN is used. As
shown in [22], decorrelation of BN outputs further improves system
performance. For our experiments, the Maximum Likelihood Linear
Transform (MLLT) [23] with sub-phoneme state classes (same as NN
targets) of the same covariance is utilized. In the following text, the
term ‘BN features’ denotes BN outputs transformed by MLLT. In ad-
dition, we propose applying normalizations from Sec. 2.1 also on the
top of the BN features, which may provide further robustness to feature
variations due to the presence of noise or speech variations not seen by
the BN neural network during the training. It is noted that in traditional
BN systems, the (transformed) BN outputs are taken ‘as they are’ and
fed directly to the acoustic back-end. Finally, in correspondence with
finding in [22], delta parameters are computed.

In addition, perceptually motivated minimum variance distortion-
less response (PMVDR) cepstral coefficients [13] are evaluated in our
experiments. PMVDR was shown to provide a competitive perfor-
mance to MFCC in small to middle vocabulary ASR tasks in car noise.
PMVDR utilizes the minimum variance distortionless response esti-
mator to represent the spectral envelope of the speech signal.

3. Experimental Results
3.1. Corpus Description

The test samples utilized in this study come from the Lombard portion
of the UT-Scope corpus [24], where all subjects produced speech in a
neutral condition (no noise exposure) and also in simulated noisy con-
ditions (background noise samples produced through open-air head-
phones). Three noisy scenarios were introduced: (i) highway car
noise, (ii) crowd noise, and (iii) pink noise. Highway and crowd noises
were produced through headphones at 70, 80, and 90 dB SPL (sound
pressure level); pink noise at 65, 75, and 85 dB SPL. Speech was
recorded using throat, close-talk, and far-field microphones. In this
study, the close-talk channel that provides high SNR for both neutral
and simulated noisy condition recordings is used. For the ASR tasks,
sessions from 31 native speakers of US English (25 females, 6 males)
are used. Each session comprises 100 phonetically balanced read sen-
tences from the TIMIT database [25] produced by each subject in the
neutral condition, and 20 TIMIT sentences produced in each of the
nine noise type/level conditions.

3.2. Experimental Setup

A triphone recognizer combining Hidden Markov Model Toolkit
(HTK) based acoustic modeling and trigram language model (LM)
implemented with the SRI Language Modeling Toolkit (SRILM) is
trained on the TIMIT database (16 kHz) [25]. For cepstral front-ends
(MFCC, PLP, PMVDR), 13 static cepstral coefficients, including c0,
and Δ’s and ΔΔ’s form the feature vector. In the case of BN frame-
work, 30 static and 30 Δ coefficients are used. The back-end acous-
tic model/LM setup is fixed for all front-ends. At the end of the
training phase, 32-mixture triphone models are adapted towards UT-
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Scope channel/acoustics using combined maximum likelihood linear
(MLLR) adaptation and maximum a posteriori (MAP) adaptation on
a subset of clean neutral speech UT-Scope recordings. The adapta-
tions are supervised and utilize labels obtained through forced align-
ment [26]. Speakers from the adaptation set are excluded from the
open test set, which contains sessions from 3 male and 19 female sub-
jects. ASR systems utilizing different front-ends are likely to have
different optimal operating points (OP). To assure a fair comparison of
various front-end systems, an ‘optimal’ OP is searched for each setup
by selecting the number of HMM retraining iterations and word in-
sertion penalty that minimize word error rate (WER) on small clean
neutral development set from UT-Scope (excluded from subsequent
evaluations).

The front-ends are evaluated on two tasks: (i) clean recordings –
high SNR signals – clean neutral speech and clean Lombard speech
produced in 70, 80, and 90 dB SPL of simulated highway and crowd
noise, and 65, 75, and 85 dB of pink noise (noise was produced through
headphones and does not appear in the LE recordings); (ii) noisy
recordings – clean neutral speech and clean LE speech produced in
90 dB SPL of simulated highway noise, both mixed with the NOI-
SEX’92 ‘Volvo’ noise at 0, 5, . . ., 20 dB SNR; clean neutral speech
and clean LE speech produced in 90 dB SPL of simulated crowd noise,
both mixed with the NOISEX’92 ‘Babble’ noise at 0, 5, . . ., 20 dB
SNR. This yields a total of 30 evaluation sets. The initial ASR sys-
tem utilizing MFCC–CVN front-end establishes performance on the
clean neutral set at 8.3 % word error rate (WER) and PLP–CVN sys-
tem 8.9 % WER. Since our focus is on optimizing the performance of
acoustic front-ends rather than LM, the reminder of the paper reports
WER’s obtained from the acoustic model decoding with LM bypassed.

3.3. Results and Discussion

In the case of cepstral front-ends, normalizations are applied as shown
in the left-most box in Fig. 2 (RASTA and RASTALP are consid-
ered exclusive). For BN features, normalizations are performed both
on features entering the BN neural network and on BN outputs. The
experimental results are summarized in Tables 1 and 2 and Fig. 3. The
tables show average WER’s for open clean test sets, noisy sets (aver-
aged across all SNR’s and both types of noise), and an overall average
WER across clean and noisy sets (denoted Avg.). Table 1 reports the
performance of the baseline setups together with the best performing
configurations found and Table 2 details observations that motivated
the design of the winning system as well as some other interesting
phenomena.

In the first step, performance of the baseline front-end setups
where either CMN, CVN, or no normalization was applied to the raw
features is studied (see the Baseline section in Table 1). CRBE–BN
represents BN features without any normalization applied to CRBE.
CRBE–BNNoMLLT is CRBE–BN where MLLT is also excluded. Ma-
jor observations: (i) raw PLP outperforms raw MFCC in most condi-
tions (Table 1, 1st 2 lines with numbers), but mostly loses to MFCC
once normalizations are applied; (ii) BN front-end is superior on clean
neutral/LE sets but more sensitive to noise than MFCC.

Second, the broader set of normalizations introduced in Sec. 2.1
were applied. Major observations are summarized in individual notes
in Table 2. Note 1: combination of CMN and RASTALP , denoted
CMNLP , outperforms RASTA. This is likely to be attributed to the
significant reduction of the transient effects produced by the high or-
der band-pass RASTA filter (see Fig. 1). Note 2: deriving HEQ ref-
erence distributions from a train set normalized by the combination
of CGN–RASTALP (CGNLP ) provided slight performance improve-
ment compared to using raw distributions. It is noted that all normal-
izations here are applied on per-utterance basis while the HEQ distri-
butions are derived from a large training set. Note 3: applying refer-
ence distributions derived from more discriminative front-end (MFCC)
in HEQ on less discriminative front-end (denoted HEQ(MFCC)) can
provide significant performance gains compared to using standard tar-
get front-end reference distributions. Note that the default PLP–HEQ
performs poorer than PLP–CVN, but also represents the winning PLP
setup when later combined with RASTALP . Note 4: applying CVN
to CRBE in BN front-end as seen in past literature on bottleneck fea-
tures may not be the best choice available. In our experiments, the

35

55

75

95

0 5 10 15 20 25

MFCC
MFCC-CGNL -BN-CMNL
MFCC-CGNLP
CRBE-CGNL -BN-HEQ
PLP+HEQL
PMVDR+HEQ(QCN )L

SNR (dB)

W
ER

 (%
)

LP4

LP

LP

LP

LP LP

Figure 3: Performance of baseline MFCC system, best systems per each strat-
egy (MFCC, PLP, PMVDR, CRBE BN), and proposed MFCC–BN system on
the mixture of neutral and LE speech presented at various levels of highway
and crowd noise; WER (%) averaged across noise types and neutral/LE speech
sets.

CRBE–CVN–BN setup performed best when combined with CGN
at the output, yet it is outperformed by CRBE–CGNLP –BN–CGN.
Note 5: applying normalizations to either CRBE or BN outputs bene-
fits the performance, and combining both has a cumulative effect. Note
6: while PLP is prevalently used in cepstral-based BN front-ends [22],
the superior performance of normalized MFCC cepstra in our baseline
experiments suggests that normalized MFCC may be a stronger can-
didate also for cepstral-based BN features – which is confirmed here.
Note 7: concatenating best performing CRBE–BN and MFCC features
into a single feature supervector brought significant performance gain
on the clean neutral and LE sets, but was not as successful on noisy
sets.

The best performing front-end/normalization setups found per
each feature extraction strategy are summarized in lower part of Table
1 (the index in XLP denotes a use of RASTALP jointly with normal-
ization X; HEQ(QCN4) denotes HEQ utilizing reference distributions
from train data pre-normalized by QCN4 which utilizes 4th and 96th
percentiles [6]). CRBE-CGNLP –BN–HEQ provides best performance
on 3 out of 4 tasks – clean neutral/LE speech and noisy LE speech,
MFCC–CGNLP is the second best setup. PLP and PMVDR provide
similar average WER over the 4 tasks, PMVDR being more successful
on clean neutral/LE speech and PLP on noisy sets. Finally, the newly
proposed BN feature extraction scheme utilizing normalized MFCC
as inputs to the BN neural network, MFCC-CGNLP –BN, is presented
at the bottom of Table 1. It can be seen that even without applying
any normalization to the MLLT transformed BN outputs, the system
considerably outperforms all the other feature extraction schemes con-
sidered. The overall best performance is reached in combination with
CMNLP and the best noise robustness is provided with WarpLP . It is
noted that all the best systems found across extraction strategies as well
as the proposed MFCC–BN system benefit from utilizing RASTALP

at their outputs and in the latter case also at the input to the BN neural
network.

Fig. 3 compares the performance of a baseline MFCC system, best
systems per strategy, and the proposed MFCC–BN system in various
levels of background noise. For each SNR, WER’s from noisy neu-
tral and noisy LE test sets are averaged. It can be seen that the best
CRBE–BN front-end outperforms all cepstral front-ends on the mix-
ture of neutral/LE speech from 15 dB SNR up while the MFCC and
PLP front-ends do better in lower SNR’s. The newly proposed MFCC–
BN front-end provides superior performance to all other front-ends in
all SNR’s (being closely approached by PLP at 0 dB SNR – a WER
difference of 0.1 %).

4. Conclusions
This study analyzed the impact of varying types and levels of back-
ground noise and Lombard effect on LVCSR. Robustness of MFCC,
PLP, PMVDR, and bottleneck (BN) feature extraction strategies com-
bined with state-of-the-art feature normalizations and temporal filter-
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Clean Noisy (0–20dB)Strategy Norm. Neutral LE Neutral LE Avg.

Baseline
MFCC 43.7 66.1 76.7 95.1 70.4 

PLP 43.8 65.3 74.0 94.0 69.3 
PMVDR N/A N/A N/A N/A N/A 

CRBE– BNNo_MLLT 38.5 59.0 79.0 91.2 66.9 
CRBE–BN

None

37.4 56.6 76.7 90.7 65.3 
MFCC 33.5 55.2 69.2 83.9 60.4

PLP 34.2 57.9 69.0 85.4 61.6 
PMVDR 36.1 57.8 70.1 89.4 63.3 

CRBE– BNNo_MLLT 32.6 60.7 72.4 82.6 62.1
CRBE–BN

CMN

32.2 54.1 71.5 84.3 60.5 
MFCC 33.3 54.2 66.2 84.1 59.4

PLP 36.6 57.4 71.3 87.1 63.1 
PMVDR 36.6 61.8 75.7 90.8 66.2 

CRBE– BNNo_MLLT 32.4 52.2 71.3 84.0 60.0
CRBE–BN

CVN

31.3 53.7 71.8 87.1 61.0 
Best Systems Per Strategy 

MFCC CGNLP 32.2 51.7 62.0 82.5 57.1 
PLP HEQLP 35.3 56.7 62.3 82.2 59.1 

PMVDR HEQ(QCN4) LP 33.7 54.7 65.6 82.6 59.1 
CRBE–CGNLP–BN HEQ 30.2 50.6 65.7 81.4 57.0 
Proposed MFCC–BN System 

None 27.4 48.6 58.7 80.2 53.7 
WarpLP 28.1 49.3 55.7 79.7 53.2
CGN 27.5 47.6 57.0 80.3 53.1 

MFCC–CGNLP–BN

CMNLP 26.9 47.7 56.8 80.1 52.9

Table 1: Performance of baseline and top ranking front-end setups across var-
ious evaluation scenarios; WER (%). Available PMVDR implementation con-
tains ‘hardwired’ CMN, hence no-norm. configuration was not available for
evaluation (however, CMN can be overridden by other subsequent normaliza-
tions).

ing was analyzed. It is noted that to our knowledge, this represents
the first systematic evaluation of BN features under varying noisy con-
ditions and Lombard effect. The newly proposed extension of a tra-
ditional bottleneck scheme for a larger set of normalizations at the
input to the neural network as well as incorporating additional nor-
malization of the MLLT-transformed bottleneck outputs provided sig-
nificant performance gains. Inspired by the observed superior perfor-
mance of normalized MFCC compared to other cepstral front-ends, a
BN scheme that utilizes normalized MFCC features rather than nor-
malized CRBE or PLP features as inputs was proposed and shown to
outperform all other front-ends in all test conditions. In addition, re-
cently proposed RASTALP was shown to outperform RASTA filtering
and provide cumulative performance gains when combined with distri-
bution normalizations. RASTALP was also found to be required in all
best performing setups. Our experiments confirmed observations from
older literature that combining CRBE-based BN features and cepstral
features can benefit ASR on clean data (which in our case extends also
to clean LE data), however, was not proven to be as successful on
noisy data. In addition, it was observed that pre-normalizing training
features before the extraction of HEQ reference distributions or even
adopting reference distributions from more discriminative front-ends
may improve HEQ efficiency.
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