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Abstract
In this study, a frame-based vocal effort likelihood space mod-
eling framework for improved whisper-island detection within
normally phonated audio streams is proposed. The proposed
method is based on first training a traditional Gaussian mixture
model for whisper and neutral speech, which is then employed
to extract a newly proposed discriminative feature set entitled
Vocal Effort Likelihood (VEL), for whisper-island detection.
The VEL feature set is integrated within a BIC/T2-BIC seg-
mentation scheme for vocal effort change point(VECP) detec-
tion. With the dimension-reduced VEL 2-D feature set, the pro-
posed framework has reduced computational costs versus prior
method [1]. Experimental results using the UT-VocalEffort II
corpus for whisper-island detection using the proposed frame-
work are presented and compared with a previous algorithm
introduced in [1]. The proposed algorithm is shown to im-
prove performance in VECP detection with the lowest Multi-
Error Score(MES) of 6.33. Furthermore, very accurate whisper-
island detection was obtained using proposed algorithm, which
is useful for sustained performance in speech systems (ASR,
Speaker-ID, etc.)which might experience whisper speech. Fi-
nally, experimental performance achieves a 100% detection rate
for the proposed algorithm, which represents the best whisper-
island detection performance with lowest computational costs
available in the literature to date.
Index Terms: Vocal Effort Likelihood, Vocal Effort, Whisper-
Island Detection, GMM Classifier

1. Introduction
Whisper speech is one mode of natural speech communica-
tion which results in reduced perceptibility and a significant re-
duction in intelligibility. In general, with the absence of vo-
cal fold vibrations, whispered speech may be intentional, or
caused by a change in the vocal fold structure, or muscle con-
trol due to disease of the vocal system, such as functional apho-
nia [2], laryngeal cancer [3]. Furthermore, as a paralinguistic
phenomenon, whispered speech can be used in environments
where loud speech is prohibited, or in cases where the speaker
would prefer to keep speech content private from being heard
by remote listeners in public settings [4]. Current speech pro-
cessing systems are generally designed for normally phonated
speech, and are therefore severely impacted due to the funda-
mental change in speech production of whispered speech: the
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absence of all periodic/harmonic excitation. Whispered speech,
within the range of vocal effort from whisper to shouted, has the
most dramatic loss in terms of vocal effort for speech process-
ing systems [5]. Therefore, detecting and identifying whispered
islands embedded in the speech signal before further process-
ing is useful in order to eliminate the negative impact of whis-
pered speech on subsequent speech systems (ASR, Speaker ID,
etc.). Furthermore, whispered speech has a high probability of
conveying confidential or sensitive information. For a spoken
document retrieval system or a call center monitoring system,
detection and identification of whispered islands in speech files
can help in the retrieval of desired confidential or sensitive in-
formation.

Several algorithms have been developed for identifying
whisper-islands within normally phonated audio streams, using
different types of features extracted from the time waveform,
spectral analysis of the speech signal or linear predictive resid-
ual [1, 6, 7]. In [1], an algorithm using a 4-D entropy-based
feature set: WhID was proposed and shown to achieve good
performance in whisper-island detection for both vocal effort
change point detection and vocal effort classification.

In this study, a new framework deploys the proposed dis-
criminative feature set entitled “Vocal Effort Likelihood(VEL)”
to detect the vocal effort change point between whisper and neu-
tral speech, and therefore improves the whisper-island detection
with lower computational costs. The remainder of this paper is
organized as follows. First, for the readers’ benefit, the for-
mulation of our previous 4-D WhID feature, and description of
the UT-VocalEffort II speech corpus [1] are briefly presented in
Sec. 2 and Sec. 3 respectively. The proposed framework and
feature set for vocal effort likelihood whisper-island detection
are presented in Sec. 4. Evaluations of the proposed algorithm
are presented in Sec. 5 and compared to our previous method.
Finally, conclusions and discussion are presented.

2. Formulation of Previously Developed
WhID Feature

In [1], a 4-D feature set WhID, which is sensitive to vocal
effort changes between whisper and neutral was formulated
and used for feature extraction from speech and modeling of
whisper/neutral speech and whisper-island detection. The 4-D
WhID feature set for each 20ms speech frame is formulated as
follows:

⎡
⎣ 1-D spectral information entropy ratio(ER);

2-D spectral information entropy(SIE);
1-D spectral tilt(ST).

⎤
⎦ (1)
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ER and SIE calculation can be illustrated in Fig. 1 and Fig. 2
respectively. The spectral information entropy(SIE) is obtained
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Figure 1: Entropy Ratio is Derived between High and Low Fre-
quency Bands
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Figure 2: Two Sub-Bands over Frequency Domain for SIE Cal-
culation

as follows. Assume X(k) is the power spectrum of the speech
frame x(n), and k varies from k1 to kM in a sub-band; then that
portion of the frequency content in the k band versus the entire
response is written as,

p(k) =
|X(k)|2∑kM

j=k1
|X(j)|2 , k = k1, . . . , kM . (2)

Since
∑kM

k=k1
p(k) = 1, p(k) can be viewed as an estimated

probability. Next, the spectral information entropy(SIE)for the
sub-band can then be calculated as,

H = −
kM∑

k=k1

p(k) · log p(k). (3)

Furthermore, since the spectral tilt of whispered speech is sta-
tistically different from the spectral tilt of neutral speech [5], the
spectral tilt can be used as a discriminative feature in differenti-
ating whispered and neutral speech as the 4th dimension of the
feature set WhID.

3. Corpus Description
In this study, two corpora were developed with different foci.
Corpus UT-VocalEffort(UT-VE) I consists of speech under five
vocal efforts: whispered, soft, neutral, loud and shouted, while
corpus UT-VocalEffort(UT-VE) II focuses on neutral speech
embedded with whispered speech “islands”. Both corpora were
collected in an ASHA certified, single walled sound booth using
a multi-track FOSTEX 8-channel synchronized digital recorder
with gain adjustments for individual channels. The details of
UT-VE I were presented in [1].

In addition to the UT-VE I corpus, a much larger corpus
named UT-VE II was constructed in the same acoustic environ-
ment as UT-VE I. Here, whispered and neutral speech from 37
male and 75 female subjects were collected. Unlike the UT-VE
I corpus which focused on five vocal efforts, corpus UT-VE II
is focused on neutral speech embedded with whispered speech

islands. The corpus consists of spontaneous natural exchanges
with small blocks of whispered speech consisting of key infor-
mation parts.

In the read part of UT-VE II, each subject was required
to read material in either neutral or whispered modes. Three
types of read materials were used in the read part. The first
type consists of sentences selected from the TIMIT database.
Here, 41 TIMIT sentences were produced alternatively in neu-
tral and whispered mode, with the last sentence pair read in the
neutral mode. The second material type consists of two para-
graphs selected from a local newspaper. For each paragraph,
four whisper-islands were produced, with each island consist-
ing of 1-2 sentences. The third type of material consists of the
same paragraphs as those of the second type. However, for each
paragraph, five phrases were read in whispered mode, with each
phrase 2-3 words in duration.

In this study, the speech data produced using the close-talk
SHURE Beta-54 microphone in UT-VE II were used for analy-
sis and experiments.

4. Proposed Algorithm
The framework for the proposed algorithm is illustrated in
Fig. 4. To easily compare the difference between the
proposed WhID-VEL-GMM framework and previous WhID-
GMM framework [1], the previous framework is presented in
Fig. 3.
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Figure 3: WhID-GMM: Flow Diagram of the Previous Frame-
work for Whisper-Island Detection [1]

Fig.3 shows that, in the previously developed framework,
the acoustic feature was extracted from each speech frame and
submitted to the BIC/T2-BIC segmentation algorithm to detect
vocal effort change points(VECP) between whisper and neutral
speech. Next, the speech feature sequence was segmented ac-
cording to the detected VECPs and compared with GMMs of
whisper and neutral speech to classify the vocal effort of each
segment. As illustrated in Fig. 4, instead of directly using the
feature WhID for VECP detection as in the previous framework,
the proposed algorithm uses the frame-based vocal effort like-
lihood(VEL) scores as the discriminative feature to detect the
VECP between whisper and neutral speech. Although a proper
acoustic feature may be sensitive to the vocal effort change be-
tween whisper and neutral speech, the changes in content of
the speech may introduce variations, which are not dependent
on the vocal effort change within the feature. By comparing
the speech feature of the current frame with the gender balance,
phoneme balance, mono-vocal-effort GMM, which models the
vocal effort, the output score can be viewed as the likelihood of
the current frame being the vocal effort modeled by the GMM.
In this case, the fluctuation of the feature set, which consists
of the likelihood scores of speech frames from the whisper and
neutral GMMs, is highly dependent on the vocal effort of the
speech frames. Therefore, the feature set VEL may be viewed
as a discriminative feature space between vocal efforts. In this
study, to detect the whisper-islands, the vocal effort likelihood
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Figure 4: WhID-VEL-GMM: Flow Diagram of the Proposed Framework for Whisper-Island Detection

is calculated for whisper and neutral speech.
Furthermore, the feature set VEL, compared with the

acoustical feature used to train the GMMs, has a reduced fea-
ture dimension. Although in our algorithm, the BIC algorithm
has been improved as BIC/T2-BIC to reduce the computational
cost, the covariance matrix calculation and the updating in the
BIC/T2-BIC algorithm can still be costly in computations if we
use a high dimension feature. By deploying the 2-D feature set
VEL, compared with the 4-D feature WhID and 13-D feature
MFCC [1], the computational costs will be reduced using the
BIC/T2-BIC segmentation scheme.

4.1. Vocal Effort Likelihood Feature Set Formulation

The speech data employs a 20ms frame length with 50% overlap
between consecutive frames. For each frame, a specific acousti-
cal feature (e.g., either 4-D feature set WhID or 13-D MFCC) is
extracted. For the jth frame, the feature yj is compared with the
GMMs of whisper and neutral speech respectively to estimate
the vocal effort likelihood(VEL) of each vocal effort given the
feature vector yn:

VELwhisper = p(Cwhisper|yj)
VELneutral = p(Cneutral|yj),

(4)

where Cwhisper and Cneutral represent the GMMs trained with
the corresponding acoustical feature for whisper and neutral
speech, respectively; p(Cwhisper|yj) and p(Cneutral|yj) repre-
sent the scores obtained from the comparison between the cur-
rent frame and GMMs of whisper and neutral speech, respec-
tively. Next, the Vocal Effort Likelihood(VEL) feature vector
can be formed as, [

VELwhisper

VELneutral

]
(5)

Since GMMs trained with an appropriate acoustical feature
can be viewed as a viable representation of the acoustic space
of whisper and neutral vocal effort [1], p(Cwhisper|yj) and
p(Cneutral|yj) will represent the probability of the current
frame being whisper or neutral speech. For example, for a given
frame which is known to be whisper, p(Cwhisper|yj) should be
much larger than p(Cneutral|yj). Furthermore, the variances
between phonemes, which may influence the acoustical feature,
are normalized in the VEL set by comparing the feature of each
frame with the GMMs.

4.2. BIC/T2-BIC Algorithm for VECP Detection

Next, the BIC/T2-BIC scheme derived based on the T2-BIC al-
gorithm(Zhou and Hansen [8]), is an unsupervised model-free
scheme that detects acoustic change points based on the input
feature data. One assumption for applying this algorithm is that
the feature employed by the BIC/T2-BIC algorithm is consid-
ered to be discriminative between vocal efforts of whisper and
neutral speech.

In [8], the T 2 value is calculated for frame b ∈ (1, N)

to find the candidate boundary frame b̂. Next, the BIC value

calculation is performed only on frame b̂ to verify the decision
of the boundary. In this study, for more accuracy and reliable
detection, BIC processing is performed within the range [(b̃ −
50), (b̃ + 50)] after the T 2 statistic algorithm is used to detect

the possible VECP b̃,
b̂ = argmax(b̃−50)<b<(b̃+50);BIC(b)>0BIC(b). (6)

Furthermore, T 2-Statistics are integrated within the BIC algo-
rithm in this manner for processing longer audio streams, while
the traditional BIC algorithm is used to process short duration
blocks. Since most experimental data used in this study rep-
resent read TIMIT sentences with different vocal effort levels,
which are 2-3s in duration, the BIC algorithm is used for pro-
cess window, Lw less than 5s, and T 2-BIC is used when Lw is
larger than 5s. The implementation of the overall BIC/T2-BIC
segmentation algorithm is detailed in [1].

4.3. Vocal Effort Classification

With the detection of VECPs, a GMM-based vocal effort classi-
fier is deployed to label the vocal effort of each speech segment
obtained from the detected VECPs. GMMs of whisper and neu-
tral speech used to extract the VEL feature set can be reused for
vocal effort classification. The scores obtained by comparing
the detected segment with two vocal effort models are sorted,
and the model with the highest score is identified as the model
which best fits the vocal effort of the current segment.

5. Evaluation Results
5.1. Brief Overview of Multi-Error Score

Since it is a challenging task to collectively evaluate the per-
formance of a segmentation task, we previously developed the
Multi-Error Score [1, 9, 10]. The MES consists of 3 error types
for segmentation mismatch: miss detection rate, false alarm rate
and average mismatch in milliseconds normalized by adjacent-
segment duration. Fig. 5 illustrates these three types of error.
The calculation of MES can be illustrated by the Eq. 7.

Figure 5: Three Types of Segmentation Error

MES = 1× False Alarm Rate(FAR)

+ 2×Mismatch Rate(MMR)

+ 3×Miss Detection Rate(MDR) (7)
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For the case of vocal effort segmentation, the false alarm error
rate can be compensated by merging two very close segments
of common vocal effort, or by merging two adjacent segments
classified as the same vocal effort in a later vocal effort classi-
fication step. Hence, false alarm errors are less important than
miss detection errors in the overall evaluation of segmentation.
Furthermore, the average mismatch between experimental and
actual break points is an important norm which reflects break
point accuracy for the feature and data. The mismatch rate is
obtained by calculating the percentage of the mismatch in mil-
liseconds versus the total duration of the two adjacent segments
corresponding to the actual breakpoints. Miss detection rate and
mismatch rate are more costly errors for whisper island detec-
tion, so these errors are scaled by 3 and 2 respectively. MES is
bounded by 0, for all 3 error rates at 0%, and 600 for all 3 error
rates at 100%. A score of 90 occurs when all 3 error rates are
15%. More details concerning the MES can be found in [1].

5.2. Experimental Results in MES

An audio stream with 41 sentences produced alternatively in
neutral and whispered mode by each subject from UT-VE II
were manually labeled for VECPs in transcript files. The au-
dio files from 59 subjects were employed for these experiments.
The transcript files of these audio streams were used to compare
with VECP detection results obtained from the different experi-
mental scenarios, so that the MES can be calculated. The lower
MES denotes better performance in VECP detection. A round
robin process was used for GMM training to maximize training
data size while ensuring open test conditions. Therefore, while
testing with each of the 59 subjects, speech data from the other
58 out of 59 subjects was used in GMM training (i.e., open test
speaker and open test speech). To illustrate the improvements
brought by utilizing the proposed framework, the experiments
of the proposed WhID-VEL-GMM framework using MFCC
and WhID are presented. To compare with the WhID-GMM
algorithm in [1], experimental results are presented in Table 1
and Table 2.

The experimental results in MES are shown in Table 1 for
each scenario. It can be seen that when using the proposed
framework, the MES has the smallest MES values for both
the MFCC and WhID features than using the previous frame-
work. In the bottom row of Table 1, the high MES proves that
MFCC may not be an appropriate feature for BIC/T2-BIC in
VECP detection. However, by using the proposed framework,
with MFCC, the MES achieves lowest 6.33 with 0.00% MDR
as well.

Table 1: Multi-Error Score Results of Experimental Scenarios
Framework Feature MDR(%) FAR(%) MMR(%) MES

WhID-VEL-GMM WhID 0.00 6.75 1.49 9.74

MFCC-VEL-GMM MFCC 0.00 3.51 1.41 6.33

WhID-GMM WhID 0.00 8.13 1.69 11.51

MFCC-GMM MFCC 1.13 27.44 2.63 36.09

5.3. Experimental Results of System

With an extremely low MES(especially 0.00% MDR) in VECP
detection, the proposed framework shows excellent perfor-
mance as does the previous framework in sensing vocal ef-
fort changes between whisper and neutral speech. Overall sys-
tem performance is compared based on the detection rate of
whisper-islands within neutral audio speech streams in Table
2. The same audio streams used in the last subsection were em-
ployed here. With 20 whisper-islands for each audio stream,

there are 1182 potential whisper-islands in total for detection.
Clearly, whisper-island detection performance is extremely ef-
fective for the WhID-VEL-GMM and MFCC-VEL-GMM sys-
tems.

Table 2: Evaluation for Overall Whisper Island Detection
Framework Feature Detected Detection

Accuracy(%)
WhID-VEL-GMM WhID 1180/1182 99.83

MFCC-VEL-GMM MFCC 1182/1182 100.00

WhID-GMM WhID 1182/1182 100.00

MFCC-GMM MFCC 572/1182 48.39

6. Conclusion and Discussion
Effective whisper island detection is the first step necessary
for engaging robust of effective subsequent speech processing
steps to address whisper. With reliable and accurate detec-
tion, the computational cost should also be considered care-
fully, especially for tasks dealing with large amounts of audio
data. In this study, the proposed VEL-GMM framework works
with MFCC and WhID feature sets to obtain reliable, accurate
whisper-island detection with less computation, compared with
our previous algorithm [1]. The proposed framework employ-
ing MFCC, which provides the lowest MES of 6.33 and 100%
detection rate achieves the best whisper-island detection perfor-
mance to date, and WhID feature is also outstanding(MES of
9.74 and 99.83% detection rate). The experimental results also
show that the proposed vocal effect likelihood can be used as a
discriminative feature utilized in VECP detection.

Based on these conclusions, it is intuitive to consider that
the proposed framework may be used for bi-model segmen-
tation and detection tasks, such as speaker segmentation for
conversational speech, gender segmentation and speech/music
segmentation. With properly trained GMMs, the VEL feature
set can be formulated to be discriminative between the data
types for which the GMMs respectively stand. Based on the
discriminative VEL, the BIC/T2-BIC algorithm can detect the
change points between the data types within the audio streams.
Therefore, the VEL-GMM framework can be employed in other
speech tasks as well.
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