MATH 2415 Calculus of Several Variables
 Fall-2019

PLTLWeek\# 13(Sec 16.1, 16.2)

1. Sketch the following vector fields (at least 10 vectors)
(a) $\mathbf{F}(x, y)=\langle x, y\rangle$.
(b) $\mathbf{F}(x, y)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle$
(c) $\mathbf{F}(x, y)=\langle x, y-x\rangle$.
(d) $\mathbf{F}(x, y)=\left\langle e^{-x}, 0\right\rangle$.
2. Match the vector fields and the graphs
(a) $\mathbf{F}(x, y)=\langle x,-y\rangle$
(b) $\mathbf{F}(x, y)=\langle y, x-y\rangle$
(c) $\mathbf{F}(x, y)=\langle y, y+2\rangle$
(d) $\mathbf{F}(x, y)=\langle\cos (x+y), x\rangle$

(I)

(III)

(II)

(IV)
3. Find the gradient vector fields for the following potential functions ϕ
(a) $\phi(x, y)=x^{2} y-x y^{2}$
(b) $\phi(x, y)=\tan ^{-1}\left(\frac{y}{x}\right)$
(c) $\phi(x, y, z)=\ln \left(1+x^{2}+y^{2}+z^{2}\right)$
(d) $\phi(x, y, z)=\frac{G M m}{\sqrt{x^{2}+y^{2}+z^{2}}} ; G, M, m$ are constants.
4. Evaluate the following line integrals
(a) $\int_{C}\left(x^{2}+y^{2}\right) d s$; where C is the circle of radius 5 and center at origin.
(b) $\int_{C}\left(x^{2}+y^{2}\right) d s$; where C is the line segment from $(1,1)$ to $(5,5)$.
(c) $\int_{C} x y d s$; where C is the portion of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{16}=1$ in the first quadrant.
(d) $\int_{C}(2 x-3 y) d s$; where C is the line segment from $(-1,0)$ to $(0,1)$ followed by the line segment from $(0,1)$ to $(1,0)$.
(e) $\int_{C}(x-y+2 z) d s$; where C is the circle $\mathbf{r}(t)=\langle 1,3 \cos t, 3 \sin t\rangle ; 0 \leq t \leq 2 \pi$.
5. Find the average value of the function $f(x, y)=x^{2}+y^{2}$ on the circle of radius 5 and center at origin.
6. Evaluate the line integrals $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ of the vector fields over the parametric curve C.
(a) $\mathbf{F}=\langle x, y\rangle$ where C is the parabola $\mathbf{r}(t)=\left\langle 4 t, t^{2}\right\rangle ; 0 \leq t \leq 1$
(b) $\mathbf{F}=\langle-y, x\rangle$ where C is the semicircle $\mathbf{r}(t)=\langle 4 \cos t, 4 \sin t\rangle$ above x-axis (i) clockwise direction; (ii) counterclockwise direction.
7. Find the work done by the force field $\mathbf{F}=\langle x, y\rangle$ on moving an object on the path consisting of the line segment from $(1,2)$ to $(0,0)$ followed by the line segment from $(0,0)$ to $(0,4)$.
8. Find the work done by the force field $\mathbf{F}=\frac{\langle x, y, z\rangle}{x^{2}+y^{2}+z^{2}}$ on moving an object on the line segment from $(1,1,1)$ to $(8,4,2)$.
