MATH 2415 Calculus of Several Variables
 Fall-2019

PLTL Week\# 3[Sec 12.5(Planes), Sec 15.7, 15.8(Coordinates only)]

1. Find an equation of the plane through the point $(3,1,-4)$ and with normal vector $\mathbf{n}=-4 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$ in (a) vector form (b) scalar form.
2. Find an equation of the plane through the points $(3,1,-4),(1,2,3)$, and $(3,5,-7)$ in (a) vector form (b) scalar form.
3. Find an equation of the plane through the point $(3,1,-4)$ and parallel to the plane $-4 x+3 y+z=1$. Also find the point where the line $x=2+3 t, y=-4 t, z=5+t$ intersects the plane.
4. Find a vector parametrization of the plane through the points $(1,1,1),(2,3,1)$, and $(1,0,5)$. Also, find the scalar parametric equations of the plane.
5. Find level set equation of the plane through the point $(1,2,-3)$ and containing the vectors $\langle 1,2,3\rangle$ and $\langle 3,5,-7\rangle$ in (a) vector form (b) scalar form.
6. Parametrize the plane through the point $(1,2,-3)$ and containing the vectors $\langle 1,2,3\rangle$ and $\langle 3,5,-7\rangle$ in (a) vector form (b) scalar form.
7. Given an equation of a plane $-4 x+3 y+z=1$ in scalar form:
(a) Write the plane as $z=f(x, y)$
(b) Parametrize the plane. (Vector and scalar both).
(c) Assume that you are given parametric equations of a plane as in part(b), find a scalar equation.
8. Parametrize the following planes:
(a) $3 x+4 y=12$
(b) $z=2$
(c) $y+z=7$
9. Write a vector equation and a scalar equation of the plane with scalar parametrization

$$
\left\{\begin{array}{rl}
x & =1+2 s-3 t \\
y & =s+t \\
z & =1+3 s-t
\end{array} \quad s, t \in \mathbb{R}\right.
$$

10. Plot the points given in cylindrical coordinates. Then convert in to the rectangular coordinates.
(a) $\left(-2, \frac{\pi}{3}, 1\right)$
(b) $\left(\sqrt{2}, \frac{3 \pi}{4}, 2\right)$
11. Convert the rectangular coordinates into cylindrical coordinates.
(a) $(3,3,3)$
(b) $(-2,2 \sqrt{2}, 2)$
12. Describe the surface represented by the equation in cylindrical coordinates:
(a) $r=3$
(b) $\theta=\frac{\pi}{4}$
(c) $r^{2}+z^{2}=9$
(d) $r=2$ 年此 θ
13. Write the equations in cylindrical coordinates
(a) $x^{2}+y^{2}+z^{2}-y=4$
(b) $2 x-y+z=1$
14. Sketch the solid E :
(a) $E=\left\{(r, \theta, z): 0 \leq z \leq r^{2}, 0 \leq r \leq 2,-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\right\}$
(b) $E=\{(r, \theta, z): 0 \leq z \leq r, 0 \leq r \leq 2,0 \leq \theta \leq 2 \pi\}$
15. Write the following solids in cylindrical coordinates:
(a) $E=\left\{(x, y, z): \sqrt{x^{2}+y^{2}} \leq z \leq 2,-\sqrt{4-y^{2}} \leq x \leq \sqrt{4-y^{2}},-2 \leq y \leq 2\right\}$
(b) $E=\left\{(x, y, z): 0 \leq z \leq 4-x^{2}-y^{2}, 0 \leq y \leq \sqrt{4-x^{2}},-2 \leq x \leq 2\right\}$
16. Plot the point with spherical coordinates $\left(4,-\frac{\pi}{4}, \frac{\pi}{3}\right)$. Also find the corresponding rectangular coordinates.
17. Convert the rectangular coordinates $(\sqrt{3},-1,2 \sqrt{3})$ in to spherical coordinates.
18. Express the following solid regions using spherical coordinates.
(a) Unit ball E
(b) The solid between the spheres of radius 1 and 2 centered at origin.
(c) The solid hemisphere $x^{2}+y^{2}+z^{2} \leq 9, y \geq 0$
(d) The portion of the unit ball $x^{2}+y^{2}+z^{2} \leq 1$ that lies on the first octant.
(e) $E=\left\{(x, y, z): \sqrt{x^{2}+y^{2}} \leq z \leq \sqrt{2-x^{2}-y^{2}} ; 0 \leq y \leq \sqrt{1-x^{2}} ; 0 \leq x \leq 1\right\}$
(f) $E=\left\{(x, y, z):-\sqrt{25-x^{2}-y^{2}} \leq z \leq \sqrt{25-x^{2}-y^{2}} ;-\sqrt{25-y^{2}} \leq x \leq \sqrt{25-y^{2}} ;-5 \leq y \leq 5\right\}$
19. Sketch the solid described by the given inequalities in spherical coordinates:
(a) $\rho \leq 1,0 \leq \phi \leq \frac{\pi}{6}, 0 \leq \theta \leq \pi$
(b) $1 \leq \rho \leq 3, \frac{\pi}{3} \leq \phi \leq \frac{2 \pi}{3}$
