MATH 2415 Calculus of Several Variables Fall-2019

PLTL-Week # 4(Sec 12.6-13.1)

1. Sketch the following generalized cylinders

(a)
$$y = x^2$$

(b)
$$x = z^2$$

(c)
$$y = x^2 + 4$$

(c)
$$y = x^2 + 4$$
 (d) $x = z^2 - 3$

(e)
$$x^2 + z^2 = 9$$

(f)
$$y^2 + z^2 = 9$$

(e)
$$x^2 + z^2 = 9$$
 (f) $y^2 + z^2 = 9$ (g) $9x^2 + 4y^2 = 36$ (h) $4x^2 + z^2 = 4$

(h)
$$4x^2 + z^2 = 4$$

(i)
$$x^2 - z^2 = 9$$

(i)
$$y^2 - z^2 = 9$$

(i)
$$x^2 - z^2 = 9$$
 (j) $y^2 - z^2 = 9$ (k) $9x^2 - 4y^2 = 36$ (l) $x + y = 3$

(1)
$$x + y = 3$$

2. Graph the following surfaces of revolution: (Use cylindrical coordinates) (a) $z = r^2 + u^2$ (b) $x = u^2 + z^2$ (c) $y = x^2 + z^2$

(a)
$$z = x^2 + y^2$$

(b)
$$x = y^2 + z^2$$

(c)
$$y = x^2 + z^2$$

3. Use traces to sketch the surfaces:

(a)
$$\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1$$

(b)
$$\frac{x^2}{4} + \frac{y^2}{9} - z^2 = 1$$

Use traces to sketch the surfaces:
(a)
$$\frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1$$
 (b) $\frac{x^2}{4} + \frac{y^2}{9} - z^2 = 1$ (c) $\frac{x^2}{4} - \frac{y^2}{9} + z^2 = 1$

(d)
$$z = x^2 + y^2$$

(e)
$$z = 3x^2 + 4y^2$$

(e)
$$z = 3x^2 + 4y^2$$
 (f) $x = 4y^2 + 9z^2$

(g)
$$z = x^2 - y^2$$

(h)
$$y = z^2 - x^2$$

(i)
$$x = y^2 - z^2$$

4. Describe and sketch the space curves defined by the vector functions:

(a)
$$\mathbf{r}(t) = \langle 2 - 3t, 3t, 4 + t \rangle$$

(b)
$$\mathbf{r}(t) = \langle -3t + 2, 0, t + 4 \rangle$$

(c)
$$\mathbf{r}(t) = \langle 2, t, 2 + t^2 \rangle$$

(d)
$$\mathbf{r}(t) = 2\cos t\mathbf{i} + 2\sin t\mathbf{j} + 4\mathbf{k}$$

(e)
$$\mathbf{r}(t) = 2\cos t\mathbf{i} - 2\sin t\mathbf{j} + 4\mathbf{k}$$

(f)
$$\mathbf{r}(t) = 2\cos t\mathbf{i} + 2\sin t\mathbf{j} + 4t\mathbf{k}$$

(g)
$$\mathbf{r}(t) = 2\cos t\mathbf{i} - 2\sin t\mathbf{j} + 4t\mathbf{k}$$

(h)
$$\mathbf{r}(t) = 2\cos t\mathbf{i} + 3\sin t\mathbf{j} + 4\mathbf{k}$$

(i)
$$\mathbf{r}(t) = 2\cos t\mathbf{i} - 3\sin t\mathbf{j} + 4\mathbf{k}$$

(j)
$$\mathbf{r}(t) = 2\cos t\mathbf{i} + 3\sin t\mathbf{j} + 4t\mathbf{k}$$

(k)
$$\mathbf{r}(t) = 2\cos t\mathbf{i} - 3\sin t\mathbf{j} + 4t\mathbf{k}$$

(1)
$$\mathbf{r}(t) = \cos t \mathbf{i} + \cos t \mathbf{j} + \sin t \mathbf{k}$$

5. Find the parametrization of the curve of intersection of the two surfaces:

(a) The cone
$$y = \sqrt{x^2 + z^2}$$
 and the plane $y = 1 + z$

(b) The cylinder
$$y^2 + z^2 = 9$$
 and the hyperboloid $x = y^2 - z^2$

(c) The cylinder
$$x^2 + y^2 = 4$$
 and the plane $z = 4$

(d) The cylinder
$$x^2 + y^2 = 4$$
 and the plane $y + z = 4$

(e) The cylinder
$$4x^2 + 9y^2 = 36$$
 and the plane $y + z = 4$

(f) The paraboloid
$$z = 2 + y^2$$
 and the plane $x = 2$

(g) The paraboloid
$$z = 2 + y^2$$
 and the plane $x = y$