MATH 2415 Calculus of Several Variables

Fall-2019

PLTL-Week\#6 (Sec 14.3, 14.4, 16.6)

1. Questions $5,6,7,8$ from the textbook (EX: 14.3, page 924)
2. Find all first and second order partial derivatives:
(a) $f(x, y)=x^{3}+3 x^{2} y-3 x y^{2}-y^{3}$
(b) $f(x, y)=3 x^{2} e^{x^{2} y}$
(c) $f(x, y)=3 x^{2} y^{2} e^{x^{2}}$
(d) $f(x, t)=x \sin (x t)$
(e) $f(x, y)=\sqrt{3 x^{2}+4 x y-4 y^{3}}$
(f) $f(r, \theta)=e^{-2 r} \cos \theta$
(g) $f(x, y)=\ln (3 x-4 y)$
(h) $u(s, t)=\sin \left(3 s^{2}-4 t^{2}\right)$
3. Prove that the following functions satisfy the Laplace's equation: $u_{x x}+u_{y y}=0$
(a) $u=3 x^{2}+4 x y-3 y^{2}$
(b) $u=e^{-2 x} \sin 2 y-e^{-3 y} \cos 3 x$
(c) $u=\ln \sqrt{x^{2}+y^{2}}$
(d) $u=e^{-2 x} \sin 2 y$
4. Prove that the following functions satisfy the wave equation: $\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}$
(a) $u=\sin (3 x) \sin (3 a t)$
(b) $u=(x-a t)^{6}+(x+a t)^{6}$
(c) $u=\sin (x-a t)+\ln (x+a t)$
(d) $u=\cos (x+a t)$
5. Find the equation tangent plane to the surface $f(x, y)=3 x^{2} e^{x^{2} y}$ at the point when $(x, y)=(1,0)$
6. Find the equation of tangent plane to the paraboloid $z=2 x^{2}+3 y^{2}$ at the point $(1,1,5)$
7. Find the equation of the tangent plane to the surface $z=\ln \left(x^{2}-y\right)$ when $(x, y)=(1,-1)$.
8. Find the equation of the tangent plane to the surface $z=x \sin (x+y)$ at the point $(-1,1,0)$.
9. Find the linearization $L(x, y)$ of the function $f(x, y)=3 x^{2} e^{x^{2} y}$ at $(1,0)$.
10. Find the linearization $L(x, y)$ of the function $z=2 x^{2}+3 y^{2}$ at the point $(1,1)$.
11. Find the linearization $L(x, y)$ of the function $z=\ln \left(x^{2}-y\right)$ when $(x, y)=(1,-1)$.
12. Find the linearization $L(x, y)$ of the function $z=x \sin (x+y)$ at $(-1,1)$.
13. The radius and height of a right circular cylinder are 4 in and 8 in with possible error in measurements up to 0.01 in and 0.02 in respectively. Use differentials to estimate the possible error in the calculated volume.
14. Find a parametric representation for the surface.
(a) The plane through origin that contains the vectors $\mathbf{i}-\mathbf{j}$ and $\mathbf{j}-\mathbf{k}$.
(b) The plane through $(1,1,-2)$ and containing the vectors $\langle 1,1,1\rangle$ and $\langle 3,2,1\rangle$.
(c) The part of the ellipsoid $x^{2}+4 y^{2}+9 z^{2}=36$ that lies on the first octant.
(d) The part of the cylinder $x^{2}+z^{2}=9$ that lies above the $x y$-plane and between the planes $y=-4$ and $y=4$.
(e) The part of the sphere $x^{2}+y^{2}+z^{2}=9$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$.
15. Find an equation of the tangent plane to the following parametric surfaces
(a) $\mathbf{r}(u, v)=u^{2} \mathbf{i}+2 u \sin v \mathbf{j}+u \cos v \mathbf{k}$ when $(u, v)=(1,0)$
(b) $\mathbf{r}(u, v)=\left(1-u^{2}-v^{2}\right) \mathbf{i}-v \mathbf{j}-u \mathbf{k}$; at point $(-1,-1,-1)$
(c) $\mathbf{r}(u, v)=u^{2} \mathbf{i}+u v \mathbf{j}+\frac{v^{2}}{2} \mathbf{k}$ when $(u, v)=(1,2)$.
