MATH 2415 Calculus of Several Variables

Fall-2019

PLTL-Week \# 7(Sec 14.5)

1. Let $w=f(x, y, z), x=x(t), y=y(t), z=z(t)$, use a tree diagram to write a formula for $\frac{d w}{d t}$.
2. Let $w=f(x, y, z), x=x(s, t), y=y(s, t), z=z(s, t)$, use tree diagram to write formula for $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$.
3. Let $z=f(x, y), x=x(r, s, t), y=y(r, s, t)$, use tree diagram to write formula for $\frac{\partial z}{\partial r}, \frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
4. Find $\frac{d z}{d t}$
(a) $z=x^{3}+3 x^{2} y-3 x y^{2}-y^{3} ; \quad x=t^{2}-2 t, y=\frac{t^{3}}{3}$.
(b) $z=\frac{x-y}{x+2 y} ; \quad x=e^{\pi t}, y=e^{-\pi t}$.
(c) $z=\sqrt{1+x y} ; \quad x=\tan t, y=\tan ^{-1} t$.
5. Let $w=f(x, y, z)=z e^{\frac{x}{y}} ; \quad x=x(t)=1+2 t, y=y(t)=t^{2}, z=z(t)=1-t$.
(a) Convert w in to a function of one variable $w=g(t)=f(x(t), y(t), z(t)$, and use the chain rule for a function of one variable to find $\frac{d w}{d t}=g^{\prime}(t)$.
(b) Find $\frac{d w}{d t}$ using the Chain Rule for function on the curve $\mathbf{r}(t)$.
6. Repeat Question\# 5 for $w=\ln \sqrt{x^{2}+y^{2}+z^{2}} ; \quad x=\sin t, y=\cos t, z=\tan t$
7. Use the chain rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$
(a) $z=(2 x-3 y)^{5} ; \quad x=s^{2} t, y=s t^{2}$
(b) $z=\ln \left(x^{2}+y^{2}\right) ; \quad x=s \ln t, y=t e^{s}$
(c) $z=\sqrt{y} e^{x y} ; \quad x=s^{2}-t^{2}, y=1+s t$
(d) $z=e^{r} \sin \theta ; \quad r=s t, \theta=\sqrt{s^{2}+t^{2}}$
8. Let $p(t)=f(x, y)$, where f is differentiable, $x=g(t), y=h(t), g(2)=4, g^{\prime}(2)=-3, h(2)=5$,
$h^{\prime}(2)=6, f_{x}(4,5)=2, f_{y}(4,5)=8$. Find $p^{\prime}(2)$.
9. Let $R(s, t)=G(u(s, t), v(s, t))$, where G, u, v are differentiable, $u(1,2)=5, u_{s}(1,2)=4$, $u_{t}(1,2)=-3, v(1,2)=7, v_{s}(1,2)=2, v_{t}(1,2)=6, G_{u}(5,7)=9, G_{v}(5,7)=-2$. Find $R_{s}(1,2)$ and $R_{t}(1,2)$
10. Let $w=x y+y z+z x ; \quad x=r \cos \theta, y=r \sin \theta, z=r \theta$; find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$. Also find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ when $r=2, \theta=\frac{\pi}{2}$.
