MATH 2415 Calculus of Several Variables

Fall-2019
PLTLWeek\#8 (Sec 14.6, 14.7A)

1. Given function $f(x, y, z)=x^{2} y z-x y z^{3}$, vector $\mathbf{u}=\frac{4}{5} \mathbf{j}-\frac{3}{5} \mathbf{k}$, and point $P(2,-1,1)$
(a) Find the gradient $\nabla f(x, y, z)$
(b) Evaluate the gradient at point P, i.e. find $\nabla f(2,-1,1)$
(c) Find the rate of change of f at point P in the direction of vector \mathbf{u}.
(d) Find the direction (unit vector) in which $f(x, y, z)$ has maximum rate of change. Also find the maximum rate of change.
(e) Find the direction (unit vector) in which $f(x, y, z)$ has minimum rate of change. Also find the minimum rate of change.
2. Repeat previous question for $f(x, y, z)=y^{2} e^{x y z}, \quad P(0,1,-1), \mathbf{u}=\left\langle\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right\rangle$
3. Find the directional derivative of the following functions in the direction of given vector
(a) $f(x, y, z)=x y^{2} \tan ^{-1} z, \quad P(2,1,1), \mathbf{v}=\langle 1,1,1\rangle$
(b) $f(x, y, z)=\ln (3 x+6 y+9 z), \quad P(1,1,1), \quad \mathbf{v}=4 \mathbf{i}+12 \mathbf{j}+6 \mathbf{k}$
4. Find the directional derivative of $f(x, y)=y \cos (x y)$ at point $(0,1)$ in the direction which makes an angle $\theta=\frac{\pi}{4}$ with positive x-axis.
5. Find the maximum rate of change of $f(x, y, z)=x \ln (y z)$ at point $\left(1,2, \frac{1}{2}\right)$

6 . The temperature at point (x, y, z) is given by

$$
T(x, y, z)=200 e^{-x^{2}-3 y^{2}-9 z^{2}}
$$

where T is measured in ${ }^{\circ} C$ and x, y, z in meters.
(a) Find the rate of change of the temperature at the point $P(2,-1,2)$ in the direction toward the point $(3,-3,3)$
(b) In which direction does the temperature increase fastest at P ?
(c) Find the maximum rate of increase in the temperature at P.
7. Find the equation of the tangent plane to the surface $x y^{3} z^{3}=8$ at point $P(2,2,1)$. Also find the equation of the normal at P.
8. Repeat previous question: $x+y+z=e^{x y z}, \quad P(0,0,1)$
9. Q.N\#3 on the textbook exercise 14.7
10. For each function below, find all critical points. For each critical point, determine whether it corresponds to a local maximum or a local minimum or a saddle point. Find all local extrema.
(a) $f(x, y)=x^{4}+y^{4}-16 x y$
(b) $f(x, y)=x^{4}+2 y^{2}-4 x y$
(c) $f(x, y)=2 x y e^{-x^{2}-y^{2}}$
(d) $f(x, y)=x^{4} y^{2}$
(e) $f(x, y)=\sin \left(x^{2} y^{2}\right)$
(f) $f(x, y)=x+\frac{25}{x}-y-\frac{36}{y}+19$

