MATH 2415 Calculus of Several Variables

Fall-2019

PLTLWeek-9 (Sec 14.7B, 14.8)

1. Find the absolute maximum and the absolute minimum values of the following functions on the given region R
(a) $f(x, y)=4+2 x^{2}+y^{2} ; R=\{(x, y):-1 \leq x \leq 1,-1 \leq y \leq 1\}$
(b) $f(x, y)=6-x^{2}-4 y^{2} ; R=\{(x, y):-2 \leq x \leq 2,-1 \leq y \leq 1\}$
(c) $f(x, y)=2 x^{2}+y^{2} ; R=\left\{(x, y): x^{2}+y^{2} \leq 16\right\}$
(d) $f(x, y)=x^{2}+y^{2}-2 x-2 y ; R=$ the closed triangular region with the vertices at $(0,0),(2,0),(0,2)$
2. Rectangular boxes with volume of $10 \mathrm{~m}^{3}$ are made of two materials. The material for the top and the bottom of the box costs $\$ 10 / m^{2}$ and the material for the sides costs $\$ 1 / m^{2}$. Find the dimensions of the box that minimize the cost of the box.
3. Use Lagrange multipliers to find the maximum and minimum of $f(x, y)$ subject to the given constraint (The maximum and minimum both exist).
(a) $f(x, y)=x y^{2}$ subject to $x^{2}+y^{2}=1$
(b) $f(x, y)=e^{2 x y}$ subject to $x^{2}+y^{2}=16$
(c) $f(x, y)=x e^{y}$ subject to $x^{2}+y^{2}=2$
(d) $f(x, y)=x^{2}-y^{2}$ subject to $x^{2}+y^{2}=1$
4. Find the absolute maximum and minimum values of $f(x, y)$ over the region R (Use Lagrange multiplier to determine the extreme values on the boundary.)
(a) $f(x, y)=x^{2}+4 y^{2}+1 ; R=\left\{(x, y): x^{2}+4 y^{2} \leq 1\right\}$
(b) $f(x, y)=(x-1)^{2}+(y+1)^{2} ; R=\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$
(c) $f(x, y)=2 x^{2}+y^{2}+2 x-3 y ; R=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$
(d) $f(x, y)=e^{-x y} ; R=\left\{(x, y): x^{2}+4 y^{2} \leq 1\right\}$
