## MATH 2415 Calculus of Several Variables Fall-2019

## **PLTLWeek-9** (Sec 14.7B, 14.8)

- 1. Find the absolute maximum and the absolute minimum values of the following functions on the given region R
  - (a)  $f(x,y) = 4 + 2x^2 + y^2$ ;  $R = \{(x,y) : -1 \le x \le 1, -1 \le y \le 1\}$
  - (b)  $f(x,y) = 6 x^2 4y^2$ ;  $R = \{(x,y) : -2 \le x \le 2, -1 \le y \le 1\}$
  - (c)  $f(x,y) = 2x^2 + y^2$ ;  $R = \{(x,y) : x^2 + y^2 \le 16\}$
  - (d)  $f(x,y) = x^2 + y^2 2x 2y$ ; R =the closed triangular region with the vertices at (0,0),(2,0),(0,2)
- 2. Rectangular boxes with volume of 10  $m^3$  are made of two materials. The material for the top and the bottom of the box costs  $$10/m^2$$  and the material for the sides costs  $$1/m^2$ . Find the dimensions of the box that minimize the cost of the box.
- 3. Use Lagrange multipliers to find the maximum and minimum of f(x, y) subject to the given constraint (The maximum and minimum both exist).
  - (a)  $f(x,y) = xy^2$  subject to  $x^2 + y^2 = 1$
  - (b)  $f(x,y) = e^{2xy}$  subject to  $x^2 + y^2 = 16$
  - (c)  $f(x,y) = xe^y$  subject to  $x^2 + y^2 = 2$
  - (d)  $f(x,y) = x^2 y^2$  subject to  $x^2 + y^2 = 1$
- 4. Find the absolute maximum and minimum values of f(x, y) over the region R (Use Lagrange multiplier to determine the extreme values on the boundary.)
  - (a)  $f(x,y) = x^2 + 4y^2 + 1$ ;  $R = \{(x,y) : x^2 + 4y^2 \le 1\}$
  - (b)  $f(x,y) = (x-1)^2 + (y+1)^2$ ;  $R = \{(x,y) : x^2 + y^2 < 4\}$
  - (c)  $f(x,y) = 2x^2 + y^2 + 2x 3y$ ;  $R = \{(x,y) : x^2 + y^2 \le 1\}$
  - (d)  $f(x,y) = e^{-xy}$ ;  $R = \{(x,y) : x^2 + 4y^2 < 1\}$