Math 5302, Homework 5
 John Zweck

1. Let $g:[a, b] \rightarrow \mathbb{R}$. Prove that $\int_{a}^{b} 1 d g=g(b)-g(a)$.
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and let $a<c<b$. Define $\widetilde{H}_{c}:[a, b] \rightarrow \mathbb{R}$ by

$$
\widetilde{H}_{c}(x)= \begin{cases}1 & \text { if } x<c \\ 0 & \text { if } x \geq c\end{cases}
$$

Show that $\int_{a}^{b} f(x) d \widetilde{H}_{c}(x)=-f(c)$.
3. (a) Let J be a subinterval of an interval $/$. Prove that if f is Riemann-Stieltjes integrable with respect to g on / then f is Riemann-Stieltjes integrable with respect to g on J.
Hint: Use the Cauchy criterion for Riemann-Stieltjes integrability and extend tagged partitions $(P, \xi),(Q, \zeta)$ for J to tagged partitions $(\widetilde{P}, \widetilde{\xi}),(\widetilde{Q}, \widetilde{\zeta})$ for I.
(b) Let $a<c<b$. Suppose that f is Riemann-Stieltjes integrable with respect to g on $[a, b]$. Then f is Riemann-Stieltjes integrable with respect to g on $[a, c]$ and on $[c, b]$ and

$$
\int_{a}^{b} f d g=\int_{a}^{c} f d g+\int_{c}^{b} f d g
$$

4. Let $\llcorner\times$ be the largest integer less than or equal to x. Let $b>2$ and suppose b is not a natural number. Calculate $\int_{0}^{b} x^{3} d\llcorner x\lrcorner$.
5. Evaluate $\int_{-1}^{1} f d g$, where

$$
f(x)=\left\{\begin{array}{ll}
x^{2} & \text { if } x \leq 0, \\
x^{4} & \text { if } x>0,
\end{array} \quad \text { and } \quad g(x)=|x|\right.
$$

6. Evaluate $\int_{-1}^{1} f d g$, where

$$
f(x)=\left\{\begin{array}{ll}
x^{2} & \text { if } x \leq 0, \\
x^{4} & \text { if } x>0,
\end{array} \quad \text { and } \quad g(x)= \begin{cases}x & \text { if } x \leq 0 \\
1-x & \text { if } x>0\end{cases}\right.
$$

Additional Problems (Not to be handed in)

1. Suppose that f is Riemann-Stieltjes integrable with respect to both g_{1} and g_{2}, and let β_{1}, $\beta_{2} \in \mathbb{R}$. Prove that f is Riemann-Stieltjes integrable with respect to $\beta_{1} g_{1}+\beta_{2} g_{2}$ and that

$$
\int_{a}^{b} f d\left(\beta_{1} g_{1}+\beta_{2} g_{2}\right)=\beta_{1} \int_{a}^{b} f d g_{1}+\beta_{2} \int_{a}^{b} f d g_{2}
$$

2. Suppose the f_{1} and f_{2} are Lipschitz continuous on $[a, b]$ and $\alpha_{1}, \alpha_{2} \in \mathbb{R}$. Show that $\alpha_{1} f_{1}+\alpha_{2} f_{2}$ is also Lipschitz continuous on [a, b]. How is the Lipschitz constant of $\alpha_{1} f_{1}+\alpha_{2} f_{2}$ related to the Lipschitz constants of f_{1} and f_{2} ? Definition: The Lipschitz constant of a Lipschitz continuous function f is the least number L so that $\forall x_{1}$ and x_{2} we have $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq$ $L\left|x_{1}-x_{2}\right|$.
