Math 5302, Homework 5

John Zweck

- 1. Let $g: [a, b] \to \mathbb{R}$. Prove that $\int_a^b 1 dg = g(b) g(a)$.
- 2. Let $f : [a, b] \to \mathbb{R}$ be continuous and let a < c < b. Define $\widetilde{H}_c : [a, b] \to \mathbb{R}$ by

$$\widetilde{H}_c(x) = \begin{cases} 1 & \text{if } x < c, \\ 0 & \text{if } x \ge c. \end{cases}$$

Show that $\int_{a}^{b} f(x) d\widetilde{H}_{c}(x) = -f(c)$.

- 3. (a) Let *J* be a subinterval of an interval *I*. Prove that if *f* is Riemann-Stieltjes integrable with respect to *g* on *I* then *f* is Riemann-Stieltjes integrable with respect to *g* on *J*.
 Hint: Use the Cauchy criterion for Riemann-Stieltjes integrability and extend tagged partitions (*P*, ξ), (*Q*, ζ) for *J* to tagged partitions (*P*, ξ), (*Q*, ζ) for *I*.
 - (b) Let a < c < b. Suppose that f is Riemann-Stieltjes integrable with respect to g on [a, b].
 Then f is Riemann-Stieltjes integrable with respect to g on [a, c] and on [c, b] and

$$\int_a^b f \, dg = \int_a^c f \, dg + \int_c^b f \, dg.$$

- 4. Let x_{\perp} be the largest integer less than or equal to *x*. Let b > 2 and suppose *b* is not a natural number. Calculate $\int_{0}^{b} x^{3} d x_{\perp}$.
- 5. Evaluate $\int_{-1}^{1} f dg$, where

$$f(x) = \begin{cases} x^2 & \text{if } x \le 0, \\ x^4 & \text{if } x > 0, \end{cases} \quad \text{and} \quad g(x) = |x|.$$

6. Evaluate $\int_{-1}^{1} f \, dg$, where

$$f(x) = \begin{cases} x^2 & \text{if } x \le 0, \\ x^4 & \text{if } x > 0, \end{cases} \text{ and } g(x) = \begin{cases} x & \text{if } x \le 0, \\ 1 - x & \text{if } x > 0. \end{cases}$$

Additional Problems (Not to be handed in)

1. Suppose that *f* is Riemann-Stieltjes integrable with respect to both g_1 and g_2 , and let β_1 , $\beta_2 \in \mathbb{R}$. Prove that *f* is Riemann-Stieltjes integrable with respect to $\beta_1 g_1 + \beta_2 g_2$ and that

$$\int_{a}^{b} f d(\beta_{1}g_{1} + \beta_{2}g_{2}) = \beta_{1} \int_{a}^{b} f dg_{1} + \beta_{2} \int_{a}^{b} f dg_{2}$$

2. Suppose the f_1 and f_2 are Lipschitz continuous on [a, b] and $\alpha_1, \alpha_2 \in \mathbb{R}$. Show that $\alpha_1 f_1 + \alpha_2 f_2$ is also Lipschitz continuous on [a, b]. How is the Lipschitz constant of $\alpha_1 f_1 + \alpha_2 f_2$ related to the Lipschitz constants of f_1 and f_2 ? **Definition**: The Lipschitz constant of a Lipschitz continuous function f is the least number L so that $\forall x_1$ and x_2 we have $|f(x_1) - f(x_2)| \le L|x_1 - x_2|$.