Math 5302, Homework 6 John Zweck

In this homework, all sets are subsets of \mathbb{R}^n .

- 1. Prove that an open ball is an open set.
- 2. Prove that if $A \subseteq \mathbb{R}^n$ is compact then *A* is bounded in that there is an R > 0 for that for all $x, y \in A$ we have d(x, y) < R.
- 3. Let B(x, r) be the open ball centered at x with radius r. Prove that $B(x, r) \subseteq B(x', r')$ if and only if $d(x, x') \leq r' r$.
- 4. Prove that $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.
- 5. Provide an example of sets, *A* and *B*, for which $(A \cup B)^{\circ} \neq A^{\circ} \cup B^{\circ}$
- 6. Give an example of disjoint closed sets, *A* and *B*, of \mathbb{R}^2 for which there does *not* exist an $\epsilon > 0$ so that for all $x \in A$ and $y \in B$ we have $d(x, y) \ge \epsilon$.