Math 5302, Homework 7 John Zweck

1. Let / be a special rectangle in \mathbb{R}^{2}. Prove that the following conditions are equivalent:
(a) $\lambda(I)=0$,
(b) $1^{\circ}=\emptyset$,
(c) I is a subset of a line that is parallel to one of the coordinate axes.
2. Let G be open and let P be a special polygon with $P \subset G$. Prove that there exists a special polygon P^{\prime} such that $P \subset P^{\prime} \subset G$ and $\lambda(P)<\lambda\left(P^{\prime}\right)$.
3. Let G be a bounded open set in \mathbb{R}^{n}. Prove that $\lambda(G)<\infty$.
4. Use the definition of the Lebesgue measure, $\lambda(G)$, of an open set, G to prove that if

$$
G=\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x \text { and } 0<y<\frac{1}{x}\right\}
$$

then $\lambda(G)=\infty$.
5. Use the definition of the Lebesgue measure, $\lambda(G)$, of an open set, G to prove that if

$$
G=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x \text { and } 0<y<e^{-x}\right\}
$$

then $\lambda(G)=1$.
6. Prove that every nonempty open subset of \mathbb{R}^{2} can be expressed as a countable union of nonoverlapping special rectangle, which may be taken to be squares:

$$
G=\cup_{k=1}^{\infty} I_{k},
$$

The range on k must be infinite. Why? Also prove that $\lambda(G)=\sum_{k=1}^{\infty} \lambda\left(I_{k}\right)$.
7. Let $\epsilon>0$. Prove that there exists an open set $G \subset \mathbb{R}$ so that $\mathbb{Q} \subset G$ and $\lambda(G)<\epsilon$.
[This result tells us that although G is open and contains every rational number, "most" of \mathbb{R} is in G^{c}.]

