Math 5302, Homework 7 John Zweck

- 1. Let / be a special rectangle in \mathbb{R}^2 . Prove that the following conditions are equivalent:
 - (a) $\lambda(I) = 0$,
 - (b) $I^{\circ} = \emptyset$,
 - (c) / is a subset of a line that is parallel to one of the coordinate axes.
- 2. Let *G* be open and let *P* be a special polygon with $P \subset G$. Prove that there exists a special polygon *P'* such that $P \subset P' \subset G$ and $\lambda(P) < \lambda(P')$.
- 3. Let *G* be a bounded open set in \mathbb{R}^n . Prove that $\lambda(G) < \infty$.
- 4. Use the definition of the Lebesgue measure, $\lambda(G)$, of an open set, G to prove that if

$$G = \{(x, y) \in \mathbb{R}^2 \mid 1 < x \text{ and } 0 < y < \frac{1}{x}\}$$

then $\lambda(G) = \infty$.

5. Use the definition of the Lebesgue measure, $\lambda(G)$, of an open set, G to prove that if

$$G = \{(x, y) \in \mathbb{R}^2 \mid 0 < x \text{ and } 0 < y < e^{-x}\}$$

then $\lambda(G) = 1$.

6. Prove that every nonempty open subset of \mathbb{R}^2 can be expressed as a countable union of nonoverlapping special rectangle, which may be taken to be squares:

$$G = \bigcup_{k=1}^{\infty} I_k$$
,

The range on *k* must be infinite. Why? Also prove that $\lambda(G) = \sum_{k=1}^{\infty} \lambda(I_k)$.

7. Let $\epsilon > 0$. Prove that there exists an open set $G \subset \mathbb{R}$ so that $\mathbb{Q} \subset G$ and $\lambda(G) < \epsilon$.

[This result tells us that although *G* is open and contains every rational number, "most" of \mathbb{R} is in *G*^{*c*}.]