MATH 603 Homework on Generalized Inverses

(1) Review the definition of block matrix multiplication on Meyer, p. 111 and do Exercises 3.6.1 and 3.6.2.

(2) Let $\mathbf{E}_{\mathbf{A}}$ denote the unique reduced row echelon form obtained from an $m \times n$ matrix \mathbf{A} by using row operations. Suppose that $\operatorname{Rk}(\mathbf{A}) = r$. Let \mathbf{B} be the $m \times r$ matrix consisting of the basic columns of \mathbf{A} and let \mathbf{C} be the $r \times n$ matrix consisting of the non-zero rows of $\mathbf{E}_{\mathbf{A}}$. Prove that

- (a) $\mathbf{A} = \mathbf{B}\mathbf{C}$
- (b) $\operatorname{Rk}(\mathbf{B}) = r$
- (c) $\operatorname{Rk}(\mathbf{C}) = r$
- (d) $\mathbf{B}^T \mathbf{B}$ and $\mathbf{C} \mathbf{C}^T$ are both invertible matrices.
- (3) Find the matrices **B** and **C** for the matrix **A** in Exercise 2.2.1 (a).
- (4) Find the matrices **B** and **C** for the matrix

$$\mathbf{A} = \begin{pmatrix} \mathbf{D}_{r \times r} & \mathbf{E}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{pmatrix}$$

where \mathbf{D} is invertible.

(5) Now do Exercise 4.5.20. Hint: For most parts you'll find it helpful to express all matrices in terms of \mathbf{B} and \mathbf{C} .

- (6) Calculate \mathbf{A}^{\dagger} for the matrix \mathbf{A} given in problem (3) above.
- (7) Calculate \mathbf{A}^{\dagger} for the matrix \mathbf{A} given in problem (4) above in the special case that $\mathbf{E} = \mathbf{0}$.