MATH 603 Homework on Generalized Inverses

(1) Review the definition of block matrix multiplication on Meyer, p. 111 and do Exercises 3.6.1 and 3.6.2.
(2) Let $\mathbf{E}_{\mathbf{A}}$ denote the unique reduced row echelon form obtained from an $m \times n$ matrix \mathbf{A} by using row operations. Suppose that $\operatorname{Rk}(\mathbf{A})=r$. Let \mathbf{B} be the $m \times r$ matrix consisting of the basic columns of \mathbf{A} and let \mathbf{C} be the $r \times n$ matrix consisting of the non-zero rows of $\mathbf{E}_{\mathbf{A}}$. Prove that
(a) $\mathbf{A}=\mathbf{B C}$
(b) $\operatorname{Rk}(\mathbf{B})=r$
(c) $\operatorname{Rk}(\mathbf{C})=r$
(d) $\mathbf{B}^{T} \mathbf{B}$ and $\mathbf{C C}^{T}$ are both invertible matrices.
(3) Find the matrices \mathbf{B} and \mathbf{C} for the matrix \mathbf{A} in Exercise 2.2.1 (a).
(4) Find the matrices \mathbf{B} and \mathbf{C} for the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
\mathbf{D}_{r \times r} & \mathbf{E}_{r \times(n-r)} \\
\mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times(n-r)}
\end{array}\right)
$$

where \mathbf{D} is invertible.
(5) Now do Exercise 4.5.20. Hint: For most parts you'll find it helpful to express all matrices in terms of \mathbf{B} and \mathbf{C}.
(6) Calculate \mathbf{A}^{\dagger} for the matrix \mathbf{A} given in problem (3) above.
(7) Calculate \mathbf{A}^{\dagger} for the matrix \mathbf{A} given in problem (4) above in the special case that $\mathbf{E}=\mathbf{0}$.

