MATH 603 Homework on Quadratic Forms and Positive Definite Matrices

The starred problems will be graded.
(1) 7.6 .1
$\left(2^{*}\right) 7.6 .4$
$\left(3^{*}\right)$ Let \mathbf{A} be symmetric positive definite. Prove that there is a $c>0$ so that $\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq c\|\mathbf{x}\|^{2}$ for all \mathbf{x}.
$\left(4^{*}\right)$ Prove that every inner product on \mathcal{R}^{n} is of the form $\langle\mathbf{x} \mid \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{A y}$ for some symmetric positive definite matrix \mathbf{A}.
$\left(5^{*}\right)$ Let \mathbf{A} be symmetric positive definite. Prove that there is a unique symmetric positive definite \mathbf{B} so that $\mathbf{B}^{2}=\mathbf{A}$.
(6) Express the following quadratic forms as a sum/difference of squares. Which are positive definite? [Use linear algebra!]
(a) $x^{2}+8 x y+y^{2}$
(b) $x^{2}-4 x y+7 y^{2}$
(c) $x^{2}+6 x y$
$\left(7^{*}\right)$ Suppose A and B are symmetric positive definite. Which of the following are symmetric positive definite? (Prove or provide a counter example.)
(a) $\mathbf{A}+\mathbf{B}$
(b) $\mathbf{A B}$
(c) \mathbf{A}^{-1}.

