
Laempel System
for
Intelligent Text

Processing

Getting Started

Installation

Create a new, empty directory called Laempel. Copy the file
laempel.zip containing the entire system into Laempel. Unzip the file.
At this time, the directory Laempel contains the file laempel.zip plus
one file makefile.install, and it has four subdirectories: Code, Data,
Makedata, and Manual. In turn, Code has four subdirectories: Create,
Lbcode, Spell, and Syntax.

The subdirectories contain the following files.

Subdirectory Code/Create: create.zip of the C source code and main
dictionary for creating index files used by the system.

Subdirectory Code/Lbcode: lbcode.zip of the C source code for logic
reasoning.

SubdirectoryCode/Spell: spell.zip of the C source code for spell check-
ing.

Subdirectory Code/Syntax: syntax.zip of the C source for syntax check-
ing.

This work was funded in part by the Office of Naval Research under grant N00014-93-1-0096.
c© Leibniz and University of Texas at Dallas, 1996, 2000, 2005

Version 7.0 12 September 2005



4 Laempel System Getting Started

Subdirectory Data: data.zip of all data files used for spell and syntax
checking.

Subdirectory Makedata: makedata.zip of test files and example files.

Subdirectory Manual: manual.zip of the manual in .ps and .pdf format.
These files have been generated from Plain TEX files.

Unix/Linux Installation

It is assumed that the gcc compiler is available. The compilation and
linking steps are accomplished by executing the single command make
-f makefile.install in directory Laempel. The following programs
are created.

Subdirectory Code/Create: lists all files, but does not compile or exe-
cute any programs.

Subdirectory Code/Lbcode: object files for linking with the spell and
syntax checking routines.

Subdirectory Code/Spell: program laempel.spl for spell checking. The
user may want to introduce a convenient alias. The use of the program
is described in the next section.

Subdirectory Code/Syntax: program laempel.stx for syntax checking.
The user may want to introduce a convenient alias. The use of the
program is described in the next section.

The user should first try to run laempel.spl as described below in the
section “The First Time.” If execution of laempel.spl produces a run
time error, then the index files connected with the main dictionary
have the wrong format and must be replaced by correct index files. To
create the correct index files, the user should go to the subdirectory
Code/Create, open the file create.short.instruction using any text ed-
itor, and carry out the instructions given there. After that step, both
laempel.spl and laempel.stx will function correctly.

Version 7.0 12 September 2005



Laempel System Getting Started 5

CAUTION: Do not change any entry in any one of the data files of
the subdirectory Data, except for a change of index files as described
above.

All Other Installations

For all non-Unix/Linux installations, the following steps are required.

First, go into each one of the lowest subdirectories of Laempel and
unzip the .zip file found there.

Second, in subdirectories Code/Lbcode, Code/Spell, and Code/Syntax
of Laempel, use a suitable C/C++ compiler and carry out compilation
and linking steps described in the makefile.install file of the subdirec-
tories.

All C source code follows the ANSI standard and thus can be compiled
by virtually any C/C++ compiler.

CAUTION: Compilation of C source code must first be done in sub-
directory Code/Lbcode of Laempel, then in subdirectories Code/Spell
and Code/Syntax.

The user should first try to run laempel.spl as described below in the
section “The First Time.” If execution of laempel.spl produces a run
time error, then the index files connected with the main dictionary
have the wrong format and must be replaced by correct index files. To
create the correct index files, the user should go to the subdirectory
Code/Create, open the file create.short.instruction using any text ed-
itor, and carry out the instructions given there. After that step, both
laempel.spl and laempel.stx will function correctly.

CAUTION: Do not change any entry in any one of the data files of
the subdirectory Data, except for a change of index files as described
above.

Version 7.0 12 September 2005



6 Laempel System Getting Started

Changing the Main Dictionary

The main dictionary word.dat in subdirectory Data can be expanded
if so desired. This is a nontrivial process, since the user must define
the syntactic roles the new words may take on. We omit the detailed
and rather complicated discussion and instead describe a process that
is much simpler, yet equally effective. We describe the steps using
addition of the word “email”. First, one finds a closely related word
that syntactically can play the same roles as “email” and that occurs
already in the dictionary. A good choice would be “mail.” Second,
one types the world “mail” into a file and applies laempel.spl to that
file. That program inserts into the file words.usr an entry for “mail.”
One now creates another entry in words.usr that looks exactly like the
one for “mail” except that the word “mail” is replaced by “email.”
That entry is inserted at the end of the file words.usr. From now on,
laempel.spl and laempel.stx not only know the word email, but also
know the syntactic roles that the word can take on.

Of course, laempel.spl can also learn words directly while processing
text. The user simply directs laempel.spl to accept the unknown word.
At that time, laempel.spl guesses how the word can occur syntactically.
However, that guess may not be correct and thus may weaken the
accuracy with which laempel.stx checks sentences for correct syntax.

Version 7.0 12 September 2005



Laempel System Getting Started The First Time 7

The First Time

For the first-time user, here is an easy-to-follow recipe to get going.

1. Go to the directory containing the text files to be processed. Copy
the file params.dat from the subdirectory Makedata into that direc-
tory.

2. Use any text editor to access the file params.dat, and modify that
file as follows:

Replace on the line
user history file = history.usr
the file name history.usr by another name if a file named history.usr
exists already.

Replace on the line
user dictionary = words.usr
the file name words.usr by another name if a file named words.usr
exists already.

Replace on the line
user dictionary backup = words.bak
the file name words.bak by another name if a file named words.bak
exists already.

Replace on the line
user phrase pattern = patterns.usr
the file name patterns.usr by another name if a file named pat-
terns.usr exists already.

Replace on the line
user phrase pattern backup = patterns.bak
the file name patterns.bak by another name if a file named pat-
terns.bak exists already.

Replace on the line
user suggested replacements = replace.usr
the file name replace.usr by another name if a file named replace.usr
exists already.

Version 7.0 12 September 2005



8 The First Time Laempel System Getting Started

Replace on the line
file of words excluded by user = nono.usr
the file name nono.usr by another name if a file named nono.usr
exists already. The file nono.usr is controlled by the user. It contains
excluded words, one word per line.

Replace on the line
file name storage = filename.sav
the file name filename.sav by another name if a file named file-
name.sav exists already.

Specify ‘yes’ or ‘no’ on the line
accept all unknown words as correct (‘yes’ or ‘no’) = yes

‘yes’ implies that the system accepts each word as correct. This
option is useful for building the user dictionary words.usr from files
that are known to be correct. ‘no’ implies that the system declares
any word that is not contained in the main dictionary or in the user
dictionary words.usr, to be incorrect.

Specify ‘yes’ or ‘no’ on the line
find syntactical interpretations (‘yes’ or ‘no’) = yes
‘yes’ implies that the system finds a syntactical interpretation for
each sentence. ‘no’ implies that the system only identifies syntactical
errors.

Specify ‘int’ or ‘bat’ on the line
interactive or batch syntax checking(‘int’or‘bat’) = int
‘int’ implies that the system does interactive syntax checking. ‘bat’
implies that the system does batch syntax checking.

Replace on the line
directory of Laempel/Data = /home/Laempel/Data
the path name /home/Laempel/Data by the full path name leading
to Laempel/Data.

3. You are now ready for spell and syntax checking.

Version 7.0 12 September 2005



Laempel System Getting Started Spell Checking 9

Spell Checking

1. Execute the program laempel.spl for spell checking.

2. The system asks permission to create the following files if they do not
exist: user dictionary, the history file, file of user suggested replace-
ments, and the file of excluded words. The file names are specified
in params.dat. Before processing any text files, the system loads the
main dictionary into memory. Due to the size of the dictionary, this
step takes several seconds.

3. The following message and prompt appear:
Name of text file
Press Return for ’myfile.ext’ (=most recent name)
‘q’ to quit
SPELLING >>
Type the name of a text file to be processed and press Return, or
press Return to process the most recent file.

4. If ‘yes’ has been specified in params.dat on the line
accept all unknown words as correct (‘yes’ or ‘no’) = no
then the system gives a warning message and asks for confirmation
that the user indeed wants to accept all unknown words as correct.

If the text contains misspelled words, and ‘no’ has been specified in
params.dat on the line
accept all unknown words as correct (‘yes’ or ‘no’) = no
then the system locates misspelled words and proposes alternative
words. The procedure is as follows.

Each misspelled word and the text line containing it are displayed,
followed by two or three suggested alternatives that allow the user
to accept the word or to replace it by some other word. The options
are numbered 1, 2, and 3. To accept one of the options, the user
types in the option number and presses Return. To select option 1,
the user may simply press Return. If none of the options apply, the
user may type in the desired word, or specify the option ‘0 to have
the word deleted from the text. If a typed-in word is not part of the
dictionary, the system issues a warning.

Version 7.0 12 September 2005



10 Spell Checking Laempel System Getting Started

Before the system implements the chosen alternative, it asks for
confirmation that the choice is indeed the desired one. If the user
has made a mistake, this is the time to correct the choice.

5. When spell checking of a text file has been completed, the system
updates the user dictionary and user history file. DO NOT ABORT the
system at that time, since any interruption at that point destroys the
user dictionary and user history file. Also, the text file is updated if
changes have been confirmed, and the original text file is saved with
the extension .bak.

When all files have been updated, the system displays
Name of text file
Press Return for ’myfile.ext’ (=most recent name)
’q’ to quit
SPELLING >>
and is ready to process another text file. Type the name of a file,
press Return to process the most recent file, or type ‘q’ to quit the
Spell Checking Module.

CAUTION: It is highly recommended that the window displaying the
revised text file be deleted. The reason is that any subsequent spell
checking may change the text file. At that time, the stored text file
may no longer agree with the text file displayed in the window.

Use of Text Files Known to be Correct

The directory Makefile contains a LaTEX file that is known to be cor-
rect. The user may apply the spell checking program laempel.spl to
that file under the option
accept all unknown words as correct (‘yes’ or ‘no’) = yes
to create an initial words.usr file that contains frequently occurring
LaTEX commands. That step can also be used in other settings where
files with specialized terms are known to be correct. By spell checking
these files with the above option, all such special words become part
of the user dictionary and are known to the system from then on.

Version 7.0 12 September 2005



Laempel System Getting Started Spell Checking 11

Exclusion of Words

The spell checker generally accepts both British and US spelling of
words. For example, both “labelled” (British spelling) and “labeled”
(US spelling) are accepted. If the user wants to exclude some of these
words or, for that matter, any other words, he/she should enter them
into the user-defined file nono.usr, one word per line. The directory
Makedata contains an example nono.usr file that excludes a few words
of British use. Each word of nono.usr is considered incorrect by the
spell checker regardless of circumstance.

Version 7.0 12 September 2005



12 Laempel System Getting Started

Version 7.0 12 September 2005



Laempel System Getting Started Syntax Checking 13

Syntax Checking

1. Execute the program laempel.stx for syntax checking.

2. If the file of user phrase patterns does not exist, the system asks per-
mission to create that file using the file name specified in params.dat.

The following message and prompt appear:
Name of text file
Press Return for ’myfile.ext’ (=most recent name)
’q’ to quit
SYNTAX >>

Type the name of a text file to be processed and press Return, or
press Return to process the most recent file. Make sure that the
text file to be processed has already been spell checked.

If ‘int’ has been specified in params.dat on the line
interactive or batch syntax checking (‘int’ or
‘bat’) = int
then go to Step 3.

Alternately, if ‘bat’ has been specified in params.dat on the line
interactive or batch syntax checking (‘int’ or
‘bat’) = int
then go to Step 4.

3. (Interactive syntax checking) Each sentence with syntactical errors
and the text line containing it are displayed, followed by an expla-
nation of the error and the place where the error occurs. Type ‘r’
and press Return to reject the sentence if there is indeed an error.
Type ‘a’ and press Return to accept the sentence if it is actually
correct. Before the system rejects or accepts the sentence, it asks
for confirmation of the decision.

While the syntax checking is being performed, the user may edit the
text file in a separate window, using any text editor. The changes
so made by the user do not interfere with the syntax checking since
the Syntax Checking Module does not read the text file. Go to Step
5.

Version 7.0 12 September 2005



14 Syntax Checking Laempel System Getting Started

4. (Batch syntax checking) Each sentence with syntactical errors, the
text line containing it, an explanation of the error, and the place
where the error occurs, are saved in a file. The name of that file is
the name of the text file plus the extension .err.

When syntax checking has been completed, the user may access the
error file to make appropriate changes in the text file.

5. When syntax checking of a text file has been completed, the system
updates the user dictionary and user phrase pattern file. DO NOT
ABORT the system at that time, since any interruption at that point
destroys the user dictionary and user phrase pattern file.

When all files have been updated, the system displays
Name of text file
Press Return for ’myfile.ext’ (=most recent name)
’q’ to quit
SYNTAX >>

and is ready to process another text file. Type the name of a file,
press Return to process the most recent file, or type ‘q’ to quit the
Syntax Checking Module.

CAUTION: If syntax checking initially was done in batch mode, any
subsequent run of the Syntax Checking Module should be done in-
teractively. The system then learns user preferences and exceptions
concerning syntax, and adapts its reasoning accordingly.

6. Once the user has corrected the text file, the revised file should be
saved.

Version 7.0 12 September 2005


