
Jun Duan, Kevin W. Hamlen, and Benjamin Ferrell. “Better Late Than Never: An n-Variant Framework of
Verification for Java Source Code on CPU×GPU Hybrid Platform.” In Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing (HPDC), 2019.

Better Late Than Never: An n-Variant Framework of Verification
for Java Source Code on CPU × GPU Hybrid Platform

Jun Duan
jun.duan@utdallas.edu

The University of Texas at Dallas

Kevin W. Hamlen
hamlen@utdallas.edu

The University of Texas at Dallas

Benjamin Ferrell
benjamin.ferrell@utdallas.edu

The University of Texas at Dallas

ABSTRACT

A method of detecting malicious intrusions and runtime faults in
software is proposed, which replicates untrusted computations onto
two diverse but often co-located instruction architectures: CPU and
GPU. Divergence between the replicated computations signals an
intrusion or fault, such as a zero-day exploit. A prototype imple-
mentation for Java demonstrates that the approach is realizable in
practice, and can successfully detect exploitation of Java VM and
runtime system vulnerabilities even when the vulnerabilities are
not known in advance to defenders.

To achieve acceptable performance, it is shown that GPU paral-
lelism can be leveraged to rapidly validate CPU computations that
would otherwise exhibit unacceptable performance if executed on
GPU alone. The resulting system detects anomalies in CPU com-
putations on a short delay, during which the GPU replica quickly
validates many CPU computation fragments in parallel in order
to catch up with the CPU computation. Significant differences be-
tween the CPU and GPU computational models lead to high natural
diversity between the replicas, affording detection of large exploit
classes without laborious manual diversification of the code.

CCS CONCEPTS

• Security and privacy → Logic and verification; Software

security engineering; • Software and its engineering;

KEYWORDS

n-variant; Java; software reliability; intrusion detection; software
exploit detection; software engineering

ACM Reference Format:

Jun Duan, Kevin W. Hamlen, and Benjamin Ferrell. 2019. Better Late Than
Never: An n-Variant Framework of Verification for Java Source Code on
CPU × GPU Hybrid Platform. In The 28th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC’19), June 22–
29, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3307681.3326604

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HPDC ’19, June 22–29, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6670-0/19/06. . . $15.00
https://doi.org/10.1145/3307681.3326604

1 INTRODUCTION

N -variant systems [13] detect intrusions and other runtime anom-
alies in software by deploying diverse replicas of the software and
monitoring their parallel execution for computational divergence.
Divergence between the computations indicates that one or more
replicas have exercised functionalities that were unintended by
the program’s developers, and that were therefore not replicated
consistently across all the copies. The n-variant approach has been
used for detecting memory corruption vulnerabilities in C/C++ pro-
grams [54], monitoring user-space processes [44], defending data
corruption attacks [38], and securing embedded systems [3].

Unfortunately, one major barrier to the realization of effective
n-variant systems in practice has been the high difficulty and cost
associated with creating and maintaining software copies that are
appropriately diverse (not replicating bugs or vulnerabilities), yet
consistent (preserving all desired program features). Achieving this
can entail employing multiple independent software development
teams, which can potentially multiply the cost and time associated
with the project by a factor of n [5].

This high cost of independent, manual cultivation of diversity
has led to a search for automated software diversity. For example,
compilers have been proposed as natural diversity-introduction
vehicles [27], since they enjoy a range of options when translating
source programs to distributable object code, including various
possible object code and process memory layouts. However, many
large classes of software attacks exploit low-level details that are
fundamental to the target hardware architecture, and that are there-
fore difficult for compilers to meaningfully diversify. For example,
Address Space Layout Randomization (ASLR) defenses, which ran-
domize section base addresses in process memory at load-time,
have proven vulnerable to derandomization attacks [47] that ex-
ploit the prevalence of relative-address instruction operands in
CISC instruction sets to learn the randomized addresses. Similarly,
return-oriented programming [46] and counterfeit object-oriented
programming attacks [45] abuse the semantics of return and call
instructions, which is difficult to avoid when compiling to architec-
tures with those instruction semantics.

Our research in this paper is inspired by the observation that
modern computing systems increasingly have two very different
yet powerful instruction architectures available to them: CPU and
GPU. This potential source of computational diversity has gone
relatively unutilized as an opportunity to detect malicious soft-
ware intrusions through n-variant computation. To explore this
opportunity, we introduce Java Gpu-Assisted N -variant Guardian

https://doi.org/10.1145/3307681.3326604
https://doi.org/10.1145/3307681.3326604
https://doi.org/10.1145/3307681.3326604

(J-Gang), a system that replicates Java computations onto CPU-
GPU hybrid architectures and runs them concurrently in order to
detect divergence-causing intrusions.

GPU computing models differ substantially from typical CPU
computing models. This diversity offers many attractive opportuni-
ties for robust intrusion detection, but is also a source of significant
technical challenges. In general, GPU architectures suffer poor per-
formance on computations with few threads; their advantages are
only seen on computations with hundreds or thousands of simple
but independent workloads. However, most Java computations offer
only limited parallelism on the order of a few threads. Running
Java computations in a brute-force fashion on GPUs therefore risks
bottlenecking the system; the GPU variant could lag hopelessly
behind the CPU variant, forcing the latter to wait.

Our approach therefore instead adopts an asynchronized model
in which the CPU variant runs at full speed, logging its results at
selected program checkpoints in the form of JVM state snapshots.
A sequence (σ0, . . . ,σk) of such snapshots can be replicated and
validated by a GPU using k concurrent workers, each of which
validates the (σi ,σi+1) portion of the computation by starting at
state σi as a pre-condition and confirming that it reaches state σi+1
as a post-condition (∀i ∈ 0..k − 1). The computation is correct
only if all these fragments pass validation. This allows the GPU to
catch up to the CPU computation in spurts—the more it lags behind,
the more opportunity for parallelism arises, since it can greedily
consume more snapshots and validate them concurrently.

The high dissimilarity between GPU and CPU models of Java
computation state allow J-Gang to detect many important vulnera-
bility classes. For example, attacks that exploit memory corruption
vulnerabilities to hijack return addresses on the stack have a dif-
ferent effect upon GPU computations, since the GPU model has
no explicit call stack with in-memory return addresses to corrupt.
Moreover, our detection approach conservatively assumes that all
exploited vulnerabilities are unknown to defenders (zero-days). No
explicit knowledge of vulnerabilities is used to avoid preserving
them in the GPU replica; divergences arise purely from the natural
dissimilarity between the two instruction architectures.

The contributions of J-Gang can be summarized as follows:

• We introduce the first n-variant system for Java computation
verification based on architectural differences between GPU
and CPU.
• To harmonize the dissimilar performance advantages of the
two architectures, we introduce an asynchronous trust-but-
verify n-variant model, in which single- or few-threaded
CPU computations are validated by many-threaded GPU
computations on a short delay. This allows the GPU com-
putation to quickly verify many iterations of CPU-executed
loops concurrently.
• A prototype implementation establishes rules of translation
from Java source code on the host side into GPU-executable
kernel code, which offers a possible solution to facilitate
GPU execution of general Java source code in future work.
• Evaluation of J-Gang on exploits of eight real-world JVM
vulnerabilities exhibits reliable detection at reasonable over-
heads, even when the vulnerabilities are treated as zero-days
(no vulnerability-specific defenses introduced).

Listing 1: Exploit of JDK-5091921 (JavaSE 1.6, x86/x64Win7)

1 int i = 0;
2 int j = Integer.MAX_VALUE;
3 boolean test = false;
4 while (i >= 0) {
5 i++;
6 if(i > j) {
7 test = true;
8 break;
9 }
10 }
11 System.out.println("Value of i: " + i);
12 if(test) i = 1;
13 System.out.println("Value of i: " + i);

Listing 2: Exploit of JDK-8189172 (JavaSE 1.8, x86/x64Win7)

1 double b = 1.0 / 3.0;
2 double e = 2.0;
3 double r = Math.pow(b, e);
4 double n = b * b;
5 while (r == n) {
6 b += 1.0 / 3.0;
7 n = Math.pow(b, e);
8 r = b * b; }
9 println("b=" + b + " n=" + n + " r=" + r);

• Methods of tracing variables and local data analysis are exten-
sively tested, and we study the connection between overhead
and state snapshot logs. Based on the relation, we control
overhead for suitable variable-tracking jobs.

The remainder of the paper is arranged as follows. Section 2
describes the system design and defines correctness. Section 3 de-
tails our prototype implementation. Experimental methodology and
evaluation are discussed in Section 4. Section 5 introduces related
works. Finally, Section 6 concludes.

2 SYSTEM DESIGN

2.1 Divergence Between Executions

Listing 1 exhibits a JVM vulnerability related to around 30 bugs
and numerous DoS attacks against Java SE 1.6, and that was later
identified as a root cause of array overflows, server VM crashes,
and a variety of other potential software compromises before it
was patched.1 It returns different unstable values of i on each ex-
ecution, and also prints the false result, “Value of i : 1” in line 13
when it should report overflowed value −2147483648. The flaw is
an incorrect optimization in the (CPU-based) HotSpot compiler,
which breaks integer overflow detection in certain loops. However,
running this code in our J-Gang system as a GPU computation
yields correct results, because GPUs apply a very different proce-
dure for optimizing the loop. This natural difference in behavior
offers a potential opportunity to detect the error without advance
knowledge of the bug.

1https://bugs.java.com/view_bug.do?bug_id=5091921

https://bugs.java.com/view_bug.do?bug_id=5091921

bytecode rewriting for kernel & executing in GPU

inject code
for logging

non-data info for code simplification

bytecode rewriting

Polygrapher
input

source code

Translator CPU
translated code
for kernel/GPU

Executor II GPU
kernel output
(variant 1)

Verifier GPU

source code with
logging options

log
(variant 0)

Extractor I CPU

output

Figure 1: J-Gang Architecture

Listing 2 likewise demonstrates an exploit of JVM bug JDK-
8189172,2 which embodies an imprecision of floating point compu-
tations that in this case causes expressions n × n and n2 to return
unequal results. A correct JVM should loop infinitely, but unpatched
JVMs halt with output b = 4.9, n = 24.9, r = 24.999999999999993.
However, compiling the same code to a GPU architecture results in
correct behavior—self-product and square yield equal results, and
the program loops infinitely. Detecting this divergence of behavior
has the potential to detect the exploit without the need to craft
and deploy vulnerability-specific mitigations whose formulation
require advance knowledge of the bug.

J-Gang detects both exploits by compiling the Java source code
to two binary executables: (1) logging-enhanced Java bytecode, and
(2) verification-enhanced OpenCL GPU code. The Java bytecode
variant logs local state (e.g., variables b, e , r , and n in Listing 2) at
the start of each loop iteration (line 5) and at loop exit (line 9). The
GPU variant consumes this log stream in a verification loop. When
consuming k available checkpoints, it spawns k − 1 workers that
each initialize their local variable states in accordance with different
checkpoints σi (i < k − 1). They then all execute one iteration of
the loop in parallel, and confirm that the resulting states matches
the succeeding checkpoints σi+1. The divergence is detected when
the final worker obtains a different state than the CPU (e.g., equal
values for r and n in Listing 2).

While both divergences could theoretically be detected by repli-
cating programs to multiple, dissimilar CPU-based JVMs wherein
at least one JVM emulates a GPGPU-style computational model,
in practice there are at least two significant problems with this
CPU-only approach. First, CPU-based emulation of GPU-style par-
allelism is highly inefficient. A CPU-based JVM that emulates the
computational diversity of a GPGPU computation therefore can-
not keep pace with the CPU computation it is seeking to verify,
resulting in unacceptable performance bottlenecks.

Second, building and maintaining a new, dissimilar, production-
level JVM is difficult and expensive, as witnessed by the fairly
small and homogeneous set of production JVMs currently available
despite over 25 years of Java infrastructure development. These
JVMs intentionally offer little diversity, since diversity introduces
maintainability and cross-compatibility issues. For example, the
flaw demonstrated by Listing 2 has been reported across several
JVMs bymany users, probably because it is rooted in runtime library
code shared by many CPU-based JVM implementations. Leveraging

2https://bugs.java.com/view_bug.do?bug_id=8189172

j · · · j ′

д · · · д′

J

∼

J

∼

G G

Figure 2: Semantic transparency

a CPU×CPU hybrid model potentially offers greater diversity by
extending dissimilarities down to the hardware level, yet avoiding
overheads suffered by network communications between machines.

2.2 Model & TCB

Figure 1 shows the system architecture of J-Gang. The hardware
differences between the two execution paths forms an ideal poly-
grapher, which is defined as a distributer to feed the executors
with input. To generate the acceptable parallel equivalent states
for CPU and GPU respectively, there are two working paths in the
polygrapher. Since the input is Java source code, one path processes
the original CPU execution. The other consists of an translation
action and several processing behaviors of corresponding states
expressed in the GPU. The two state streams are compared for
semantic equality in an on-demand fashion.

The correctness of a compiler that transforms a source program
(e.g., Java) into an object code program (e.g., Java bytecode or GPU
bytecode) is defined in the literature in terms of semantic trans-
parency (cf., [33]), which asserts that the source code semantics
and the compiled object code semantics yield equivalent program
states. In the case of two compilers (source-to-JVM and source-to-
GPU), we therefore transitively define relation ∼ ∈ J ×G to be the
equivalence relation between the two object languages—JVM states
j ∈ J and GPU states д ∈ G—that is preserved by the two compilers’
semantic transparencies. Specifically, we define JVM ∈ (J ,→J)

to be a transition system that encodes the operational semantics
of the Java bytecode virtual machine, such as ClassicJava [16] or
Featherweight Java [26]. Similarly, define GPU ∈ (G,→G) to be a
transition system that encodes the operational semantics of GPU
bytecode programs, such as PTX [21].

Figure 2 shows a commutative diagram illustrating how non-
malicious executions that stay within the intended semantics of
the two transition systems preserve relation ∼. As indicated by the
diagram, this semantic equivalence is not necessarily step-wise;
state equivalence is only checked periodically at checkpoints. This
is important not only for performance, but also for reflecting differ-
ences in granularity between the two architectures. For example,

https://bugs.java.com/view_bug.do?bug_id=8189172

certain computational steps by the CPU execution engine might
correspond to a series of multiple computational steps on a GPU.

All non-determinism sources (e.g., random number generation,
scheduling, user input, clock checks) are treated as inputs by J-
Gang and logged by the CPU variant as local state. In general, this
leaves three scenarios that can potentially falsify transparency:

(1) one or both transition systems reach stuck states,
(2) one system reaches a final state before the other, or
(3) relation ∼ is falsified.

Condition 1 corresponds to a failure of J-Gang’s implementation
(the compilers, runtime systems, or validator). For example, Java
language features unsupported by the prototype implementation
(see §3) yield stuck states. Condition 2 corresponds to premature
termination, as exhibited by the example in Listing 2. The most
significant form of falsification arises from condition 3, which corre-
sponds to developer-unintended behaviors that differ between the
two transition systems. These include memory corruption, arith-
metic errors, and type confusions indicative of many Java exploits.

2.3 GPU Feature Limitations

Current GPU instruction architectures support only a small sub-
set of operations available on CPUs. For example, reference types
(objects) and methods are not directly expressible in the kernel
part of programs parsed in either the CUDA or OpenCL platforms.
Likewise, GPU kernel code cannot directly access main memory
during computations, since to access the main memory by shared
virtual memory (SVM) is an optional feature of OpenCL and still
not perfectly supported by AMD in Windows. J-Gang therefore
does not rely upon it.

While these limitations may initially seem prohibitive to our
goal of replicating general JVM computations to GPUs, they actu-
ally serve to enhance J-Gang’s ability to detect attacks within our
asynchronized validation model. Any CPU operation that cannot be
supported on GPU is idealized during source-to-GPU compilation
as an opaque input-output relation defined by the CPU variant’s
computation. For example, objects are reduced to their integer hash
codes on the GPU side, and calls to their methods become check-
points whose local states include numeric indexes of the called
method and the return site. This allows the GPU variant to verify
that the same object and method is called. A separate worker then
validates the callee’s computation and its return, avoiding an ex-
plicit method call or call stack on the GPU side. Usually these caller
and callee computations are validated concurrently by the GPU.

The idealization and opacity of these operations on the GPU
side is a source of many opportunities for detection of malicious
computations. For example, exploits that corrupt the JVM’s call
stack or method tables to hijack code control-flows almost never
have the same effect on J-Gang’s GPU computations, which have no
explicit call stack or method tables, and that exercise independent,
parallel workers instead of performing serial method calls.

2.4 Validation Modes

J-Gang can be configured to execute in two possible modes:
Static Mode. The CPU variant can be configured to execute to

completion before delivering its checkpoint log, whereupon the
GPU variant validates the entire computation. This mode can be

useful for terminating computations that demand high realtime
efficiency, and that do not require immediate validation.

Dynamic Mode. In this mode, the CPU variant streams its
checkpoint log to the GPU variant as the computation progresses.
The GPU variant consumes the stream opportunistically, discarding
the consumed checkpoints. This is the preferred mode, since it
reduces space overheads for checkpointing, accommodates non-
terminating computations, and detects intrusions live.

2.5 Checkpointing

Local State. Checkpoints produced by the CPU variant consist
of local variable values, heap values (e.g., object hash codes and
fields), and a numeric token that uniquely identifies the current
code point. To control overhead, only the subset of local variable
and heap values that are accessed by the CPU variant between this
checkpoint and the next are included in each checkpoint. While
purely static liveness analysis of Java code can be challenging [39],
we avoid many of these complexities by simply logging the variable
values that are actually read and written by the CPU variant as it
runs, and by placing checkpoints at significant meets and joins in
the control-flow graph (e.g., function and loop entry and exit points).
In this way we avoid the need to accurately compute heap liveness
or reachability, and all static analyses are intraprocedural. Liveness
and reachability approximations are only used as optimizations to
avoid unnecessary checkpoints.

If the GPU variant attempts to access a state element that was
not included in its source checkpoint, or modifies a state element
not included in its destination checkpoint, it signals a divergence.
Thus, checkpoints and any analyses used to generate them remain
untrusted by the verifier.

Frame State. The GPU variant also maintains a frame state com-
prising portions of the heap that were introduced by previous (now
discarded) checkpoints, and that remain reachable, but that do not
appear in the current checkpoints undergoing validation. This re-
duces checkpoint sizes by providing a means to validate the values
of variables that are not read or modified for large portions of the
program, but that remain live. It is maintained outside the GPU
kernel code, and consists of an idealized JVM state representation
in which objects are expressed as hash codes and their fields are
expressed as hash tables.

For example, variable e in Listing 2 remains live throughout the
loop, but is only accessed in line 7. By including e in the frame state,
we can omit e from checkpoints for computation fragments that do
not concern e . Checkpoints that assume e = 2.0 as a precondition
can nevertheless be validated by consulting the frame state. Like
other variables, modifications of frame elements are reported in
checkpoints, and are therefore validated by the GPU, resulting in
changes to its frame state.

2.6 Translation

Translation of Java source code to J-Gang’s hybrid architecture is
summarized in Figure 3. For simplicity of presentation, we here
represent Java source code as a core language consisting of variable
assignments v←e , method calls v←o.m(®e) (which have been fac-
tored out of expressions into separate statements), sequences, loops,
n-way branches, and exception-handlers. Translation function T

s ::= v←e | v←o .m(®e) | s1; s2 | loop(e) s (statements)
| branch(e) s1 · · · sn | try s1 with e ⇒ s2

e (expressions)
v (variables)

□✓ (checkpoints)

T (v←o .m(®e)) = (®vtmp←®e ; □✓; v←call(o .m, ®vtmp); □✓)
T (s1; s2) = T (s1); T (s2)

T (loop(e) s) = vtmp←e ; □✓; loop(vtmp) (T (s); vtmp←e ; □✓)
T (branch(e) s1 · · · sn) = vtmp←e ; □✓; branch(vtmp) T (s1) · · ·T (sn)

T (try s1 with e ⇒ s2) = try T (s1) with e ⇒ (□✓; T (s2))

Figure 3: Translation of Java source to CPU×GPU code

maps these programs to instrumented source code programs that
can be compiled to native CPU/GPU architectures.

The translation process adds checkpoint operations □✓, which
have a different operational semantics depending on the target
architecture. In the CPU variant, checkpoints log the local state
to the verification log. In the GPU variant, checkpoints read the
log to initialize the local state at the start of a worker computation,
and to validate the local state at the end of each worker computa-
tion. Translation of loops, branches, and exception handlers entails
adding checkpoints to meets and joins in the program’s control-
flow graph. To check loop and branch conditions, they are assigned
to translator-introduced temporary variablesvtmp, which contribute
to the local state and hence undergo checkpointing.

Translation of method calls invokes a call verification handler
call(o.m, ®v) whose semantics likewise differ between the two archi-
tectures. On CPUs, object o’s hashcode is logged to the checkpoint,
method m of object o is called with arguments ®v , and its return
value is logged on return. On GPUs, where explicit calls do not exist,
the logged hashcode is verified to equal the GPU state’s object argu-
ment, and the return value is simply retrieved from the log file and
used as the result. This works because the checkpointing placement
ensures that a separate GPU worker always verifies the correctness
of this return value when validating the callee’s computation. (If
the callee is not Java code, as in the case of JVM runtime system
calls, this treatment simulates the GPU calling the external library
with the same arguments and receiving the same result value.)

Each checkpoint also logs a program label that uniquely identifies
the location of the checkpoint in the code. Thus, the GPU code
consists entirely of a single function beginning with a branch that
consults this label to conditionally jump to the code fragment being
checked. Each GPU worker thereby executes a code fragment that
begins at one checkpoint and ends at the next, and that consists
entirely of side effect-free computational expressions suitable for
GPU kernel code.

Figure 4 depicts the resulting execution streams for a simple
loop. The CPU variant (left) executes the loop body iteratively in
a serial stream, outputting one checkpoint for each iteration (and
one additional one at start). A GPU variant (right) with n workers
consumes all available checkpoint-pairs simultaneously, simulatig
all iterations of the loop in parallel to validate the computation.

 11 <- a + 1;

 60 <- b × a;

 a --;

...

while(a>5)

{

 x <- a+1;

 y <- b×a;

 a--;

}

...

 10 <- a + 1;

 54 <- b × a;

 a --;

 7 <- a + 1;

 36 <- b × a;

 a --;

...

60

54

48

42

36

6 × 10

6 × 9

6 × 8

6 × 7

6 × 6

11

10

9

8

7

10

9

8

7

6

9

8

7

6

5

ß

(aij) 5×1

(1) 5×1

ß

ß

a = 10 b = 6 a = 10 b = 6

+

LOG :

STEP 1 :

STEP 2 :

STEP n :

STEP 1 :

...

Figure 4: J-Gang computations for CPU (left) vs. GPU (right)

2.7 Verification Time Complexity

Modern GPGPU architectures are most efficient when threads ex-
ecute homogeneously—i.e., each group of k threads executes the
same code in lock-step (on possibly different data), and there is
no significant communication between threads in the group. For
example, Nvidia’s CUDA GPGPU architecture supports a Same In-
struction Multiple Data (SIMD) model (as well as less efficient but
more flexible MIMD models) [34]. On a GPGPU architecture with a
single thread group of size k , J-Gang’s GPU variant can obey this
homogeneity constraint to achieve high efficiency, and thus keep
pace with the CPU variant even after lagging behind the CPU by a
factor of k , as shown by the following theorem.

Theorem. If the time complexity of the CPU code isO(f (n)), then
the time complexity of the GPU-translated code on an architecture
with k homogenous threads is O(f (n)/k).

Proof Sketch. Code size c is constant relative to the input sizen.
By pigeon-hole principle, a checkpoint sequence of length O(f (n))
must therefore contain Ω(f (n)/c) = Ω(f (n)) checkpoint pairs that
span identical code fragments. Translation function T (see §2.6)
executes these homogeneous fragments in blocks of k for a total
runtime of O(f (n)/k). □

In practice this means that even though each GPU thread’s serial
computing speed is less than that of a typical CPU, with reasonably
large k the GPU variant nevertheless keeps pace with the CPU. This
allows J-Gang to scale to long computations.

3 IMPLEMENTATION

To test and evaluate J-Gang, we implemented an extensive trans-
lation infrastructure from Java source to GPU kernel code. This
includes a new Java package handler implementation, a CPU-GPU
communication library for live data logging and retrieving, transla-
tion from host code to kernel code, and procedural automation.

Figure 5 depicts the procedure and interaction between source
code and processing units in static mode. (Dynamic mode omits
python scripts and reloads modified classes with class-loaders.) It
shows how the GPU Kernel code of verification for Java Aparapi
is generated from source code and how we record the status of
variables and create checkpoints in the kernel in basic mode.

���

�����	
��

��
�
���

���

���

������������	
��

�����������

������

�������

�

�������

�

��
�
����

�������

����

������

����

���
	!

����

"���	
����

��
�
����

�������

����

���
"
��

�������

�����

�����
	!�

�!��#$

��
�	� �	

��	�
�	���
	!��%	!������
�	�

���

����������

������������

�������
��&�

'�(��	
���)���
	
��

����������*

������
�	

������+,%	������

�������
��&

'�(��	
��

������������

���#���

-�
���	�

���"���#�����������

�����	
��

Figure 5: Procedure of variants generation and execution

Figure 6 lists four sample code fragments representing the el-
ements of Figure 5. All code shown in the figure is generated au-
tomatically by J-Gang, including source code with log functions,
and code instrumented with checkpoints. Reading and writing of
log tables to align the data of loops for parallel verification (see
Fig. 4) is also automated. This is shown in Log and Modified code
elements of the figure. In addition, the code with check-points in
the rightmost side represents the initial GPU kernel code from Java
Spoon (before optimizations based on dynamic analysis are applied,
such as granularity adjustment).

The project is implemented in Java and Python on a machine
with Intel Xeon CPU @3.4GHz, 64GB memory, and an AMD Fire-
Pro W5100 Graphic Card. Supporting infrastructure includes Java
Aparapi, Java Spoon [41], and Javassist [11]. Aparapi by AMD pro-
vides Java bindings to enable the host to call APIs from OpenCL; it
is the portal for Java code execution on GPU, and masks OpenCL’s
more detailed operations and memory management in the devices.
For example, it automatically switches from Java’s multi-threading
and GPU task scheduling, making its style of kernel code more
accordant with Java code. Java Spoon by Inria is used as a language-
parsing and code-injecting tool to log variable information and
transform the input source. Javassist offers the ability to rewrite
code from input at the bytecode level.

3.1 Source Language Limitations

Since our prototype is implemented atop Java Spoon and Java
Aparapi, it is presently limited to Java code that can be parsed
by those tools. Aparapi offers a Java-style grammar wrapper on the
kernel code of OpenCL, which is based on the C99 standard and
does not support Java-level multi-threading or certain higher-order
OOP constructs (e.g., first-class lambdas). For exact limitations,
please see the documentation of the aforementioned tools. Our
prototype follows the basic Java SE standard, and therefore does
not yet support language features new to subsequent Java versions.
In addition, some language optimization will also be limited due
to the current GPU and CPU’s architecture of communication. For
example, the optimization mentioned in Figure 4 for nested loops
or recursive function will be impossible.

3.2 Bytecode Analysis

J-Gang uses bytecode analysis to log executions and dynamically
rewrite GPU kernels (the dashed lines in Figure 1). In dynamic
mode, the variables in the system are visited while executing the
original source code. We wrote a toolkit package on Javassist for
this task, since no convenient tool in the market currently provides
functions for the Java language to visit local variables of methods
in JVM at runtime. Java language extentions, such as AspectJ, offer
indirect ways to achieve this, such as refactoring source code to
expose local variables at compile time. Javassist and ASM offer
manipulation in bytecode.

Figure 7 illustrates our procedure for logging local variable state.
To locate the local variables in a Java bytecodemethod, the indices of
local variables are first tracked by inspecting the opcode iinc and
opcode family of xload(_a) and xstore(_a) of the method.
From this we create the bytecode of the log statement with acquired
line numbers and variables’ indices of these opcodes, and in-line it
into the method. Executing the instrumented method streams the
log of variables to the verifier.

To dynamically rewrite the GPU kernel code, the source code
is first translated to executable statements for the kernel and con-
verted to its bytecode. This creates the code block that will be
executed on the GPU. To make it executable, we compile an empty
kernel template to bytecode and inject the bytecode of the code
block. The newly generated kernel must be compiled and dynami-
cally loaded before the compiling procedure for the whole source
code starts. This is because the template kernel has already regis-
tered in the JVM before the generation of the new kernel. This one-
time reloading initializes a nonstop procedure from input source
code directly to execution in the GPU, achieving live, streaming
computation validation.

3.3 Primitives & References

In the static mode, Java Spoon is used to parse the input source code.
All the statements about initialization and assignment of variables
are first located with their line numbers. In this stage, the update
sites of variables are analyzed for liveness, and duplicately-named
variables are assigned unique indexes in the log.

Java’s primitive types are all recorded directly into logs, since
the OpenCL kernel uses the same data types during verification. For
example, values of type char are logged as unsigned short.
To log reference types, a method of lightweight recording is chosen:
The system tracks references’ hashcodes to monitor their changes,
since the GPU kernel lacks first-class references. All non-primitive
objects or attributes can be disassembled or converted into primi-
tives [20], affording verification of all references by the GPU.

3.4 State Consistency

Before verification starts, an initial memory state must be prepared
so that both variants can begin computation in equivalent states.
This pre-state corresponds to the precondition of a Hoare Triple.
To keep the state size tractable, it is desirable to restrict each pre-
state to only those variables that are referenced by the computation
fragment being verified. To compose the pre-state, the code block
to be verified and its line numbers are analyzed with Java Spoon so
that relevant variables can be selected out. Each selected variable’s

int a = 1 + 1;

...

String str = "Hello";
str = str + " World!";

char c = 'h';
c = (char) (c+3);

...
for (int i = 0; i < 5; i++) {

a = a + i;
a = a * i;

}

public class product {
public static void main(java.lang.String[] args) {

int i_22[] = { 0, 1, 2, 3, 4 };
int a_23_pre[] = { 3, 0, 1, 6, 27 };
int a_23_post[] = { 3, 1, 3, 9, 31 };
int[] a_23_length = { a_23_post.length };
int a_24_pre[] = { 3, 1, 3, 9, 31 };
int a_24_post[] = { 0, 1, 6, 27, 124 };
int[] a_24_length = { a_24_post.length };
int[] Error_pre = new int[] { 0 };
int[] Error_post = new int[] { 0 };
com.amd.aparapi.Kernel kernel = new com.amd.aparapi.Kernel() {
public void run() {
int gid = getGlobalId();
int a = 1 + 1;
int str = 69609650;
{ if (str != 69609650 && (Error_pre[0] == 0))
 Error_pre[0] = 10;
 else str = -969099747;
}

...
char c = 'h';
{ c = ((char) (c + 3));
 if (c != 'k' && (Error_post[0] == 0))
 Error_post[0] = 14;
}

...
{ a_23_pre[gid] = a_23_pre[gid] + i_22[gid];
 a_23_pre[gid] = a_23_pre[gid] * i_22[gid];
 if ((Error_post[0] == 0)
 && (false || a_24_post[gid] != a_23_pre[gid]))
 Error_post[0] = 22;
 else { a = a_24_post[a_24_length[0] - 1];
 }

 }
 }
 };

kernel.execute(com.amd.aparapi.Range.create(5));
java.lang.System.out.println(((("Error_pre = " + (Error_pre[0])) +
"; Error_post = ") + (Error_post[0])));
kernel.dispose();

 }
}

int a 2 7 0 _

long l 128437111 8 0 _

java.lang.String str 69609650 9 0 _

java.lang.String str -969099747 10 1

69609650

long l 128437113 11 1 128437111

long l 128437114 12 2 128437113

char c 'h' 13 0 _

char c 'k' 14 1 'h'

int a 3 19 1 2

long l 128437117 20 3 128437114

int i 0 22 0 _

int a 3 23 2 3

int a 0 24 3 3

int i 1 22 1 0

int a 1 23 4 0

int a 1 24 5 1

int i 2 22 2 1

int a 3 23 6 1

int a 6 24 7 3

int i 3 22 3 2

int a 9 23 8 6

int a 27 24 9 9

int i 4 22 4 3

int a 31 23 10 27

int a 124 24 11 31

int a 5 27 12 124

int a = 1 + 1;
lognew.add("int", "a", String.valueOf(a), 7);

...
java.lang.String str = "Hello";
lognew.add("java.lang.String", "str",
String.valueOf(str != null ? str.hashCode() : 0), 9);

str = str + " World!";
lognew.add("java.lang.String", "str",
String.valueOf(str != null ? str.hashCode() : 0), 10);

char c = 'h';
lognew.add("char", "c", "'" + String.valueOf(c) + "'",
13);

c = ((char) (c + 3));
lognew.add("char", "c", "'" + String.valueOf(c) + "'",
14);

...
for (int i = 0; i < 5; i++) {

lognew.add("int", "i", String.valueOf(i), 22);

a = a + i;
lognew.add("int", "a", String.valueOf(a), 23);

a = a * i;
lognew.add("int", "a", String.valueOf(a), 24);

}

���������	
�����

����
������������������

����
���������������

����
��������

����
�������

����
��
�������

���

������������

���
�����������������������

������������������������

 �����������������������������

�!"����������#

�������������

���

���

����$����������������

���������������������

�!"����������

���������
����������

%&������'�������

�������������

���

(���

�������������

)���������������

*������������������

���

���������	
����

����
������������������

����
���������������

����
��������

����
�������

����
��
�������

����
���'�����������

����
�+���������

���

int a = 1 + 1;

...

String str = "Hello";
str = str + " World!";

char c = 'h';
c = (char) (c+3);

...
for (int i = 0; i < 5; i++) {

a = a + i;
a = a * i;

}

��
����

��
����

"�������������������

"�������������������

,�����������$��
��������������

���

��������������$��
��
��-.������

Figure 6: Code and checkpoints generation procedure

xload_a

xload a

xstore_a

xstore a

iinc a b

aload_0;

xload_a/[xload a];

invokevirtual #n;

pop;

Bytecode

i :...

i+1:Opcode for

 variable access;

i+2:...

Extract type x

and index a

Inject visiting

code back

Figure 7: Bytecode injection to dynamically visit a variable

pre-state value is determined by identifying its last update in the
checkpoint log, or its value in the frame state if the checkpoint log
contains no updates.

To take advantage of parallel computing, J-Gang represents pre-
state variables in different ways depending on the control-flow
structures that contextualize each computational fragment being
verified. Sequential and conditional control-flows offer only small
opportunities for parallelism, so their variable values are stored
separately in local memory. However, variables in (non-nested)
loops are arranged into arrays and loaded into global memory for
parallel verification. Our prototype does not yet perform this opti-
mization for inner loops of nested loops, since doing so introduces
complexities related to dynamically generating kernel code that
anticipates how the various nesting levels interleave at runtime.
This is an optimization we intend to pursue in future work.

3.5 GPU-based Verification

Executor II in Figure 1 is implemented as GPU kernel code analo-
gous to the code that executes on the CPU. It first loads the initial
computation state (pre-state) reported by the CPU version, and
then compares the generated result state with the logged post-state.
To leverage the performance strengths of GPGPU computing, J-
Gang implements GPU code that enjoys two forms of parallelism:

(1) Loops are parallelized into concurrent verification of their it-
erations, as shown in Figure 4. (2) Comparison of the post-state
derived by the GPU to the one reported by the CPU is parallelized
into concurrent comparisons of state partitions.

In the first part, when the system verifies the iterations of a loop
in parallel, the values in each iteration for a variable in both the
pre-state and post-state are aligned into an array, which affords
efficient concurrent access by GPU kernel code. This asymptotically
decreases the verification time by one layer of the loop, as proved in
Section 2.7. With k parallel processing units in the GPU, the number
of iterations is reduced from n to n/k , where n is the number of
CPU loop iterations.

In the second part, we efficiently compare the two post-states
from the executors by converting them into two byte arrays. Bitwise
XOR computation can be performed on the arrays to efficiently
compare them for equality. On the GPU, this XOR computation is
parallelized among all available workers. This method significantly
accelerates state comparisons, which are otherwise slow on serial
architectures since the states can be large.

3.6 Code Pruning

When some part of the source code is never executed by Executor
I (CPU) or has no effect upon the computation state (e.g., non-
executed branches or effect-free code), this part can be trimmed
from original code before the translation for Executor II (GPU). For
example, it is not necessary to keep the discordant branches in the
second execution since these are unreachable. This optimization is
safe because divergent computations that include such code blocks
are guaranteed to still exhibit divergence when omitting the effect-
free blocks.

To implement this optimization, line numbers of variables are
inspected in the log to determine the direction of flow before the
translation. We record line numbers of variables with their updated
values together during the checkpointing step. All statements, in-
cluding those in branches, are tagged by the line numbers. During

the first execution, the values of variables in statements visited
by program flow are logged. These recorded lines indicate which
branch updated the variables. By checking the number, we deduce
which branches can be omitted from verification. If there is no vari-
able recorded in the branch, the segment of code can be trimmed
since it is effect-free.

4 EVALUATION

Our experimental evaluation of J-Gang is grouped into vulnerabil-
ity detection accuracy and runtime performance. The evaluation
architecture is the same as the development framework reported
in Section 3, and publicly available, independently authored Java
input programs are selected from diverse sources for correctness
and performance tests. Programs with different time complexity
and utility are chosen to test running performance. Also, a group of
relatively new Java bugs are selected fromOracle Java Bug Database
to test the accuracy and utility of the framework for real-world sce-
narios. All bugs are treated as zero-days—no vulnerability-specific
mitigations or controls are deployed for any of the experiments.

In the experiments, checkpointing is closely related to overhead.
To control this trade-off, the granularity of checking can be flexibly
tuned from the finest-grained level (checking every variable update
immediately) to coarser-grained levels (checking variable updates
after code blocks or function returns). For example, checkpoints
can be inserted after each line of code within a loop, or only before
and after the loop for greater efficiency. Coarser checking requires
fewer checkpoints but potentially larger states to check at each
checkpoint.

4.1 Running Efficiency

Performance evaluation of J-Gang can be characterized in terms
of two metrics: (1) overall runtime overhead of the instrumented
CPU computation, and (2) the delay between time-of-exploit and
exploit-detection by the GPU verifier. Overheads measured by the
first metric are primarily due to the extra time needed to log check-
points for verification. Checkpointing is partly asynchronous, but
there is still overhead incurred by initializing and spawning the
asynchronous I/O. Overheads measured by the second metric are
primarily driven by the size of the checkpoint stream, and are
therefore measured in reciprocal-bandwidth (ns/B).

Our evaluations consider two categories of test application: clas-
sic algorithms (which afford investigation of time/space complex-
ity effects, memory update frequency, and highly optimized code
loops), and practical utilities (which examine applicability of J-
Gang to real-world software products). The latter include website-
downloaders, compression tools, and image editors. They are ran-
domly chosen for the testing, and demonstrate our approach’s gen-
erality and versatility. Selected programs are all from independent
authors and were tested for correctness before evaluation. Each
test data point reported is an average over hundreds of trials.

Performance is reported for both the static and the dynamic
verification mode. In static mode, the CPU computation runs at
full speed and produces a complete log of checkpoints, which is
verified by the GPU after the computation completes. In dynamic
mode, the checkpoint log is consumed opportunistically by the
GPU verifier as the CPU computation progresses, affording live,

parallel validation of the computation. The static mode therefore
incurs lower I/O overheads, but has the disadvantage of building
a larger checkpoint log and offering only retroactive detection of
exploits. The dynamic mode incurs higher I/O costs but does not
need to retain the full checkpoint log in memory or on disk, and
detects exploits on a short delay.

Table 1 and Figure 8e report runtime overheads for the first
category of tests (classic algorithms). Figures 8(a–d) report over-
heads for the second category (practical applcations). The results
indicate that tight, numerically intensive computations incur high
overheads (due to the high cost of frequent checkpointing relative
to streamlined mathematical computations), but most of the practi-
cal applications perform well under J-Gang. For example, utility
programs running in static mode show overhead ratios of less than
≤ 1.008%, and average overheads of less than 7% in dynamic mode.
All overheads are under 10% except for the outlier in Figure 8d for
unzip files, which is investigated in more detail below.

The experiments reported here do not include any manual gran-
ularity tuning; we allowed J-Gang to select checkpoint locations,
frame state update frequency, and loop verification parallelizations
purely automatically. To better support the short, computationally
intensive algorithms in Table 1, we conjecture that a less frequent,
time interval-based checkpointing regimen would perform bet-
ter for such algorithms. Figure 8e investigates this conjecture by
adjusting the checkpointing granularity for the binary search ex-
periment, resulting in a more acceptable overhead of about 20%.
Tuning the granularity in this way does not sacrifice assurance,
since it preserves computational divergences somewhere within the
checkpoint stream. It merely offers less parallelism opportunities to
the verifier by clustering more verification data into fewer check-
points. A more detailed investigation of the performance trade-offs
of this tuning approach is reserved for future work.

Our experimental data also indicates that input file sizes affect
the stability of performance measurements. When file sizes are too
big or too small, the performance timers yield unstable outputs.
This effect can be seen in Figures 8a and 8b, where the values on the
right and left, respectively, fluctuate more widely than in the center.
Values at the centers of the plots should therefore be considered
more reliable and indicative of real-world observations.

Figure 8d contains an outlier for unzip files, which we inves-
tigated in detail to ascertain the cause. It occurs because the test
program allocates a large buffer as one of its local variables and
access it in an innermost loop, causing J-Gang to include it in many
of its checkpoints. The performance could be greatly improved
by introducing heuristics whereby J-Gang removes unmodified
portions of arrays to its frame state (see §2.5) rather than includ-
ing them in every checkpoint just becomes some elements were
modified. This is another optimization that should be considered
by future work.

There is a significant time difference between the dynamic and
static modes, especially on experiments with mathematical algo-
rithms. After investigating this, we determined that the higher
runtimes reported for dynamic mode are almost entirely due to
log access I/O costs that could be significantly improved in a pro-
duction version of the system. In particular, our prototype stores
logs by piping the output of I/O into System.out when in-lining
the methods in bytecode. All the dynamic test results are therefore

Table 1: Performance evaluation of Java algorithms using J-Gang. Partial granularity omits verifying trusted API methods.

Original Granu- Static Dynamic Delay Log

Program (ms) larity (ms) (ms) (ns/B) (KB) Time

binary & sequential search (n = 100000) 200.101 partial 211.172 247.248 289.245 163 O (n logn)
matrix multiplication (n = 100) 16.741 all 603.304 4098.165 2293.258 17799 O (n3)

2-color algorithm for bipartite (V = 500, E = random(V
2
4)) 2.561 all 68.917 2835.420 1098.829 25709 O (V + E)

mode of a set (n = 1000) 2.136 all 91.002 1318.665 251.448 52246 O (n2)
all subsets in lexicographic order (n = 15) 4.155 all 249.721 4284.198 859.592 49656 O (2n logn)
nearest neighbor by linear search (n = 1000, D = 2) 0.078 all 0.463 29.476 1223.429 240 O (nD)

�

���

���

���

���

�

���

���

�
	

�
�

�
�
�
��
�

�
�

���
����

(a) Java IO/unzip

�

���

���

���

���

�

���

���

�
	

��

�
�
�
��
�

�
�

���
����

�
�
����	
��
������
���
��� ���������	
��
������
����

(b) Java networking/download

�

���

���

���

���

�

���

���

���

�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�

	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�

	

�

�
	

�
�
�
	

�

�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
�
	

�
�
	

�
�
�
�
	

�
�
�
�
	

�
�
�
�
	

��
��
��
�
�
��
�
��
�

���������

�������
������������������ !"��#���
���������������

(c) Java graphics/resize JPGs

�

�

�

�

�

��

��

��

��	
��
� �����
��	���
�� �������	�������� ����������������
�� !
"�
��
�
�
�#
$�
�

�

�
�
�%
�
�

�

&����� �

����
���$���
����
���
���� �'��
���$��
�
����
�����

(d) Execution Comparison

�

���

�

���

�

���

� � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

	
�

	
�

	
�

�
�

�
�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�
��
�
��
��

�
�
�
��
�

�
�

���
��������
�

�
�
��������
������
���
�� !����"�#�
�
��������
������
���
�� $

(e) Control overhead for O (n logn) binary search

Figure 8: Experimental results with utility applications as input

bounded with the delay caused by the console output. In the related
testing in the industry, this delay has been shown to be much more
expensive than other forms of I/O (e.g., 100× higher than direct-
ing I/O to files).3,4 Although we cannot isolate this portion of the
overhead precisely, we can estimate it by artificially inflating the
sizes of the log files and observing the relation between runtime
overhead and log file size. The results of this analysis indicate that
more than 90% of the dynamic mode overhead is due to console I/O.
In the independent unit testing on I/O, the average result of delay
on I/O for stream to console is around 454ns, which is within the
range of the results for the Delay column of Table 1. An obvious
next step to improving our prototype implementation is therefore
to replace console logging with a high performance filesystem or
other storage medium.

In addition, I/O overheads can be further minimized by perform-
ing I/O more asynchronously. Doing so avoids delaying the main
computation at the cost of slightly increasing the delay between
the full-speed CPU computation and the GPU verifier’s detection of
faults and intrusions. The delay due to I/O latency is only around
0.001 second/KB on average for our prototype.

3https://stackoverflow.com/questions/4437715
4https://stackoverflow.com/questions/18584809

The influence of memory overhead is minor relative to the I/O
overhead, and its scale is determined by the size of input of a
program. To avoid a predictable overhead to an uncertain input, it
is best to adjust the logging granularity or optimize the tracking by
in-lining some trusted methods.

4.2 Verification and Correctness

To verify the correctness, we tested whether our system can detect
vulnerabilities of the JVM exploited by flawed or malicious input
programs. For accuracy, we only chose the bugs verified by Oracle
Java Bug Database. Reproducing the vulnerabilities in Table 2 re-
quires different versions of Jave SE. No simulated program is used in
the testing for correctness. The 8 selected bugs are non-duplicated
and 7 of them are not related except the second and third.

The vulnerabilities we tested span all officially released subver-
sion of Java SE 6–8. Java SE 9 and 10 are not included because
Java 9 non-critical bugs will not be fixed and added in the subver-
sions, and Java 10 was released concurrently with our research. All
JVM bugs and test code for them were drawn from Oracle’s official
bug database. There are usually several bugs (sometimes none) in
each subversion that are related to Java official compiler Hotspot
based on Windows x86/x64. Among them, we selected bugs that

https://stackoverflow.com/questions/4437715
https://stackoverflow.com/questions/18584809

Table 2: Tested bugs

No. Bug ID Description

1 JDK-5091921 Sign flip issues in loop optimizer
2 JDK-8029302 Performance regression in Math.pow intr-

insic
3 JDK-8063086 Math.pow yields different results upon re-

peated calls
4 JDK-8166742 SIGFPE in C2 Loop IV elimination
5 JDK-8184271 Time related C1 intrinsics produce incon-

sistent results when floating around
6 JDK-7063674 Wrong results from basic comparisons af-

ter calls to Long.bitCount(long)
7 JDK-8046516 Segmentation fault in JVM
8 JDK-8066103 Compiler C2’s range check smearing allo-

ws out of bound array accesses

are testable and offer related source code. While our approach is
applicable to vulnerabilities reported elsewhere, such as in malware
threat reports, JVM bugs that have not yet been documented in Or-
acle’s official database are extremely difficult to reproduce reliably,
and are therefore not tested in this work.

Generally, the eight vulnerabilities listed in Table 2 arise from
inaccurate calculations of CPUs in comparison with GPUs. Half of
them cause CPUs to perform incorrect floating point computations.
Inaccuracies of this form undermine numerous secure computa-
tions, such as encryption, related to floating point. Other bugs in
the list invite software compromises. For example, testers reported
that the false access to arrays caused by JDK-8066103 can be abused
to corrupt the heap in ways that victims are unlikely to notice for
significant lengths of time. The sign flip problem JDK-5091921 is
related to about 30 bug reports and is major facilitator of denial-of-
service attacks against Java-based servers.

J-Gang detects all the exploits in Table 2 as a divergence of
the CPU and GPU computations. Our testing methodology for
confirming this is detailed below.

In each exploit of the 8 vulnerabilities, we first reproduce the
exploit to confirm that we have vulnerable execution environment
with a proper version of the Java SE and running flags. We then
run the code on J-Gang and perform GPU-based validation of the
computation. In some cases, we needed to make minor manual
adjustments to the proof-of-exploit code to get it to execute, or
to keep it compatible with our evaluation infrastructure. None of
these manual adjustments affect the exploit itself, or introduce any
vulnerability- or exploit-specific mitigations. Manual adjustments
needed include the following:
• Some code with new or lesser used Java language features
cannot be processed by some of the tool packages underlying
our prototype implementation. Such code was adjusted to
exclude the unsupported features when the features are not
part of the exploit.
• Some exploits become inadvertently corrected merely by
the introduction of J-Gang’s logging code. For example, the
logging code may deactivate a buggy JVM loop optimization.
In a real deployment, this is an advantage to defenders since
the instrumented code is no longer exploitable. However,
to force the exploit to work and test its effect, we manually

omitted or moved any checkpoint sites that had the side-
effect of fixing the exploit being tested.
• Certain atypical forms of variable assignment, such as re-
flective updates, are not yet supported by our prototype. We
converted such operations to supported equivalents when
doing so did not affect the exploit being tested.
• Some proof-of-concept exploit code causes the JVM to freeze
instead of hijacking or crashing the victim application. This
is typically an artifact of the proof-of-exploit implementa-
tion (since real attacks tend to abuse the vulnerability to
greater effect). Freezes yield no more checkpoints, so are de-
tectable by timeout rather than by computation divergence.
To change freezes into divergences, we artificially force a
final checkpoint for such computations.

5 RELATEDWORK

5.1 Execution Variance

Whenn-version programmingwas first introduced in 1978, it opened
the field to further improvements in the reliability of software execu-
tion, including advantages for fault-avoidance and fault-tolerance [5,
9]. Subsequent experiments identified independence and diversity
of software variants as a critical challenge for the approach [30].
In particular, software ecosystems created by independent humans
from a common specification exhibit surprisingly low diversity,
since humans are prone to making similar mistakes.

In addition, progress in n-version programming was severely
hindered by the cost of its implementation. Multiple teams of de-
velopers were required to build their own version of each piece of
software, which was then collected into a single system moderated
via a voting strategy to produce results and maintain consistency.
This highly manual approach potentially multiplied software de-
velopment and maintenance costs by a factor of n, deterring many
practical deployments.

These obstacles motivated automated diversity as a potential
amelioration of these dilemmas [12]. Instead of requiring multiple
teams, execution diversity can be created by automatically generat-
ing variants. Proposed sources of diversity include transformation
of nonfunctional code, changing memory layout, and code reorder-
ing [17]. For example, prior efforts have maintained and monitored
software properties throughout its maintenance lifecycle to help
detect when core behaviors could potentially change [55], or have
leveraged address space randomization [47] to probabilistically
defend against memory errors [8].

The introduction of automation also raised the opportunity
to apply n-variant programming to address another major rising
software problem: cybersecurity. For example, diverse replication
was applied to frustrate attempts to hijack operating systems [13].
Within the past decade, this strategy has seen significant progress
as software-producing tools, such as compilers, have reached a level
of maturity suitable for large-scale, automated n-variant deploy-
ment (cf., [31]). Recent works have inferred semantics from source
code to locate semantic bugs based on multiple different implemen-
tations [35], and to build multi-variant execution environments
with multi-threading to detect memory corruption vulnerabilities
in C/C++ programs [54].

5.2 Heterogeneous Computing

Modern computer programs take advantage of both CPU and GPU
components when needed. A survey [36] published in 2015 gives
a thorough introduction on this topic. It mentions that one of the
motivations for heterogeneous computing is leveraging the unique
architectural strength of each processing unit, which corresponds to
our idea of utilizing the ability of a GPU to process loops in the pro-
gram flow. It also introduces hybrid applications and programming
languages that span CPUs and GPUs, such as Map-Reduce frame-
work [10, 14, 48, 51] and programming frameworks that eliminate
the boundary between CPU and GPU [24, 28, 40, 52]. Map-reduce-
like frameworks [24, 28] describe methods for executing source
code on both CPUs and GPUs without any modification.

Another way to bridge the differences among hardware is to
adopt an intermediate representation. Through this, a program
can be automatically dispatched into suitable processing units [40].
For-loop optimizations partition loop iterations across multiple con-
current workers to form a parallel-for loop in Java [52]. In our work,
the purpose of optimization on the loop is only for verification;
so we can evaluate iterations of for-loops in parallel regardless of
whether they are computationally parallelizable. This is due to the
fact that the CPU replica reveals the (untrusted) input and output
states of each iteration in advance.

There are ways to seamlessly develop on GPUs with Java [42].
For example, prior work has applied this technique to translate Java
bytecode to OpenCL and implement efficient sample pixel render-
ing [1]. There are also ways to compile languages into a hybrid
environment [18]. Our work does not utilize these approaches since
many modifications, including simplification for GPU and optimiza-
tion, would be required to realize them for the general-purpose
computations that we envision as potential subjects of validation.

5.3 Verification

In our work, we consider shrinking the possible state space in the
redundant execution since the processing ability of a single process-
ing unit in GPUs is a subset of the CPU computation. Some states
must be simplified or canceled, and the verification in our paper
is used to describe the assurance of execution results. Through
the implementation, we still found some methods to guarantee the
quality and scalability for formal verification [15].

To avoid the problem of state space explosion in the procedure
of precise verification, multiple strategies can be adopted. One
approach is to compress the information of states and still offer
explicit checking [23]. Partial order reduction can be used to prune
the possible increased space of states [19].

Verification of Java computations is a subject of many prior
works (cf., [49]). Java Pathfinder [53] implements model-checking
based on an intermediate language [22] to analyze Java bytecode.
Primitive types and references are bound to the JVM instructions
and incorporated into searches. Type-based abstract interpretation
can validate JVM executions [32]. Horn solvers have also been devel-
oped for Java verification based on logic programming [29]. Ahead-
of-time compilation is another proposed approach [7]. Machine-
checked proofs have been constructed to obtain highest possible
assurance for Java computations [25], although these approaches
currently require significant manual effort.

5.4 Dataflow Analysis

To track inner local variables of methods, our work leverages static
dataflow analysis. Such analysis is a staple of program analysis
surveyed by numerous prior studies (e.g., [50]). Related works have
studied the collection of profiling information in statements via
dataflow tracking [2, 6, 43], detection of confidentiality leaks in
Java [37], and troubleshooting software errors caused by miscon-
figuration by tracking dataflows embodying interprocess commu-
nications [4].

6 CONCLUSION

This paper proposed and implemented J-Gang, an n-variant system
framework for verification of Java code by which vulnerabilities can
be detected and exposed as the divergence of the execution between
CPU and GPU computations. Our solution translates general source
code and introduces it into kernels, which yields a solution for
executing general Java code in GPUs. To overcome performance
disadvantages related to executing mostly serial computations on
GPUs, J-Gang leverages GPU parallelism to validate many CPU
loop iterations concurrently, affording the GPU variant a means to
keep pace with the CPU variant even on computations that are not
automatically parallelizable outside of an n-variant setting.

We evaluate our system based on the source code of utility ap-
plications, known public vulnerabilities, and classic algorithms in
Java. A clear security benefit of our work is to detect possible un-
known vulnerabilities, including zero-day attacks, while vulnerable
programs are executing. Intrusions are detected by the GPU variant
on a small delay, whereupon the defense can potentially intervene
by raising an alert, aborting the computation, and/or rolling the
system back to a safe state.

Prototype implementation of the approach demonstrates signif-
icant promise, but exhibits some high overheads for certain op-
erations, such as intensive mathematical computations and high-
volume I/O. These observations motivate future work on optimiza-
tions that better parallelize nested loops and replace synchronous
I/O with asynchronous I/O to improve runtimes.

ACKNOWLEDGMENTS

This work is supported in part by NSF award #1513704, ONR award
N00014-17-1-2995, an NSF I/UCRC award from Lockheed Martin,
and an endowment from the Eugene McDermott Foundation. Any
opinions, recommendations, or conclusions expressed herein are
those of the authors and not necessarily of the above supporters.

We thank Dr. Michela Becchi for her valuable suggestions in the
revision procedure.

REFERENCES

[1] Razvan-Mihai Aciu and Horia Ciocarlie. 2016. Runtime Translation of the Java
Bytecode to OpenCL and GPU Execution of the Resulted Code. Acta Polytechnica
Hungarica 13, 3 (2016), 25–44.

[2] Hira Agrawal. 1999. Efficient Coverage Testing Using Global Dominator Graphs.
In Proc. ACM SIGPLAN-SIGSOFT Work. Program Analysis for Software Tools and
Engineering (PASTE). 11–20.

[3] Yousra Alkabani and Farinaz Koushanfar. 2008. N-variant ICDesign:Methodology
and Applications. In Proc. 45th ACM/IEEE Design Automation Conf. (DAC). 546–
551.

[4] Mona Attariyan and Jason Flinn. 2010. Automating Configuration Troubleshoot-
ing with Dynamic Information Flow Analysis. In Proc. USENIX Sym. Operating
Systems Design and Implementation (OSDI). 237–250.

[5] Algirdas Aviz̆ienis. 1985. The N-version Approach to Fault-tolerant Software.
IEEE Trans. Software Engineering (TSE) 11, 12 (1985), 1491–1501.

[6] Thomas Ball and James R. Larus. 1996. Efficient Path Profiling. In Proc. 29th
Annual ACM/IEEE Int. Sym. Microarchitecture (MICRO). 46–57.

[7] James Baxter. 2017. An Approach to Verification of Safety-critical Java Virtual
Machines with Ahead-of-time Compilation. Technical Report. University of York.

[8] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. 2005. Efficient Techniques
for Comprehensive Protection from Memory Error Exploits. In Proc. 14th USENIX
Security Sym.

[9] Liming Chen and Algirdas Aviz̆ienis. 1978. N-version Programming: A Fault-
tolerance Approach to Reliability of Software Operation. In Proc. IEEE Int. Conf.
Fault-tolerant Computing (FTCS). 3–9.

[10] Linchuan Chen, Xin Huo, and Gagan Agrawal. 2012. Accelerating MapReduce
on a Coupled CPU-GPU Architecture. In Proc. 24th Int. Conf. High Performance
Computing, Networking, Storage and Analysis (SC).

[11] Shigeru Chiba. 2000. Load-time Structural Reflection in Java. In Proc. 14th Euro-
pean Conf. Object-oriented Programming (ECOOP). 313–336.

[12] Fred Cohen. 1993. Operating System Protection Through Program Evolution.
Computers and Security 12, 6 (1993), 565–584.

[13] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack
Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. 2006. N-variant
Systems: A Secretless Framework for Security Through Diversity. In Proc. 15th
USENIX Security Sym.

[14] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Communications ACM (CACM) 51, 1 (2008), 107–113.

[15] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. 2008. A Survey of
Automated Techniques for Formal Software Verification. IEEE Trans. Computer-
aided Design Integrated Circuits and Systems (TCAD) 27, 7 (2008), 1165–1178.

[16] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. 2002. A Pro-
grammer’s Reduction Semantics for Classes and Mixins. In Formal Syntax and
Semantics of Java. Springer, 241–269.

[17] Stephanie Forrest, Anil Somayaji, and David H. Ackley. 1997. Building Diverse
Computer Systems. In Proc. 6th Work. Hot Topics in Operating Systems (HotOS).
67–72.

[18] Rahul Garg and José Nelson Amaral. 2010. Compiling Python to a Hybrid
Execution Environment. In Proc. 3rd Work. General-purpose Computation Graphics
Processing Units (GPGPU). 19–30.

[19] Patrice Godefroid. 1996. Partial-order Methods for the Verification of Concurrent
Systems: An Approach to the State-explosion Problem. Springer-Verlag, Berlin,
Heidelberg.

[20] Brian Goetz. 2014. State of the Specialization. http://cr.openjdk.java.net/
~briangoetz/valhalla/specialization.html. (December 2014).

[21] Axel Habermaier. 2011. The Model of Computation of CUDA and its Formal
Semantics. Technical Report 2011-14. Institut für Informatik, U. Augsburg.

[22] Klaus Havelund and Thomas Pressburger. 2000. Model Checking JAVA Programs
Using JAVA PathFinder. Int. J. Software Tools for Technology Transfer (STTT) 2, 4
(2000), 366–381.

[23] Gerard J. Holzmann. 1997. State Compression in SPIN: Recursive Indexing and
Compression Training Runs. In Proc. 3rd Int. SPIN Work.

[24] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng, and Haibo Lin.
2010. MapCG: Writing Parallel Program Portable Between CPU and GPU. In
Proc. 19th Int. Conf. Parallel Architectures and Compilation Techniques (PACT).
217–226.

[25] Thierry Hubert and Claude Marché. 2005. A Case Study of C Source Code
Verification: The Schorr-Waite Algorithm. In Proc. 3rd IEEE Int. Conf. Software
Engineering and Formal Methods (SEFM). 190–199.

[26] Atsushi Igarashi, Benjamin C. Pierce, and PhilipWadler. 2001. Featherweight Java:
A Minimal Core Calculus for Java and GJ. ACM Trans. Programming Languages
And Systems (TOPLAS) 23, 3 (2001), 396–450.

[27] Todd Jackson, Babak Salamat, Andrei Homescu, KarthikeyanManivannan, Gregor
Wagner, Andreas Gal, Stefan Brunthaler, Christian Wimmer, and Michael Franz.
2011. Compiler-generated Software Diversity. InMoving Target Defense. Springer,
77–98.

[28] Wei Jiang and Gagan Agrawal. 2012. MATE-CG: A Map Reduce-like Framework
for Accelerating Data-intensive Computations on Heterogeneous Clusters. In
Proc. IEEE 26th Int. Parallel and Distributed Processing Sym. (IPDPS). 644–655.

[29] Temesghen Kahsai, Philipp Rümmer, Huascar Sanchez, and Martin Schäf. 2016.
JayHorn: A Framework for Verifying Java Programs. In Proc. 28th Int. Conf.
Computer Aided Verification (CAV). 352–358.

[30] John C. Knight and Nancy G. Leveson. 1986. An Experimental Evaluation of the
Assumption of Independence in Multiversion Programming. IEEE Trans. Software
Engineering (TSE) 12, 1 (1986), 96–109.

[31] Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated Software Diversity. In Proc. 35th IEEE Sym. Security & Privacy (S&P).
276–291.

[32] Xavier Leroy. 2003. Java Bytecode Verification: Algorithms and Formalizations.
J. Automated Reasoning 30, 3 (2003), 235–269.

[33] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Communications
ACM (CACM) 52, 7 (2009), 107–115.

[34] Ogier Maitre. 2013. Understanding NVIDIA GPGPU Hardware. In Massively
Parallel Evolutionary Computation on GPGPUs, Shigeyoshi Tsutsui and Pierre
Collet (Eds.). Springer, 15–34.

[35] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-checking Semantic Correctness: The Case of Finding File
System Bugs. In Proc. 25th Sym. Operating Systems Principles (SOSP). 361–377.

[36] Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous
Computing Techniques. ACM Computing Surveys (CSUR) 47, 4 (2015).

[37] M. Mongiovì, G. Giannone, A. Fornaia, G. Pappalardo, and E. Tramontana. 2015.
Combining Static and Dynamic Data Flow Analysis: A Hybrid Approach for
Detecting Data Leaks in Java Applications. In Proc. 30th Annual ACM Sym. Applied
Computing (SAC). 1573–1579.

[38] Anh Nguyen-Tuong, David Evans, John C. Knight, Benjamin Cox, and Jack W.
Davidson. 2008. Security Through Redundant Data Diversity. In Proc. IEEE Int.
Conf. Dependable Systems and Networks (DSN). 187–196.

[39] Emma Nilsson-Nyman, Görel Hedin, Eva Magnusson, and Torbjörn Ekman. 2008.
Declarative Intraprocedural Flow Analysis of Java Source Code. In Proc. 8th Work.
Language Descriptions, Tools and Applications (LDTA). 155–171.

[40] Sreepathi Pai, Ramaswamy Govindarajan, and Matthew Jacob Thazhuthaveetil.
2010. PLASMA: Portable Programming for SIMD Heterogeneous Accelerators.
In Proc. Work. Language, Compiler, and Architecture Support for GPGPU.

[41] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2015. SPOON: A Library for Implementing Analyses and Transfor-
mations of Java Source Code. Software: Practice and Experience 46, 9 (2015),
1155–1179.

[42] Philip C. Pratt-Szeliga, James W. Fawcett, and Roy D. Welch. 2012. Rootbeer:
Seamlessly Using GPUs From Java. In Proc. IEEE 14th Int. Conf. High Performance
Computing and Communication (HPCC) & IEEE 9th Int. Conf. Embedded Software
and Systems (ICESS). 375–380.

[43] Sandra Rapps and Elaine J. Weyuker. 1985. Selecting Software Test Data Using
Data Flow Information. IEEE Trans. Software Engineering (TSE) 11, 4 (1985),
367–375.

[44] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. 2009. Orchestra:
Intrusion Detection Using Parallel Execution andMonitoring of Program Variants
in User-space. In Proc. 4th ACM European Conf. Computer Systems (EuroSys).

[45] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In Proc.
36th IEEE Sym. Security & Privacy (S&P). 745–762.

[46] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-libc Without Function Calls (on the x86). In Proc. 14th ACM Conf. Computer
and Communications Security (CCS). 552–561.

[47] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the Effectiveness of Address-space Randomization. In
Proc. 11th ACM Conf. Computer and Communications Security (CCS). 298–307.

[48] Koichi Shirahata, Hitoshi Sato, and Satoshi Matsuoka. 2010. Hybrid Map Task
Scheduling for GPU-based Heterogeneous Clusters. In Proc. IEEE 2nd Int. Conf.
Cloud Computing Technology and Science (CloudCom). 733–740.

[49] Robert F Stärk, Joachim Schmid, and Egon Börger. 2012. Java and the Java Virtual
Machine: Definition, Verification, Validation. Springer Science & Business Media.

[50] Ting Su, KeWu,Weikai Miao, Geguang Pu, Jifeng He, Yuting Chen, and Zhendong
Su. 2017. A Survey on Data-flow Testing. ACM Computing Surveys (CSUR) 50, 1
(2017).

[51] Kuen Hung Tsoi and Wayne Luk. 2010. Axel: A Heterogeneous Cluster with
FPGAs and GPUs. In Proc. 18th Annual ACM/SIGDA Int. Sym. Field Programmable
Gate Arrays (FPGA). 115–124.

[52] Ronald Veldema, Thorsten Blass, and Michael Philippsen. 2011. Enabling Multiple
Accelerator Acceleration for Java/OpenMP. In Proc. 3rd USENIX Conf. Hot Topic
in Parallelism (HotPar).

[53] Willem Visser, Corina S. Păsăreanu, and Sarfraz Khurshid. 2004. Test Input
Generation with Java PathFinder. In Proc. ACM SIGSOFT Int. Sym. Software
Testing and Analysis (ISSTA). 97–107.

[54] Stijn Volckaert, Bart Coppens, Bjorn De Sutter, Koen De Bosschere, Per Larsen,
and Michael Franz. 2017. Taming Parallelism in a Multi-variant Execution Envi-
ronment. In Proc. 12th European Conf. Computer Systems (EuroSys). 270–285.

[55] Jinlin Yang and David Evans. 2004. Automatically Inferring Temporal Properties
for Program Evolution. In Proc. 15th Int. Sym. Software Reliability Engineering
(ISSRE). 340–351.

http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html
http://cr.openjdk.java.net/~briangoetz/valhalla/specialization.html

	Abstract
	1 Introduction
	2 System Design
	2.1 Divergence Between Executions
	2.2 Model & TCB
	2.3 GPU Feature Limitations
	2.4 Validation Modes
	2.5 Checkpointing
	2.6 Translation
	2.7 Verification Time Complexity

	3 Implementation
	3.1 Source Language Limitations
	3.2 Bytecode Analysis
	3.3 Primitives & References
	3.4 State Consistency
	3.5 GPU-based Verification
	3.6 Code Pruning

	4 Evaluation
	4.1 Running Efficiency
	4.2 Verification and Correctness

	5 Related Work
	5.1 Execution Variance
	5.2 Heterogeneous Computing
	5.3 Verification
	5.4 Dataflow Analysis

	6 Conclusion
	References

