
INFOCOM 2000 1

On the Aggregatability of Multicast Forwarding
State

David G. Thaler Mark Handley
Microsoft AT&T Center for Internet Research

dthaler@microsoft.com mjh@aciri.org

Abstract— It has been claimed that multicast state can-
not be aggregated. In this paper, we will debunk this myth
and present a simple technique that can be used to aggre-
gate multicast forwarding state. In particular, we present
an interface-centric data structure model which allows ag-
gregation of ranges of multicast addresses in the forwarding
table.

Understanding the limits of possible aggregation is criti-
cal to our knowledge of how IP multicast will scale as it be-
comes widely deployed. We show through analysis and sim-
ulation that some aggregation is possible, even under purely
random address allocation and purely random group mem-
bership distribution. We further show how other methods
of allocation can significantly improve the ability to aggre-
gate, and how non-random distributions of membership can
affect aggregation both positively and negatively.

I. INTRODUCTION

With the advent of second and third generation multicast
routing protocols[1], [2], [3], [4] and widespread host im-
plementations, IP Multicast is finally starting to be widely
deployed in the Internet. There are still relatively few mul-
ticast applications in use, but it is expected that this will
start to change rapidly as application writers start to be
able to assume that many hosts will have access to multi-
cast.

To date, most work on multicast scalability has centered
on the applications and on multicast routing. However, in
the long run, the biggest issue facing multicast deployment
is likely to be the scalability of multicast forwarding state
as the number of multicast groups increases. It has been
claimed [5], [6] that multicast forwarding state cannot be
aggregated, but this is incorrect. In this paper we examine
this issue to derive both limits and expectations for our
ability to aggregate multicast forwarding state in Internet
routers.

It is important to understand that our results apply to
the forwarding tables in a router that are used to forward
packets. Since a lookup among O(N) state can be done in
log(N) time, reducing the state requirement is the most sig-
nificant benefit of aggregation, although the speed of mul-
ticast packet forwarding may also benefit as a result. We

do not concern ourselves with state the router may need to
keep in order to maintain these forwarding tables, nor with
routing protocols needed to maintain them. The memory
to hold such ancillary state does not need to be either fast
or directly located on interface processors, so it is not a sig-
nificant limitation on router performance. Similarly, join
messages involved in multicast routing need not be aggre-
gated1 so long as their rate is scaled back to prevent the
routing traffic dominating, and the multicast routing pro-
tocols use appropriate scalable timers[7].

With respect to multicast forwarding state, we will ar-
gue:

� Shared trees used by second and third generation multi-
cast routing protocols (such as CBT[2], BGMP[4], and to
some extent PIM-SM[1]) mean that the number and loca-
tion of sources does not affect aggregatability.

� If we consider forwarding state on a per-interface ba-
sis, then aggregation can be performed independent of the
number of interfaces on a router.

� For incoming interface state on point-to-point links, and
outgoing interface state on all links, we only need to con-
sider the groups traversing a particular router and can com-
pletely aggregate all groups that do not traverse that router.

� For bidirectional trees such as those built by CBT and
BGMP, no incoming interface state is required at all on
point-to-point links between routers.

� Some aggregation of both incoming and outgoing for-
warding state is possible, even with completely random
multicast address allocation and random group member-
ship.

� Allocating multicast addresses in a hierarchical fashion
can increase the ability to aggregate forwarding state.

� The clustering of groups by locality (well known for
telephony traffic) can increase the aggregatability of for-
warding state when hierarchical multicast address alloca-
tion is also performed.

We will only consider perfect forwarding state aggrega-
tion in this paper; that is aggregation that does not change
the distribution of multicast traffic. Imperfect or leaky ag-

�

It may be possible to do some aggregation of these messages, but
even if this is not done, it will not normally cause problems.

INFOCOM 2000 2

gregation is also possible, in which some low rate groups
are allowed to traverse links that would not normally need
to carry the traffic. Leaky aggregation is an extension of
perfect aggregation that results in a further compression of
the forwarding state at the expense of using additional link
bandwidth. We leave the study of leaky aggregation for
future work.

We also do not consider methods of reducing forward-
ing state that rely on encapsulation, although these meth-
ods also show significant promise. In such mechanisms
(e.g., Dynamic Tunnel Multicast [8]), sparse groups may
be unicast encapsulated across sections of the backbone
where no multicast fanout occurs, relieving the interven-
ing routers of the need to hold forwarding state.

The remainder of this paper is organized as follows:
Section II gives some background on multicast forward-
ing, and section III presents an interface-centric state
model. Section IV provides an analysis of aggregatability
under independence assumptions, and section V presents
simulations of aggregatability after removing these as-
sumptions. Finally, section VI discusses related work, and
section VII covers conclusions and future work.

II. BACKGROUND

We start by describing the actions that must be per-
formed by a multicast forwarder. First, a packet arrives on
some interface, and the forwarder must decide whether to
accept or drop the packet. For example, the decision might
be based on whether it arrived on the interface towards
the source (known as a “Reverse Path Forwarding (RPF)
check”), such as is done when DVMRP [9] or PIM-SM is
running on the arrival interface. It might instead be based
on some other criteria (as in the case of MOSPF [10] or
CBT). In general, this decision can be viewed as applying
an input packet filter

���������
	���
���������
�	������
per interface � .

The acceptance decision can then be viewed independently
of the multicast protocol in use on the interface; the pro-
tocol merely supplies the filter

������������	���
 ���!�"��
�	������$#
%�& �"'�(

.
In general, a filter

�
is an implementation of a function

�)�*����	���
 ���!�"��
+	������,# %�& �"'�(

We now concatenate
��	���
 �

and
�"��
�	����

into one double-
length address - , and the filter becomes:

�)� - # %�& �"'�(

This representation will allow our results to apply both to
architectures which require (group,source) state, as well
as those (like CBT) which only require group state and
for whom - would simply be the group address. Since

we desire to explore the scalability of multicast state, we
will hereafter concern ourselves primarily with protocols
which use group-shared trees and hence - will be synony-
mous with the group address. In other words, using group-
shared trees makes the number and location of sources ir-
relevant, since per-source state is not kept.

If the packet passes the input filter, the forwarder must
then determine which of its other interfaces are consid-
ered “outgoing” interfaces for the packet, and send the
packet out of each outgoing interface. This operation can
be logically viewed as an output packet filter per interface
(. ���/� - # %�& �"'�(

). A packet received by the router is
sent out of a given interface if it passes both the input filter
on the incoming interface, as well as the output filter on
the outgoing interface.

Some misconceptions of state requirements are based on
the popular Unix kernel implementation. This implemen-
tation keeps multicast forwarding state per (group,source)
pair, consisting of an incoming interface, and an outgo-
ing interface list2. When a packet arrives, a matching
(group,source) entry is found or created, the incoming in-
terface check is done to see whether to drop it on in-
put, and if not dropped, then the packet is sent out of
each interface in the outgoing interface list. Since this
implementation is common, it is easy to incorrectly as-
sume that this is the only possible implementation model.
In this model, the input filter is implemented by com-
paring the interface � on which the packet arrived with
the incoming interface stored in the (group,source) en-
try. Hence,

����������	���
 ���!�"��
�	������
is implemented as “ �1020

���43 ���
	���
����!����
+	������ ”. The output filter is implemented by
testing to see whether a given interface is in the outgoing
interface list stored with the (group,source) entry. Hence,
. ���4���
	���
����!����
+	������

is “ �65 � ��387�� �:9;����	���
 ���!�"��
�	������ ”.
In the next section, we present an alternative implemen-

tation model which illustrates more clearly how forward-
ing state aggregation may be done without loss of infor-
mation.

III. IMPLEMENTATION MODEL

While the Unix kernel has a (group,source)-centric state
implementation model, we describe in this section an
interface-centric implementation model.

Let each interface be associated with its own copy of an
input filter and an output filter. Each filter is again such that
it yields a pass-or-fail answer for a given group and source.
Each interface’s state is independent of the state for all
other interfaces. When a packet arrives on an interface, it

<
The list is stored in the Unix kernel as a bitmap of 32 interfaces. To

efficiently support an arbitrary number, an actual list would be needed.

INFOCOM 2000 3

must first pass that interface’s input filter. If it passes, then
the output filter of every other interface is independently
checked to see whether the packet should be sent out of
that interface. In comparing the interface-centric imple-
mentation model to the (group,source)-centric implemen-
tation model, we note that the two models have equivalent
functionality.

A. Router/Switch Architectures

Router technology is moving more towards having mul-
tiple parallel processors, with the extreme being a sep-
arate processor per interface (e.g., [11], [12]). Hence,
the interface-centric model need not entail any processing
time disadvantage over the (group,source)-centric model,
since output filters may be tested in parallel. Hence, we
will concentrate on the ability to aggregate state.

A survey of a number of multicast switch architectures
can be found in [13]. Such architectures typically dis-
tribute multicast packets in one of two ways.
Enumerate and unicast: When a multicast packet is to be
forwarded, a lookup is first done on the header to find the
list of outgoing interfaces. Copies are then made, with one
copy being sent to each outgoing interface.
In this method, the lookups may or may not be done in a
centralized location on the router for all interfaces. Our
interface-centric state model could be applied, for exam-
ple, if lookups were done in a centralized location, and that
module did in parallel a lookup in each outgoing interface
filter.
Broadcast and filter: The multicast packet is sent to all in-
terfaces (e.g. across a shared bus), and a “fast filter” drops
those packets which should not be sent out the interface.
According to [13], such switches yield the best perfor-
mance, but are more expensive.
In this method, the “fast filter” corresponds exactly to an
output filter in the interface-centric state model.
Recent work (e.g. [14], [15], [16], [17]) has shown that
even route lookups can be done at gigabit or higher speeds.

B. Locally-Active Groups

The next step is to take into account the fact that many,
if not most, addresses are not in use at any given time, and
of those that are, a given router will not be on the tree for
most of them. Sparse-mode protocols, such as PIM-SM,
CBT, and BGMP, require no state for groups for which a
router is not on the distribution tree. Dense-mode proto-
cols, such as PIM-DM [18], DVMRP, and MOSPF, create
state in routers regardless of whether the router is on the
tree. Since dense-mode protocols are less scalable than
sparse-mode protocols, deployment is moving more to-
wards using sparse-mode protocols. Hence, we will here-

after assume that a router has state for a given address only
if it has downstream receivers, and therefore is on the dis-
tribution tree3.

We define a group to be “locally-active” at a given router
if state is required. Hence, “locally-active” means that
the local router is receiving requests for data matching the
given address.

Let ������� be the number of locally-active groups. Let�
be the size of the address space for - . Let

 0��	� �
be the address space utilization (or density). If locally-
active groups are randomly distributed throughout the ad-
dress space, then

is also the probability that any given

address is in use by a locally-active group.
For all addresses which are not locally-active, let� ���4� - � 0 &
 � and . ����� - � 0�
 (“don’t care”)

��
.

This invariant provides perfect filtering.
Let ��������� be the number of groups which are active

anywhere in the network. Let ������� be the expected num-
ber of routers on a given multicast distribution tree. Then
� ��� ���"!$# �&%�� 0 # �&�('*)+',� !.- , where / is the number of
routers in the network. Hence �������������800��������� !�# �&%��1� - .

To investigate the aggregatability of multicast forward-
ing state, we are now interested in the amount of state nec-
essary to implement a filter

�
as usage (in terms of number

of groups, sources, and receivers) increases.
We first give existence proofs showing how a filter

�
can be implemented in state-efficient ways. This will give
upper bounds on the forwarding state requirement. We will
not show that there does not exist an even more efficient
implementation model; we will however show that multi-
cast forwarding state is inherently at least as aggregatable
as our bounds.

IV. AGGREGATING FILTER STATE

Our goal will be to construct a filter
�32

such that
�32

and
�

are equivalent for all addresses which matter (as
defined below). We will see that in some cases, such as
for addresses not in use,

� � - � 0 “don’t care”, denoted
 .
Hence, we desire an efficient

� 2 � - � where either
� 2 � - � 0� � - � or

� � - � 04
 .
The first step is to realize that adjacent values of - which

yield the same result can be aggregated. That is, if
� � -657 � 0 � � - �
 7 ��'68 7 8 � , then

� � - � through
� � -659� �

are aggregatable.
Thus, a filter

�
can be implemented by storing a set :

of ranges of addresses which yield a result of 1 (
� � - � 0'<;>= 	 5?: ��@ 5BA). If there are C 0ED :<D ranges, then a

binary search can be done in . �1FHGJI C �
time. Our objective

K
For unidirectional trees, this means that at least one interface is an

outgoing interface. For bidirectional trees, at least two interfaces are
outgoing interfaces.

INFOCOM 2000 4

will be to find the relationship between C and the number
of groups active at a router ������� .

We will initially assume that successive values of
� � - �

are independent. We will then relax this assumption in
Section V.

Lemma 1: (Range Span with Independence) Let suc-
cessive values of a given filter

� � - � be independent. Let�
be the probability that

� � - � 0 '
. Let � be the probabil-

ity that
� � - � 0 &

. Let
	 0 '�� ��� � be the probability

that
� � - � 0
 (“don’t care”). Then a filter

� 2
can be con-

structed with expected state

����C3�+0 � � �� 5�� 0 � � �'�� 	
Proof: One range, plus the inter-range gap following it,
represents a series of “successes” (1’s and “don’t cares”),
followed by a series of “failures” (0’s and don’t cares). The
number of successes until failure follows a geometric dis-
tribution with parameter � . Hence, the expected number
of successes until failure is

' ��� . Likewise, the expected
number of failures until success is

' � � .
The expected number of addresses which can be aggre-

gated into a single range is therefore given by:
'� 5

'
� 0

� 5��� �
So ����C3�+0 � � �J� � � 5�� � 0 � � � � �!'�� 	 �

. 	
Lemma 1 can be applied to input filter state when

addresses are allocated randomly from a uniform distri-
bution, and addresses have no topological significance
(meaning that a router is on a random set of distribution
trees), as shown in the following two theorems.

For the remainder of this paper, we will use the term
C�
�� to mean the number of ranges in an input filter, and
C�
�� to mean the number of ranges in an output filter.

Theorem 1: (Input Filter State for Bidirectional
Trees under Random Allocation) Let addresses be al-
located randomly from a uniform distribution, and have
no topological significance. For bidirectional trees (which
have no incoming interface check):

����C�
�� �80 �<�+�H�
� '�� �������� �

Proof: For input filter state,
	 0 &

. Since filter output
values are independent, � 0 '�� �

. Since no incoming
interface check is done,

� 0
 0 � ��������� � �
. Lemma 1

then gives ����C
�� �80 � �+�H� �!'����������� �
. 	

This function has a maximum at �<�+�H� 0 � ��� . When
�<�+�H��� �

(which is indeed true in today’s MBone), then
����C�
�� �! �<�+�H� , but this drops off for large values of ���+�H� ,
as shown in Figure 1(a). For example, if addresses are allo-
cated from a space of 16 K addresses (as sdr does today),

the state reaches a maximum (of 4096 ranges) once 8192
addresses have been allocated, and state declines there-
after.

We also observe from Theorem 1 that the expected state
used (����C3�) does not depend on the number of interfaces.
Thus, the number of interfaces does not affect the aggre-
gatability of the input filter state.

Corollary 1: (Input Filter State for Point-to-Point
Links on Bidirectional Trees under Random Alloca-
tion) For point-to-point links between routers on bi-
directional trees:

����C
�� �80 &
On point-to-point interfaces between routers, where

traffic is not sourced by the routers on either end, a sparse-
mode protocol can use “don’t cares” for addresses without
locally-active groups. This is because traffic only arrives
on an interface if a group was explicitly requested, or if
local sources are present. Since neither is the case, � 0 &
and hence ��� C�
�� �80 &

. 	
Backbone routers in the core of today’s Internet, where

minimizing state is most important, typically have at most
one LAN interface, but may have many point-to-point in-
terfaces to other routers. Hence, the corollary is potentially
much more significant than the theorem, since an input fil-
ter may only be needed for at most a single interface.

The reason input filters are still required for LAN inter-
faces is that some other router or host on the LAN may
have requested data for some groups.

Theorem 2: (Input Filter State for Unidirectional
Trees under Random Allocation) Let addresses be allo-
cated randomly from a uniform distribution. Let 3 be the
number of interfaces on the router. For unidirectional trees
(ones employing an incoming interface check):

����C�
�� �80
� �<�+�H�

3 � � '�� ���+�H�
3 �"�

Proof: For input filter state,
	 0 &

. Since filter output
values are independent, �20 '#�/�

. When
� 0 � �<�+�H��� � 3 � ,

meaning that the incoming interface is randomly chosen
among 3 interfaces, then
����C�
�� �80 � � �!�������$ �;�!'�� �!������!$ �

. 	
Corollary 2: (Input Filter State for Point-to-Point

Links on Unidirectional Trees under Random Alloca-
tion) On point-to-point interfaces between routers, the ex-
pected input filter state for unidirectional trees with ran-
domly allocated addresses is:

����C�
�� ��0
� � �����

3 � � '�� '
3 �

Furthermore, if the RPF check is completely removed,
then ����C�
����80 &

.

INFOCOM 2000 5

0

A/4

0 A/2 A

S
ta

te

Locally-Active Groups (G)

G

E[R]lan

E[R]p2p

(a) Bidirectional Trees

A/f

0 A

S
ta

te

Locally-Active Groups (G)

G

G/f

E[R]lan

E[R]p2p

E[R]p2p (no RPF)

(b) Unidirectional Trees

Fig. 1. Input Filter State under Random Allocation

On point-to-point interfaces between routers, where traf-
fic is not sourced by the routers on either end, a sparse-
mode protocol can use “don’t cares” for addresses without
locally-active groups.

If the RPF check is completely removed, the result is
the same as for bidirectional trees. However, the down-
side is that loops can occur while route changes are in the
process of converging. Such loop prevention is one of the
motivations for using unidirectional trees in the first place.

When RPF checks are done for active groups,
� 0� ��������� � 3 � , 	 0 '��

, and � 0 '�� ��� 	
. Using these

values, we obtain

����C�
�����0
�

� �<�+�H�� 3 �

�
 � �<�+�H�� 3 �
0
� � �+�H�

3 � � '�� '
3 � 	

Both these functions have maximums at �<�+�H� 0 �
(since

� 8 � 3 ���), as shown in Figure 1(b), where 3 0 �

was used. Furthermore, we observe that for point-to-point
links, ����C�
�� � is independent of

�
. Thus, the amount of

address space between the �<�+�H� locally-active groups is ir-
relevant and can be ignored.

Finally, by comparing Figures 1(a) and 1(b), we ob-
serve that for LAN interfaces, unidirectional trees require
less state than bidirectional trees. However, unidirectional
trees use input filter state on point-to-point interfaces while
bidirectional trees do not. Since point-to-point interfaces
are the norm in the network backbone, bidirectional trees
can provide a significant state benefit.

Lemma 1 can also be applied to output filter state when
addresses are allocated randomly from a uniform distri-
bution, as shown in the next theorem. This theorem

uses the fact that, for some values of - , the value of
an output filter . �32� � - � doesn’t matter, as they will not
pass any input filter, That is, if

�����4� - � 0 &
 � , then
. � � � - � 0

��

. This provides greater aggregatability
of an output filter, since - through - 5B/ can all be aggre-
gated if . � ��� -65 7 � 0 . � ��� - � or . ���"� - 5 7 � 0
 , for'<8 7 8 / , rather than only if . � ��� -�5 7 � 0 . ���"� - � .

Other potential optimizations, which we will ignore, in-
clude:

� If . � ��� - � 0 &
for all interfaces

���0 � , then
� ����� - � 04
 .

� If
� � � � - � 0 &

for all interfaces � �0 �
, then . � � � - � 04
 .

Theorem 3: (Output Filter State under Random Al-
location) Let addresses be allocated randomly from a uni-
form distribution. Let 3 be the number of potential outgo-
ing interfaces. If, for each group, � downstream members
are randomly distributed among 3 interfaces, then:

����C�
����804�<�+�H��� ��' � � �

�	� �"	�� � 0
� 3 � '

3 �

Proof: Since all unused addresses are “don’t cares”,

	 0' �
 0 ' � � �+�H� � �
. The probability � that

� � - � 0&
is the probability that the address is locally-active, but

all downstream members have joined on other interfaces.
Hence:

� 0
 � 3 � '
3 �

Lemma 1 then gives:

����C�
�����0 � � �J� �!'�� 	�� 0 �<�+�H��� �!'�� � �

��� ��	�� � 0
� 3 � '

3 �
 	

INFOCOM 2000 6

Again, this is . � ������� � state when 3 and � are held
constant. If we vary � , then a maximum exists at � 0��������� 	������
���
���� $�� (e.g. � ��� � for 3 0 �

). Another way of
looking at the theorem is by saying that ����C�
���� 8 �<�+�H� � ,
so minimizing � is desirable; thus less state is needed as
� increases, and as 3 decreases. For example, for 3 0� (such as a router with 3 interfaces using unidirectional
trees), ��� C�
���� 8 �

 �<�+�H� .

Hence, if the average number of downstream members
� of a group grows as IP Multicast usage increases, then
aggregatability could improve dramatically. This might be
the case, for example, if audio/video broadcasts reached a
large number of receivers, such as is the case with other
broadcast mediums such as television, cable, and satellite.

A subtle point associated with decreasing 3 is worth
mentioning. One cannot simply decrease 3 by removing
redundant links, since this also has the side effect of in-
creasing the number of global trees which go through the
local router. Hence, doing so would also increase ���+�H� ,
bringing it closer to � ������� .

Finally, Theorem 3 says that aggregatability of outgoing
interface state is independent of

�
. That is, the amount

of address space between the �<�+�H� locally-active groups is
irrelevant and can be ignored.

A. Implications for the Internet

Assuming, as we do above, that multicast group ad-
dresses are randomly allocated and that group members
are randomly distributed throughout the network, makes
for a worst-case scenario from the point of view of mul-
ticast forwarding state aggregation because they minimize
correlation between groups.

However, even in such a scenario, we can perform a de-
gree of multicast forwarding state aggregation. How much
aggregation we achieve depends on several factors:

� Whether we’re looking at the input filter or the output
filter.

� Whether the multicast routing protocol is unidirectional
or bidirectional.

� Whether we are looking at a point-to-point link or a
LAN.

The total forwarding state is comprised of both the input
and output filters, and so we need to minimize both.

An interesting special case is when we consider a bidi-
rectional protocol such as CBT or BGMP operating over
point-to-point links - such a scenario might be common-
place in the Internet backbone. In this case, no input fil-
ter state is needed at all. Figure 2(a) graphs the amount
of output filter state aggregation possible (Number of lo-
cal groups/expected number of ranges) as a function of

the number of interfaces and the mean number of down-
stream group members. Thus each interface requires a
number of aggregated ranges less than 25% of the num-
ber of groups traversing the router. Figure 2(b) shows the
same data, but graphs the output filter state aggregation
ratio, which we define as the number of groups traversing
an interface, divided by the number of ranges on that in-
terface. This graph assumes group members are equally
distributed among interfaces. Thus each interface needs a
number of aggregated ranges that is less than the number
of groups with traffic exiting that interface, and often much
less for large � or small 3 . Taking input and output filters
together compared to a non-aggregated router, such an av-
erage backbone router might require less than 25% of the
state to be held compared to an unaggregated router.

An interesting issue arises on local area networks (such
as DMZ’s at some network interconnect points) with such
bidirectional trees. Here an input filter must be held, as
shown in figure 1(a), and the number of ranges inversely
depends on the size of the address space the groups are
allocated from. For example, if a router holds state for
10000 groups randomly allocated from an address range
of 16K addresses, it needs to have 3897 ranges in the filter.
However, if it holds state for 10000 groups from the entire
IPv4 address range of ����� addresses, it will need to hold
9999 ranges. A similar effect holds for unidirectional trees
such as those built by Sparse-Mode PIM. In both cases,
the difference is not huge, but it argues in favor of densely
allocating parts of the multicast address space before free-
ing up additional parts of the address space to be used.
Such an address allocation mechanism is currently being
proposed in the demand-driven hierarchy of MASC[4] and
AAP[19].

V. REMOVING THE INDEPENDENCE ASSUMPTION

When successive values of a filter are independent, min-
imizing ����C3� means minimizing

�
and � . However, mini-

mization is limited by the constraint
� 5 �35 	 0 '

(e.g.,� 5�� 0 '
when

	 0 &
).

When the independence assumption is removed, this
constraint will no longer hold, providing even greater op-
portunities for aggregation, as we will see. That is, if we
can improve the chances that 1’s and 0’s will be clustered,
then aggregation will improve.

In this section, we will investigate the effects on aggre-
gatability of various factors in the real Internet which break
the independence assumption, including:

� Non-random address allocation
� Hierarchical address allocation
� Clustering of receivers
� Multi-group sessions

INFOCOM 2000 7

2
3

4
5

6
f 1.0

2.0
3.0

4.0
5.0

6.0
7.0

M

0

5

10

15

20

25

30

35

40

Grtr/E[R_OF]

(a) Per-local-group state

 2
3

4
5

6
f 1.0

2.0
3.0

4.0
5.0

6.0
7.0

M

0

5

10

15

20

25

30

35

40

Agg Ratio
(Gint/E[R_OF])

(b) Per-interface group state

Fig. 2. Output Filter State under Random Allocation as a function of number of interfaces and downstream members per group

A. Non-Random Allocation

When independent groups are allocated addresses
which are not distributed over

�
in a uniformly random

fashion, then �
	���� � � � - � 0 ' � is not a constant.

For example, if ��������� groups are assigned addresses
sequentially starting at - � , then � 	���� � � � - � 0 ' D -�� - � 5
����� ��� �80�� , while � 	���� � � � - � 0 ' D - 8 - � 5 ��������� ����� .

However, if the groups are still joined randomly, then
all results in Section IV which are independent of

�
still

hold. This is because we have only changed the location
of unused addresses in the range, but not the independence
of the groups used.

Hence the aggregatability of output filter state, as well
as that of input filter state for point-to-point interfaces, is
unaffected if addresses were allocated (say) sequentially
rather than randomly.

B. Hierarchical Address Allocation

In the BGMP/MASC architecture [4], address prefixes
are assigned to domains so that groups in the same prefix
are rooted at the same place. Thus, the interface towards
the tree root is the same for large blocks of adjacent ad-
dresses. This can have a very beneficial effect on input
filter state for unidirectional trees, since the incoming in-
terface check can be aggregated.

For example, let us look at input filter state on point-
to-point interfaces. For bidirectional trees, input filters are
not needed, as explained earlier. For unidirectional trees
using RPF checks, recall that Corollary 2 gave ��� C�
���� 0� ����������3 �;�!'�� ' ��3 � for random allocation. When all �<�+�H�
groups within a range of

�
addresses have the same in-

coming interface, then for that interface, � 0 &
since

all locally-active groups have
� � - � 0 '

, and all unused

groups have “don’t cares”. Since � 0 &
, the entire filter

for that range is just
��� 2 � - � 0 '

. For interfaces other than
the incoming interface,

� 0 &
, since no packets should be

accepted, and hence the entire filter for that range is just� � 2 � - � 0 &
.

As a result, the amount of input filter state on a given
interface is at most the number of routes pointing out that
interface. When prefixes are assigned hierarchically, this
scales as the log of the network size, regardless of the num-
ber of multicast groups.

Output Filter Simulations

Agg Ratio for Top 10% of Routers, 400 nodes

0 5 10 15 20 25 30 35 40

Domain Size0
10

20
30

40
50

60

Group Size

0

2

4

6

8

10

12

14

16

18

Aggregation Ratio

Fig. 3. Aggregation Ratio as a Function of Group and MASC
Domain Size

To examine the effect of various aspects of non-random
group membership on output filter state for bidirectional
trees, we have written a special purpose simulator. We
construct random network topologies which have a transit-
stub like arrangement by allocating nodes a location on a
rectangular grid, and linking each new node to the clos-
est existing node. Additional long distance links are then

INFOCOM 2000 8

added to turn this tree into a graph, with properties similar
to those described in [20].

To examine the effect of MASC-like address alloca-
tion, we recursively subdivide the network into domains
of connected routers, and allocate each domain a range of
addresses. Multicast groups are then allocated randomly
from the range of addresses given to the domain of the
“group creator”.

The effect of this aggregation can be seen in Figure 3,
which shows the mean aggregation ratio as a function of
the number of members in a group and the domain size.
The network size is 400 nodes. Domain size is measured
in routers, and is an upper bound - the subdivision algo-
rithm attempts to allocate domains of between 33% and
100% of this. We show results only for the busiest 10%
of the routers, as these “backbone” routers are the ones
where we care most about aggregation. We allocate suffi-
cient groups so that the mean number of groups per router
is kept constant to avoid this weighting the results as the
group size changes. In the graph, a domain size of 1 indi-
cates a special case where we do not perform hierarchical
allocation, but instead perform random allocation through-
out the entire network.

This result shows that, as predicted, the aggregation ra-
tio improves with group size (closely related to number of
downstream members in Theorem 3) and that hierarchi-
cal allocation improves aggregation by between 50% and
100%. The size of a domain is not critical to aggregation.

C. Clustering of Receivers

In the real Internet, receivers are not randomly dis-
tributed throughout the network, but instead they are clus-
tered to some extent. This may be due to many issues rang-
ing from timezones and language to belonging to a com-
munity of common interest that is correlated with network
topology. In some cases, clustering is enforced by admin-
istrative scope boundaries[21], but in many cases it simply
emerges.

To model clustering, we can separately examine two
parts of the issue:

� Receivers clustering around the group creator.
� Receiver clusters scattered throughout the network, in-
dependent of the location of the group creator.
The former is the sort of clustering that timezone issues
create, whereas the latter is more like the clustering that
happens with communities of common interest.

To examine receiver-creator clustering, we use the same
simulator as before, but weight the random allocation of
members so that nodes closer to the group creator are more
likely to become group members. This is shown in fig-
ure 4(a) with 12 members per group. Larger group mem-

Agg Ratio for Top 10% of Routers, 400 nodes, 12 members/group

2
3

4
5

6
7

8

Mean Distance
0

5
10

15
20

25
30

35
40

45
50

Domain Size

0

1

2

3

4

5

6

7

8

Agg Ratio

(a) As a function of distance and domain size (back-
bone routers)

Number of Global Groups, 400 nodes, 12 members/group

2
3

4
5

6
7

8

Mean Distance
0

5
10

15
20

25
30

35
40

45
50

Max Domain Size

0

200

400

600

800

1000

1200

1400

Global Groups

(b) Total number of groups in fig. 4(a)

Mean Agg Ratio for Top 10% of Routers, 400 nodes, sthresh=15

0
10

20
30

40
50

60

Group Size0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

Clustering Factor

0

5

10

15

20

25

30

Aggregation Ratio

(c) As a function of receiver clustering and group
size

Fig. 4. Aggregation Ratio

berships increase the aggregation ratio but do not affect the
shape of the curve.

This graph shows aggregation ratio as a function of
mean distance from the sender and domain size, with the
mean number of groups per interface kept constant at 80.
The benefit of MASC-style allocation is still clear, but
these simulations also indicate that clustering about the
creator decreases aggregatability except when the mem-
bers are clustered very closely around the group creator.
It should be stressed that as receivers cluster around the

INFOCOM 2000 9

creator, the number of groups the network can support for
the same amount of state increases greatly. The total num-
ber of groups for the simulation in figure 4(a) is shown in
figure 4(b). Thus although there’s a slight decrease in ag-
gregation ratio for the backbone routers, the network as a
whole can support many more groups for the same amount
of state when members are clustered in this way.

To examine scattered receiver clusters we must find a
way to replicate the clustering that might happen in real
networks. To do this we generate a two-dimensional array
of randomly allocated affinities, such that affinity � �1�*� � � is
used to weight the choice of the members domain, � , based
on the group creator’s domain,

�
. We then adjust a cluster-

ing parameter over a range of values from zero, meaning
affinity has no effect on the random member allocation,
to one, where affinity completely determines the receiver’s
domain.

Figure 4(c) shows the aggregation ratio as a function
of group size and our clustering parameter, with domain
size of 15. The effect of receiver clustering can be quite
large, and produces a significant increase in aggregation
ratio over purely random receiver placement. In general,
the ability to aggregate improves as groups get denser, and
receiver clustering results in relatively dense clusters for
ranges of addresses, thus improving aggregation.

It is interesting to look at a scatter plot of aggregation
ratio broken down by router interface. Figure 5(a) shows
aggregation ratio against busyness ranking. In this rank-
ing, 1 is the interface with the most groups joined through
it, and higher values indicate successively less busy inter-
faces. The parameters here are a maximum domain size
of 15 routers, no distance weighting, but an inter-member
clustering factor of 0.5, 20 members per group, and a mean
of 80 groups per interface. The mean aggregation ratio for
each value of the busyness ranking is also shown. Leaf
routers with only one interface are ignored, as always. The
busiest “backbone” routers have by far the best aggrega-
tion ratio, which is what we would hope for. The dark band
at the top consists of about one-sixth of the interfaces in
this simulation that managed to aggregate all their groups
into one range. Most routers are not so lucky, but a sig-
nificant number of the busier routers manage to have fairly
high aggregation ratios. Contrast this with the same graph
generated with random address allocation and no cluster-
ing in figure 5(c), and hierarchical allocation without clus-
tering in figure 5(b). The difference is small for leaf routers
(high ranking), but significant for backbone routers (low
ranking).

1

10

100

1000

0 50 100 150 200 250 300 350 400 450 500

A
gg

re
ga

tio
n

R
at

io

Ranking of busyness (1=busiest)

mean

(a) Hierarchical Allocation with Clustering

1

10

100

1000

0 50 100 150 200 250 300 350 400 450 500

A
gg

re
ga

tio
n

R
at

io

Ranking of busyness (1=busiest)

mean

(b) Hierarchical Allocation, No Clustering

1

10

100

1000

0 50 100 150 200 250 300 350 400 450 500

A
gg

re
ga

tio
n

R
at

io

Ranking of busyness (1=busiest)

mean

(c) Random Allocation

Fig. 5. Aggregation Ratio vs Busyness Ranking

INFOCOM 2000 10

0

200

400

600

800

1000

1200

1400

1 2 3 4 5

S
ta

te
 (

E
[R

])

Groups Joined Per Session (k)

n=2

n=3

n=4

n=5

Fig. 6. Multi-Group Session Allocation

D. Multi-Group Sessions

We define a “layered” multi-group session as a set of
related groups whose members join a non-empty subset of
the groups, in a particular order. Thus a member typically
does not join the

� � 5 '��
th group unless it is also a member

of the first through � th groups. Some examples of such
sessions include:

� multiple-media presentations where low-bandwidth re-
ceivers might only want audio while high bandwidth re-
ceivers might want both audio and video,

� layered codec schemes such as that employed by
RLM [22], and

� reliable multicast mechanisms which use layered repair
groups, such as to add additional levels of Forward Error
Correction (FEC).

When groups in such a session use sequential addresses,
a cluster of 1’s followed by 0’s may appear in filters. We
ran a set of simulations to observe the effect of such clus-
ters on interface state. Figure 6 shows the results, using
1000 sessions, and averaged over 100 trials.

The results of four simulations are shown, for session
sizes (�) of 2 through 5 groups each. The vertical axis
shows the number of aggregated ranges used, while the
horizontal axis shows the average number of groups (

7
)

per session with downstream members. Finally, this sim-
ulation assumes that any unused address space can be ig-
nored, as explained in previous sections. Hence, these re-
sults apply to input filter state for point-to-point interfaces
on a unidirectional tree, as well as to worst case output fil-
ter state for a given interface (where in the worst case, all
groups have a downstream member on some interface).

For each cluster size, the straight lines indicate the state
resulting from using sequential addresses within a multi-
group session. The parabolic lines indicate the state re-
sulting from using random addresses.

The key result of this simulation is that for layered ses-
sions with four or fewer groups, less state is required if
addresses are allocated randomly. For sessions with more
than four groups, less state is required if addresses are al-
located sequentially, since all groups in a session can be
represented with one range.

The reason for the change at � 0 �
can be easily ex-

plained mathematically. For
'B8 7 8 � , sequential ad-

dresses yield ����C3�$0 � , where � is the number of ses-
sions. For random addresses, on the other hand, Lemma 1
can be applied using

� 0 �6� ,
	 0 &

, � 0 '�� �
. We ob-

tain ����C3�80 � � �8�!'�� �8�
which has a maximum of �6� � �

at
� 0 ' ��� . Hence, for � 8 �

, random is better. For higher
values of � , sequential becomes better.

VI. RELATED WORK

Tian and Neufeld [8] describe a scheme which avoids
keeping any state with a single interface in the outgoing in-
terface list, by encapsulating packets inside unicast packets
between the upstream and downstream branching points
(or terminii). The penalty paid is the CPU overhead of en-
capsulation and decapsulation, the extra bits on the wire,
and the extra state for more logical interfaces at the tunnel
endpoints.

Briscoe and Tatham [6] proposed a scheme for aggrega-
tion of multicast addresses, but would require changes to
all hosts, routers, and applications, which may not be feasi-
ble. Since aggregation is done end-to-end, routing state is
aggregated, and hence smaller forwarding state can be ob-
tained. They allow addresses to be aggregated into ranges,
but a range is not limited to covering changes in the least
significant bits of an address. In this sense, their scheme
is analogous to the use of non-contiguous masks in Kam-
pai [23], with the same problem: a much greater burden in
understanding and debugging problems. They also suggest
that aggregation could be improved by having the session
initiator specify in some way information about the likely
receiver locations. While this is likely true, there is no pro-
posed way to specify this, and it makes address allocation
quite complicated.

A number of recent papers (e.g., [14], [15], [16], [17],
[24], [25]) have explored alternative data structures for
unicast forwarding state to provide fast lookups. Such
work refutes the old belief that route lookups could not
be done at gigabit and terabit speeds. Whereas most of
them provide faster lookups at the expense of additional
state, the Degermark, et.al. [15] method in particular im-
proves performance by constructing very small forwarding
tables, so as to provide a high memory cache hit rate.

Draves, et.al. [26] describe an algorithm which can be
used to compress unicast forwarding state, and which can

INFOCOM 2000 11

give an aggregation ratio of about 1.7 for unicast. Like
our methods, it does not affect routing protocol state, and
aggregation is performed when forwarding state is to be
installed.

VII. CONCLUSIONS

In this paper, we examined the aggregatability of multi-
cast forwarding state, and showed that significant potential
for aggregation exists.

We first presented an interface-centric state model
which is more amenable to aggregation than the tradi-
tional Unix model. We then analyzed its performance un-
der purely random address allocation and purely random
member placement, and showed that aggregation is possi-
ble by a factor of 4 in the worst case, and much higher in
other cases.

We then simulated the effects on aggregation of various
factors in the real Internet which either allocate addresses
non-randomly, or which result in non-random member
placement. We found that such factors can significantly
reduce state, and showed their effects on aggregatability.
In particular, noteworthy results include:

� MASC-style hierarchical address allocation can be used
to reduce state requirements, and improve aggregatability
by between 50 and 100%.

� Aggregatability is significantly higher when receivers
are clustered due to interest. Aggregatability decreases
when receivers are clustered around the creator. Both types
of clustering still lower the amount of resulting state re-
quired, however.

� Aggregatability is greatest on the interfaces which are
busiest, and hence need it the most.
Overall, we believe that state for busy interfaces could
achieve an order of magnitude or more reduction using our
techniques.

In this paper, we have only dealt with perfect aggre-
gation; that is, aggregation which wastes no bandwidth.
We leave the issue of trading a small amount bandwidth
(for low-rate groups) for further aggregatability as future
work.

REFERENCES

[1] Estrin, Farinacci, Helmy, Thaler, Deering, Handley, Jacobson,
Liu, Sharma, and Wei, “Protocol independent multicast-sparse
mode (PIM-SM): Specification,” June 1998, RFC-2362.

[2] Tony Ballardie, Paul Francis, and Jon Crowcroft, “An architec-
ture for scalable inter-domain multicast routing,” in Proc. ACM
SIGCOMM, September 1993, pp. 85–95.

[3] Dino Farinacci, Yakov Rekhter, Peter Lothberg, Hank Kilmer, and
Jeremy Hall, “Multicast source discovery protocol (MSDP),” In-
ternet Draft, June 1998, draft-farinacci-msdp-*.txt.

[4] Satish Kumar, Pavlin Radoslavov, David Thaler, Cengiz Alaet-
tinoglu, Deborah Estrin, and Mark Handley, “The MASC/BGMP

architecture for inter-domain multicast routing,” in Proc. ACM
SIGCOMM, October 1998, pp. 93–104.

[5] Manolo Sola, Masataka Ohta, and Toshinori Maeno, “Scalability
of internet multicast protocols,” in Proceedings of INET, 1998.

[6] R. Briscoe and M. Tatham, “End to end aggrega-
tion of multicast addresses,” Internet Draft, November
1997, http://www.labs.bt.com/people/briscorj/
projects/lsma/e2ama.html.

[7] P. Sharma, D. Estrin, S. Floyd, and V. Jacobson, “Scalable timers
for soft state protocols,” in Proc. IEEE INFOCOM, 1997.

[8] Jining Tian and Gerald Neufeld, “Forwarding state reduction for
sparse mode multicast communication,” in Proceedings of the
IEEE INFOCOM, 1998.

[9] Stephen E. Deering and David R. Cheriton, “Multicast routing in
datagram internetworks and extended LANs,” ACM Transactions
on Computer Systems, vol. 8, no. 2, pp. 85–111, May 1990.

[10] John Moy, “Multicast routing extensions for OSPF,” Communi-
cations of the ACM, vol. 37, no. 8, August 1994.

[11] Craig Partridge et.al., “A 50-Gb/s IP router,” IEEE/ACM Trans-
actions on Networking, vol. 6, no. 3, June 1998.

[12] Guru Parulkar, Douglas C. Schmidt, and Jonathan S. Turner,
“IP/ATM: A strategy for integrating IP with ATM,” in Proc. ACM
SIGCOMM, August 1995.

[13] Ming-Huang Guo and Ruay-Shiung Chang, “Multicast ATM
switches: Survey and performance evaluation,” Computer Com-
munication Review, vol. 28, no. 2, pp. 98–131, April 1998.

[14] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard
Plattner, “Scalable high speed IP routing lookups,” in Proc. ACM
SIGCOMM, 1997.

[15] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and
Stephen Pink, “Small forwarding tables for fast routing lookups,”
in Proc. ACM SIGCOMM, September 1997, pp. 3–14.

[16] Pankaj Gupta, Steven Lin, and Nick McKeown, “Routing lookups
in hardware at memory access speeds,” in Proceedings of IEEE
INFOCOM, 1998.

[17] Butler Lampson, V Srinivasan, and George Varghese, “IP lookups
using multiway and multicolumn search,” in Proceedings of IEEE
INFOCOM, 1998.

[18] Steven Deering, Deborah Estrin, Dino Farinacci, Van Jacobson,
Ahmed Helmy, and Liming Wei, “Protocol independent multi-
cast version 2, dense mode specification,” Internet Draft, August
1998, draft-ietf-pim-dm-spec-*.txt.

[19] M. Handley, “Multicast address allocation protocol (AAP),”
Internet Draft, June 1999, draft-ietf-malloc-aap-
*.txt.

[20] M. Doar, “A better model for generating test networks,” in Proc.
IEEE Global Telecommunications Conference/GLOBECOM’96,
November 1996.

[21] D. Meyer, “Administratively scoped IP multicast,” July 1998,
RFC-2365.

[22] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driver lay-
ered multicast,” in Proc. ACM SIGCOMM, August 1996, pp. 117–
130.

[23] Paul Tsuchiya, “Efficient and flexible hierarchical address assign-
ment,” in INET ’92, June 1992, pp. 441–450.

[24] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and
scalable layer four switching,” in Proc. ACM SIGCOMM, 1998.

[25] T.V. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” in
Proc. ACM SIGCOMM, 1998.

[26] Richard P. Draves, Christopher King, Srinivasan Venkatachary,
and Brian D. Zill, “Constructing optimal IP routing tables,” in
Proceedings of IEEE INFOCOM, March 1999.

