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Overview

Given data, we wish to fit it with an appropriate probability
distribution.

Issues:

Which distribution should we choose?

How do we estimate the parameters in the distribution?

How can we quantify how well the distribution fits the data?

How can we use distributions to test some simple hypotheses?

Remember: You can fit any distribution to any data. But that
doesn’t mean that the fitted distribution is a good fit!
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Sample Mean

Given independent samples x1, . . . , xn of a r.v. X, the quantity µ̂
defined by

µ̂ =
1

n

n∑
i=1

xi.

is called the sample mean. It is just the average of the
observations.

Note: The sample mean is itself a random quantity, because it
depends on the random samples xi – if we repeat the experiment
we will in general get a different value.

M. Vidyasagar Modeling Dependencies



Estimating Parameters from Data
MLE for Some Common Distributions

Stable Distributions
Kolmogorov-Smirnov Test for Goodness of Fit

Unbiased and Consistent Estimators
Maximum Likelihood Estimators

Sample Variance

Given independent samples x1, . . . , xn of a r.v. X, the quantity V̂
defined by

V̂ =
1

n

n∑
i=1

(xi − µ̂)2.

is called the sample variance.

Like the sample mean, the sample variance is also a random
quantity.

The question of interest is: How well do µ̂ and V̂ represent the
actual mean and variance?
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Unbiased Estimator of the Mean

An estimator is said to be unbiased if its expected value is equal
to its true value.

Fact: The sample mean µ̂ is an unbiased estimate of the true
mean.

Observe that

E(µ̂) =
1

n

n∑
i=1

E(xi) = E(X).
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Unbiased Estimator of the Variance

Fact: The sample variance V̂ is not an unbiased estimator.

We can compute the expected value of V̂ as

E

 n∑
i=1

xi − 1

n

n∑
j=1

xi

2 =
1

n2

 n∑
i=1

E

nxi − n∑
j=1

xj

2 .
This simplifies to

E(V̂ ) =
1

n2

n∑
i=1

(n− 1)xi −
∑
j 6=i

xj

2

=
n− 1

n
V (X),

where V (X) is the true variance of X.
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Unbiased Estimator of the Variance (Cont’d)

Therefore the sample variance is a biased estimate and is too low
by a factor of (n− 1)/n.

The unbiased estimate of the variance is

n

n− 1
V̂ =

1

n− 1

n∑
i=1

(xi − µ̂)2.

Obviously, when the number of samples n is very large, V̂ is very
close to the unbiased estimate.
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Unbiased Estimator of the Standard Deviation

Similarly, the quantity[
1

n− 1

n∑
i=1

(xi − µ̂)2

]1/2
is an unbiased estimate of the standard deviation σ(X).

The Matlab commands mean, var, and std compute the unbiased
estimates defined above.
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Consistent Estimators

An estimate is said to be consistent if it converges to the true
value as the number of samples n→∞. It is obvious that every
unbiased estimator is consistent, but not every consistent estimator
has to be unbiased.

Probably the best-known consistent, but biased, estimator is the
sample variance V̂ . We have already seen that

E(V̂ ) =
n− 1

n
V (X).

So as n→∞, the sample variance V̂ converges to the right value,
though it is a biased estimate.
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Parametric Representation of Probability Distributions

As the name implies, a ‘maximum likelihood estimator’ is one that
best explains the observed data from within a chosen class of
models.

To make the idea more precise, suppose we have a class of
probability distributions, call them φ(x;θ), where θ is a parameter
vector. The parameter vector is supposed to capture every feature
of the probability distribution.
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Some Examples on Finite Sets

Example 1: If there is a two-sided coin, then its probability
distribution can be captured with just one parameter: the
probability of ‘Heads’. We need not specify the probability of
‘Tails’ since it is just one minus the probability of ‘Heads’.

Example 2: For a six-sided die, its probability distribution can be
captured by specifying the probabilities of any five of the six
outcomes. (The sixth one need not be specified.)
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Some Examples on Countable Sets

Example 3: Recall that the geometric distribution on the
nonnegative integers N ∪ {0} = {0, 1, . . .} is given by

Pr{X = n} = (1− p)pn, n = 0, 1, . . .

So it is completely described by the single parameter p.

Example 4: Recall that the Poisson distribution on the
nonnegative integers N ∪ {0} = {0, 1, . . .} is given by

Pr{X = n} = e−λ
λn

n!
,

where λ > 0 is called the ‘rate’ of the process. So it is completely
described by the single parameter λ.
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Some Examples on Continuous R.V.s

Example 5: Recall that the uniform distribution on R is described
by the density

φ(x) =

{
1/(b− a) if x ∈ [a, b],
0 if x 6∈ [a, b].

The depiction of the uniform density and distribution are shown on
the next slide. This distribution is completely characterized by two
parameters, for example: (i) the two numbers a and b, or (ii) the
starting point b and the height 1/(b− a), or other equivalent
representations.
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Uniform Distribution: Density and CDF

x x

φ(x) Φ(x)

a b

1

b− a 1
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Some Examples on Continuous R.V.s (Cont’d)

Example 6: Recall that the Gaussian density function is defined by

φ(x;µ, σ) =
1√
2πσ

exp[−(x− µ)2/2σ2].

So it is completely characterized by the two parameters (µ, σ).
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Gaussian Density Function
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The Likelihood and Log-Likelihood Functions

Given independent samples x1, . . . , xn, we can compute the
likelihood of this particular sequence being observed as

L(xn1 ;θ) =

n∏
i=1

φ(xi;θ),

where we use xn1 as a shorthand for x1, . . . , xn.

The log-likelihood function is the logarithm of L(xn1 ). Clearly, it
is given by

LL(xn1 ;θ) =
n∑
i=1

log φ(xi;θ).
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Likelihood Functions for Continuous R.V.s

Suppose X is a continuous r.v. with density φ(x;θ), and we have
observed i.i.d. samples x1, . . . , xn. For a continuous r.v., the
likelihood of observing precisely a specified value is zero. So the
likelihood and log-likelihood functions in this case are defined as

L(xn1 ;θ) =
n∏
i=1

φ(xi;θ),

LL(xn1 ;θ) =

n∑
i=1

log φ(xi;θ).
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Maximum Likelihood Estimators

A maximum likelihood estimator (MLE) is one that chooses the
parameter vector θ so as to maximize the likelihood of observing
that particular sample.

Since log is a monotonic function, maximixing the likelihood
function is equivalent to maximizing the log-likelihood function.

In symbols,
θ∗ = argmax

θ
LL(xn1 ;θ),

where the log-likelihood function is defined above, for
discrete-valued or continuous r.v.s as appropriate.
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Simple Example of Maximum Likelihood Estimation

Suppose we wish to estimate the probability of “Heads”, call it p,
from n coin tosses out of which k turn out to be heads. Here p is
the variable of optimization. The likelihood of getting k Heads out
of n coin tosses, as a function of p, is

L(p) =

(
n
k

)
pk(1− p)n−k,

LL(p) = log

(
n
k

)
+ k log p+ (n− k) log(1− p),

dLL(p)

p
=
k

p
− n− k

1− p
= 0 if p =

k

n
.

So the MLE for p is k/n.
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Properties of MLE

We briefly mention a few attractive properties of MLEs.

MLEs are consistent - as m→∞, the estimated parameter
vector approaches the ‘true’ value, if the data is generated by
a ‘true’ model.

The estimated parameter vector θ∗ is itself a random vector,
as it depends on the random samples. It can be shown that,
as l→∞, the distribution of θ∗ around the ‘true’ vector is
asymptotically the multivariate normal distribution.

The MLE is also efficient – no other consistent estimator has
lower asymptotic mean squared error than the MLE.
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MLE for Finite Outcomes

Suppose a random variable X has m possible outcomes (example:
a six-sided die). Then the parametrized family of distributions is

φ(x;θ) = (θ1, . . . , θm),

with the proviso that each θi is nonnegative and that all of them
must add up to one.

Suppose k1, . . . , kn are the number of times that the various
outcomes are observed. Then the MLE estimator for the
probability of each outcome is

θ∗i =
ki
n
,

the fraction of times that particular outcome is actually observed.
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MLE for Finite Outcomes (Cont’d)

Example: If 100 tosses of a coin result in 63 heads and 37 tails,
then the maximum likelihood estimates are

P̂ (H) = 0.63, P̂ (T ) = 0.37.

Example: If 1000 rolls of a six-sided die result in the following
results: k1 = 177, k2 = 165 , k3 = 155, k4 = 161, k5 = 170,
k6 = 172. Then the MLE of the probability distribution is the
vector

θ∗ = [ 0.177 0.165 0.155 0.161 0.170 0.172 ].
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MLE for Poisson Distribution

Suppose that we have observations of an integer-valued random
variable (for example a histogram), and we wish to fit a Poisson
distribution to it.

Recall that the Poisson distribution on the nonnegative integers
N ∪ {0} = {0, 1, . . .} is given by

Pr{X = n} = e−λ
λn

n!
,

where λ > 0 is called the ‘rate’ of the process. Therefore the
distribution is completely described by the single parameter λ.
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MLE for Poisson Distribution – 2

Suppose there are a total of m observations, and that the value n
occurs exactly mn times. Then the MLE for the rate λ is

λ∗ =
1

m

N∑
n=0

mnn =

N∑
n=0

nφn,

where φn = mn/m is the fraction of observations that equal mn.
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MLE for Poisson Distribution – Example

Suppose the time to fabricate a part has been observed for 100
samples. All 100 samples are completed within 20 days. The
observed number of days (from 1 to 20) for each of the 100 parts
is shown below:

D = [ 1 1 3 5 7 7 10 11 9 8 8 6 5 4 4 4 2 2 2 1 ].

The next slide shows the plot of the observed frequencies, which
are the above entries divided by 100.

We will fit a Poisson distribution to the data.
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Poisson Distribution Example (Cont’d)

The figure below shows the observed frequencies.
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Poisson Distribution Example (Cont’d)

Recall the formula for the maximum likelihood estimate of the rate
of a Poisson process given the observe frequencies:

λ∗ =
1

m

N∑
n=0

mnn =

N∑
n=0

nφn,

We apply this formula with m = 20s, which leads to λ∗ = 9.6100.

The next slide shows the observed frequency and the fitted Poisson
distribution with the rate λ∗.
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Poisson Distribution Example (Cont’d)

The figure below shows the observed and fitted frequencies.
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Poisson Distribution Example (Cont’d)

It can be seen that the fit is not particularly good.

What this means is that the Poisson distribution with rate
λ∗ = 9.6100 is the best possible fit within the class of Poisson
distributions – that is all!

We still need other ways to determine whether or not this is a good
fit. This is provided by “goodness of fit tests” to be discussed later.
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MLE for Gaussian Distributions

Recall that

φ(x;µ, σ) =
1√
2πσ

exp[−(x− µ)2/2σ2].

This distribution is completed characterized by the parameter pair
(µ, σ).
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MLE for Gaussian Distributions – 2

Now suppose we have observations x1, . . . , xn. Then the MLE turn
out to be the sample mean and sample variance; that is

µ∗ =
1

n

n∑
i=1

xi = µ̂,

σ∗ =

[
1

n

n∑
i=1

(xi − µ∗)2
]1/2

=
√
V̂ .

As we have seen before, the variance estimator is biased but it is
the most likely estimate.
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Modeling Asset Returns

Think of a stock price as a sequence of random variables {Xt}.
The ratio log(Xt+1/Xt) is called the “return” at time t (or t+ 1).

Traditional methods of option pricing assume that the returns are
Gaussian (or that asset prices are “log-normal”).

Recent studies cast doubts on this theory. Some people suggest
using stable distributions instead. (More on this later.)
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Gaussian Fit to Returns on Dow-Jones Industrial Average
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Multivariate Gaussian Distributions

Suppose X is a random variable that assumes values in Rk. So
X = (X1, . . . , Xk) where each Xi is a real-valued r.v. The
multivariate Gaussian Density function has the form

φ(x) =
1

(2π)k/2det(Σ)1/2
exp[(x− µ)tΣ−1(x− µ)/2],

where µ ∈ Rk is the vector of means, and Σ ∈ Rk×k is the
covariance matrix.

If k = 1, µ is a scalar µ, and Σ is a scalar σ, we get back the
(univariate) Gaussian density.
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MLE for Multivariate Gaussian Distributions

Suppose have independent samples x1, . . . ,xn of the
k-dimensional r.v. X. Then the MLE are given by

µ∗ =
1

n

n∑
i=1

xi,Σ
∗ =

1

n

n∑
i=1

(xi − µ)t(xi − µ∗).

Note that if n < k, the matrix Σ is singular. Note that unless the
number of observations n exceeds the dimension of the random
variable k, the matrix Σ will be singular and cannot be inverted.
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Example: Daily Returns on Five Stocks

Daily prices are obtained on five stocks: Apple, Merck, Nike,
Yahoo and Google. These daily prices are then converted into
annualized daily returns by taking the log of the ratio of successive
daily prices and multiplying by 365.

The mean of each return and the covariance of the returns are
computed using the Matlab commands mean and cov.

Again, because the number of samples is large n = 1341, the fact
that Matlab computes the unbiased estimate of the covariance,
whereas the maximum likelihood estimate is the (biased) sample
covariance can be ignored.
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Example: Daily Returns on Five Stocks (Cont’d)

The 1× 5 vector of mean annualized returns is

µ∗ = [ 0.3559 −0.0547 −0.0239 −0.0508 0.0818 ],

while the 5× 5 covariance matrix of annualized returns is

Σ∗ =


73.3480 22.5712 31.7058 35.0791 34.4119
22.5712 49.9162 22.4836 20.8499 20.6514
31.7058 22.4836 109.6736 30.5985 25.7874
35.0791 20.8499 30.5985 108.1180 29.5364
34.4119 20.6514 25.7874 29.5364 145.9925

 .
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Example: Daily Returns on Five Stocks (Cont’d)

The maximum likelihood estimate among the class of multivariate
Gaussian distributions is given by

φ(x) =
1

(2π)k/2det(Σ∗)1/2
exp[(x− µ∗)tΣ∗−1(x− µ∗)/2],

where µ∗,Σ∗ are shown on the previous slide.
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Justification for Using the Gaussian Distribution

The main theoretical justification for using the Gaussian
distribution to model r.v.s comes from the central limit theorem.
First we state the law of large numbers.
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Law of Large Numbers

Note: This is not the most general version of the law of large
numbers!

Suppose X1, . . . , Xl are independent real-valued r.v.s with finite
mean µ and finite variance V (or standard deviation σ =

√
V );

they could even be discrete-valued random variables. Let Al
denotes their average, that is

Al =
1

l

l∑
i=1

Xi.

Then the sample average An converges “in probability” to the true
mean µ.
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Law of Large Numbers (Cont’d)

This means that, for every fixed small number ε, the tail probability

q(n, ε) = Pr{|An − µ| > ε} → 0 as n→∞.

In words, the density function of the average An gets concentrated
around the true value µ.
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Central Limit Theorem (Cont’d)

Things are different if we “center” and “normalize” the average by
defining

Gl =
Al − µ√

lσ
.

Theorem: As l→∞, the distribution function of Gl converges to
that of the normal random variable, that is, a Gaussian r.v. with
zero mean and standard deviation of one.

Note that the theorem is true even if X is a discrete-valued r.v.,
such as the payoff associated with a coin toss.
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Illustrative Example

Suppose X assumes values in the discrete set {−2,−1, 0, 1, 2}
with distribution vector

φ = [ 0.15 0.20 0.25 0.20 0.20 ].

Then, for each integer l, the l-fold average Al also assumes values
in the interval [−2, 2]. While Al is also discrete-valued, the number
of possible values increases as l increases.

The next slides show the densities of 5-fold, 20-fold, and 100-fold
averages of independent copies of X.
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Depictions of Densities

Blue curve is the original density, green is the 5-fold average, red is
the 20-fold average, and taupe is the 100-fold average.
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Stable Distributions: Motivation

We have seen that the normal distribution is the limit distribution
of the “centered” and “scaled” averages of independent samples of
random variables with finite variance.

What happens if we average r.v.s that don’t necessarily have finite
variance? What can the limit distributions look like?

Answer: The only possible limits are the stable distributions!

The Gaussians are the only stable distributions with finite variance;
the rest all have infinite variance.
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Stable Distributions: Motivation

Stable distributions provide a better fit to real-world data
compared to the Gaussian, because the Gaussian is a special case
of a stable distribution.

This is shown by various examples.

The theory is very advanced, and only a few necessary details are
given here.

This section can be skipped at first reading and revisited.
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Characteristic Function of a R.V.

If X is a real-valued r.v., then its characteristic function ψX is
defined by

ψX(u) = E[exp(iuX)] =

∫ ∞
−∞

eiuxφ(x)dx,

where φ(x) is the density of the r.v. X, and i =
√
−1.

In other words, the c.f. is the Fourier transform of the density.

If X is Gaussian with mean µ and variance σ2, then its c.f. is also
Gaussian.

ψX(u) = exp[iuµ− u2σ2/2].
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Parameters of a Stable Distribution

A Gaussian r.v. is completely specified by just two parameters,
namely its mean µ and its standard deviation σ. A Gaussian is also
“stable” with “exponent” α = 2 (and we will see why in later
lectures) but the discussion below is for non-Gaussian stable r.v.s.

Every non-Gaussian stable r.v. X is completely specified by four
parameters:

An exponent α ∈ (0, 2).

A skew β ∈ [−1, 1].

A scale γ ∈ R+.

A location δ ∈ R.
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Characteristic Function of a Stable Random Variable

The c.f. of a stable r.v. has two distinct forms, depending on
whether the exponent α equals 1 or not.

ψX(u) = exp(iδu− γα|u|α[1− iβ tan
(πα

2

) |u|
u

]), if α 6= 1,

ψX(u) = exp(iδu− γu[1 + iβ
2

π

|u|
u

log |u|]) if α = 1.

Unfortunately there is no closed form expression for the density φ –
only for the characteristic function.
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Interpretation of Parameters

The four parameters mean what the names suggest:

The exponent α controls how slowly the complementary
distribution function Φ̄(u) decays as u→∞. As α gets
smaller, the densities get flatter and wider.

The skew β is zero if the density function is symmetric, and
nonzero otherwise.

The scale γ is the spread on the u-axis. As γ is decreased, the
density function gets spread out.

The location δ centers the location of the distribution.

The next several slides illustrate the role of these constants.
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Varying Alpha
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Stable Density Functions for Various Values of Alpha

 

 

alpha = 1.8

alpha = 1.5

alpha = 1.1

alpha = 0.8

As α is decreased, the peaks get higher and the tails get flatter.
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Heavy-Tailed Behavior of Stable Distributions

The Gaussian distribution can be thought of as a special case of a
stable distribution with α = 2.

If α < 2, then the r.v. is “heavy-tailed” in that its variance is
infinite.

If α < 1, then even the mean is infinite.

Despite this, stable distributions with α < 2 often provide a far
better fit to real-world data than Gaussian distributions.
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Varying Beta
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Stable Density Functions for Various Values of Beta

 

 

beta = 0

beta = 1

beta = −1

The brown and red curves are asymmetric, though this is hard to
see.
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Varying Gamma
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Stable Density Functions for Various Values of Gamma

 

 

gamma = 1

gamma = 0.5

gamma = 2

Smaller values of γ spread out the density function.
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Varying Delta
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Stable Density Functions for Various Values of Delta

 

 

delta = 0

delta = −1

delta = 1

Nonzero values of δ shift the curve to the left or the right but do
not otherwise change the shape.
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Fitting Stable Distributions to Data

The utility stblfit.m can be used to fit a stable fit to any data set.
It returns a four-dimensional vector consisting of [ α β γ δ ].

The next several slides illustrate the application of this utility.
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Example: Dow-Jones Industrial Average

Daily closing values of the Dow-Jones Industrial Average (DJIA)
are taken for roughly seven years.

The logarithm of the ratio of successive closing averages,
multiplied by 365, gives the annualized daily returns of the DJIA.

The Gaussian gives a very poor fit to the data, whereas a stable
distribution with α = 1.6819 gives an excellent fit, as shown in the
next slides.
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DJIA Daily Returns: Gaussian Fit

−30 −20 −10 0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Annualized Daily Returns

D
e

n
s
it
y

Actual and Gaussian−Fitted Daily Returns of the DJIA

 

 

Actual Density

Gaussian Fit

The fit of the density function (histogram) and the Gaussian
density with the same mean and standard deviation.
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DJIA Daily Returns: Stable Fit

The next slide shows the fit of the cumulative distribution function
– observed, stable and Gaussian fitted.

The stable distribution provides an excellent fit, whereas there is a
large gap between the Gaussian fit and the observed.

M. Vidyasagar Modeling Dependencies



Estimating Parameters from Data
MLE for Some Common Distributions

Stable Distributions
Kolmogorov-Smirnov Test for Goodness of Fit

Central Limit Theorem
Stable Distributions: Theory
Stable Distributions: Applications

DJIA Daily Returns: Stable Fit (Cont’d)
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Empirical Distributions

Suppose X is a random variable for which we have generated n
i.i.d. samples, call them x1, . . . , xn.

Then we define the empirical distribution of X, based on these
observations, as follows:

Φ̂(a) =
1

n

n∑
i=1

I{xi≤a},

where I denotes the indicator function: I = 1 if the condition
below is satisfied and I = 0 otherwise.

So in this case Φ̂(a) is just the fraction of the n samples that are
≤ a. The diagram on the next slide illustrates this.
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Empirical Distribution Depicted

Arrange samples x1, . . . , xn in increasing order of magnitude; call
them xi1 , . . . , xin .

a

Φ̂(a)

xi1 xi2 xi3 xi4 xi5 xi6
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Glivenko-Cantelli Lemma

Theorem: As n→∞, the empirical distribution Φ̂(·) approaches
the true distribution Φ(·).

Specifically, if we define the Kolmogorov-Smirnov distance

dn = max
u
|Φ̂(u)− Φ(u)|,

then dn → 0 as n→∞.

At what rate does the convergence take place?
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One-Sample Kolmogorov-Smirnov Statistic

Fix a ‘confidence level’ δ > 0 (usually δ is taken as 0.05 or 0.02).
Define the threshold

θ(n, δ) =

(
1

2n
log

2

δ

)1/2

.

Then with probability 1− δ, we can say that

max
u
|Φ̂(u)− Φ(u)| =: dn ≤ θn.
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One-Sample Kolmogorov-Smirnov Test

Given samples x1, . . . , xn, fit it with some distribution F (·) (e.g.
Gaussian). Compute the K-S statistic

dn = max
u
|Φ̂(u)− F (u)|.

Compare dn with the threshold θ(n, δ). If dn > θ(n, δ), we ‘reject
the null hypothesis’ at level δ. In other words, if dn > θ(n, δ), then
we are 1− δ sure that the data was not generated by the
distribution F (·).

If dn ≤ θ(n, δ) then we cannot reject the hypothesis. Usually in
this case we accept the hypothesis.
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Example: Daily Returns on the DJIA

There are n = 1832 daily returns. By using the utility stblfit.m,
we obtain a stable distribution with the parameters

α
β
γ
δ

 =


1.6819
−0.0651
2.2345
−0.0150


as the best stable fit.

The best Gaussian fit is obtained using the mean µ = −0.4798 and
the standard deviation σ = 3.9629.

The empirical, stable-fitted and Gaussian-fitted CDFs are shown in
the next slide.

Question: Is either fit “acceptable”?
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DJIA Daily Returns: Stable and Gaussian Fits
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Analysis Using One-Sample K-S Test

If we use a confidence level of 95%, then δ = 0.05. The
corresponding K-S threshold is

θ(n, δ) =

(
1

2n
log

2

δ

)1/2

= 0.0317.

The actual K-S test statistic, namely the maximum difference
between the empirical and stable fitted cumulative distribution
function is 0.0266, while the K-S test statistic for the Gaussian fit
is 0.0995.

Because the K-S distance for the Gaussian is more than θ(n, δ), we
can assert with 95% confidence that daily returns are not
Gaussian. For the stable fit, the K-S distance is less than θ(n, δ),
so we accept that the stable fit is acceptable.
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Application of K-S Test to Discrete Random Variables

Recall the study of the time needed to process a part, measured in
days. A total of 100 samples were observed, with the following
distribution:

D = [ 1 1 3 5 7 7 10 11 9 8 8 6 5 4 4 4 2 2 2 1 ].

A Poisson distribution was fit and the maximum likelihood
estimate for the rate is λ∗ = 9.61.

The empirical and fitted rates are shown on the next slide.
However, to test whether the fit is acceptable, we need to plot the
empirical and fitted cumulative distribution functions. These are
shown in the next two slides.
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Empirical and Fitted Poisson Frequencies

The figure below shows the observed and fitted frequencies.
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Empirical and Fitted CDFs

The figure below shows the observed and fitted frequencies.
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Analysis Using K-S Test Statistic

Using N = 100 and δ = 0.05, we can compute the K-S test
threshold as

θ(n, δ) =

(
1

2n
log

2

δ

)1/2

= 0.1358.

The K-S test statistic is the maximum disparity between the
empirical and fitted CDFs and equals 0.0866. Because its value is
less than the threshold, we cannot reject the hypothesis, and
therefore accept it, perhaps reluctantly.

This is caused by having too few samples, which makes θ(n, δ) too
large.
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