Submitted papers
 

[1] Ivan Gudoshnikov and Oleg Makarenkov. Stabilization of quasistatic evolution of elastoplastic systems subject to periodic loading. submitted. [ bib | http ]
[2] Oleg Makarenkov. Bifurcation of limit cycles from a switched equilibrium in planar switched systems. submitted. [ bib | http ]
[3] Oleg Makarenkov. A linear state feedback switching rule for global stabilization of switched nonlinear systems about a nonequilibrium point. submitted. [ bib | http ]

 
Accepted papers
 

[1] Oleg Makarenkov and Lakmi Niwanthi Wadippuli. Bifurcations of finite-time stable limit cycles from focus boundary equilibria in impacting systems, filippov systems, and sweeping processes. Internat. J. Bifur. Chaos Appl. Sci. Engrg., accepted 6/3/2018. [ bib | http ]

 
Published papers
 

[1] Oleg Makarenkov and Anthony Phung. Dwell time for local stability of switched affine systems with application to non-spiking neuron models. Appl. Math. Lett., 86:89--94, 2018. [ bib | http ]
[2] Mikhail Kamenskii, Oleg Makarenkov, Lakmi Niwanthi Wadippuli, and Paul Raynaud de Fitte. Global stability of almost periodic solutions to monotone sweeping processes and their response to non-monotone perturbations. Nonlinear Analysis: Hybrid Systems, 30:213 -- 224, 2018. [ bib | DOI | http ] 3rd best Impact Factor in Applied Mathematics according to Clarivate Analytics
[3] Oleg Makarenkov and Anthony Phung. Dwell time for switched systems with multiple equilibria on a finite time-interval. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 25(1):1--14, 2018. [ bib | http ]
[4] Oleg Makarenkov. A new test for stick-slip limit cycles in dry-friction oscillators with a small nonlinearity in the friction characteristic. Meccanica, 52(11-12):2631--2640, 2017. [ bib | DOI | http ]
[5] Oleg Makarenkov. Bifurcation of limit cycles from a fold-fold singularity in planar switched systems. SIAM J. Appl. Dyn. Syst., 16(3):1340--1371, 2017. [ bib | DOI | http ]
[6] Thomas Köppen, Tassilo Küpper, and Oleg Makarenkov. Existence and stability of limit cycles in control of anti-lock braking systems with two boundaries via perturbation theory. Internat. J. Control, 90(5):974--989, 2017. [ bib | DOI | http ]
[7] Oleg Makarenkov. A simple proof of the Lyapunov finite-time stability theorem. C. R. Math. Acad. Sci. Paris, 355(3):277--281, 2017. [ bib | DOI | http ]
[8] Mikhail Kamenskii and Oleg Makarenkov. On the response of autonomous sweeping processes to periodic perturbations. Set-Valued Var. Anal., 24(4):551--563, 2016. [ bib | DOI | http ]
[9] Yinghua Zhang, Oleg Makarenkov, and Nicholas Gans. Extremum seeking control of a nonholonomic system with sensor constraints. Automatica J. IFAC, 70:86--93, 2016. [ bib | DOI | http ]
[10] A. Buica, J. Llibre, and O. Makarenkov. A note on forced oscillations in differential equations with jumping nonlinearities. Differ. Equ. Dyn. Syst., 23(4):415--421, 2015. [ bib | DOI | http ]
[11] J. Newman and O. Makarenkov. Resonance oscillations in a mass-spring impact oscillator. Nonlinear Dynam., 79(1):111--118, 2015. [ bib | DOI | http ]
[12] Oleg Makarenkov. Topological degree in the generalized Gause prey-predator model. J. Math. Anal. Appl., 410(2):525--540, 2014. [ bib | DOI | http ]
[13] O. Yu. Makarenkov. Asymptotic stability of oscillations of a two-mass resonance sifter. Prikl. Mat. Mekh., 77(3):398--409, 2013. [ bib ]
[14] O. Yu. Makarenkov and I. S. Martynova. Degenerate resonances and their stability in two-dimensional systems with small negative divergence. Dokl. Akad. Nauk, 447(3):262--264, 2012. [ bib | DOI | http ]
[15] Oleg Makarenkov and Jeroen S. W. Lamb. Dynamics and bifurcations of nonsmooth systems: a survey. Phys. D, 241(22):1826--1844, 2012. [ bib | DOI | http ]
[16] Oleg Makarenkov and Jeroen S. W. Lamb. Preface: Dynamics and bifurcations of nonsmooth systems. Phys. D, 241(22):1825, 2012. [ bib | DOI | http ]
[17] Adriana Buica, Jaume Llibre, and Oleg Makarenkov. Bifurcations from nondegenerate families of periodic solutions in Lipschitz systems. J. Differential Equations, 252(6):3899--3919, 2012. [ bib | DOI | http ]
[18] Mikhail Kamenskii, Oleg Makarenkov, and Paolo Nistri. An alternative approach to study bifurcation from a limit cycle in periodically perturbed autonomous systems. J. Dynam. Differential Equations, 23(3):425--435, 2011. [ bib | DOI | http ]
[19] Oleg Makarenkov, Luisa Malaguti, and Paolo Nistri. On the behavior of periodic solutions of planar autonomous Hamiltonian systems with multivalued periodic perturbations. Z. Anal. Anwend., 30(2):129--144, 2011. [ bib | DOI | http ]
[20] Oleg Makarenkov and Rafael Ortega. Asymptotic stability of forced oscillations emanating from a limit cycle. J. Differential Equations, 250(1):39--52, 2011. [ bib | DOI | http ]
[21] O. Yu. Makarenkov. The Poincaré index and periodic solutions of perturbed autonomous systems. Tr. Mosk. Mat. Obs., 70:4--45, 2009. [ bib | DOI | http ]
[22] Adriana Buica, Jaume Llibre, and Oleg Makarenkov. Asymptotic stability of periodic solutions for nonsmooth differential equations with application to the nonsmooth van der Pol oscillator. SIAM J. Math. Anal., 40(6):2478--2495, 2009. [ bib | DOI | http ]
[23] Oleg Makarenkov. Influence of a small perturbation on Poincaré-Andronov operators with not well defined topological degree. Topol. Methods Nonlinear Anal., 32(1):165--175, 2008. [ bib ]
[24] A. BuĬ ka, Zh. Libre, and O. Yu. Makarenkov. On Yu. A. MitropolskiĬ 's theorem on periodic solutions of systems of nonlinear differential equations with nondifferentiable right-hand sides. Dokl. Akad. Nauk, 421(3):302--304, 2008. [ bib | DOI | http ]
[25] Oleg Makarenkov, Paolo Nistri, and Duccio Papini. Synchronization problems for unidirectional feedback coupled nonlinear systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15(4):453--468, 2008. [ bib ]
[26] Mikhail Kamenskii, Oleg Makarenkov, and Paolo Nistri. Periodic bifurcation for semilinear differential equations with Lipschitzian perturbations in Banach spaces. Adv. Nonlinear Stud., 8(2):271--288, 2008. [ bib | DOI | http ]
[27] Oleg Makarenkov and Paolo Nistri. Periodic solutions for planar autonomous systems with nonsmooth periodic perturbations. J. Math. Anal. Appl., 338(2):1401--1417, 2008. [ bib | DOI | http ]
[28] Mikhail Kamenskii, Oleg Makarenkov, and Paolo Nistri. A continuation principle for a class of periodically perturbed autonomous systems. Math. Nachr., 281(1):42--61, 2008. [ bib | DOI | http ]
[29] Oleg Makarenkov and Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Commun. Pure Appl. Anal., 7(1):49--61, 2008. [ bib ]
[30] Mikhail Kamenskii, Oleg Makarenkov, and Paolo Nistri. Periodic solutions of periodically perturbed planar autonomous systems: a topological approach. Adv. Differential Equations, 11(4):399--418, 2006. [ bib ]
[31] Mikhail Kamenski, Oleg Makarenkov, and Paolo Nistri. Periodic solutions for a class of singularly perturbed systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11(1):41--55, 2004. [ bib ]
[32] Mikhail Kamenskii, Oleg Makarenkov, and Paolo Nistri. Small parameter perturbations of nonlinear periodic systems. Nonlinearity, 17(1):193--205, 2004. [ bib | DOI | http ]
[33] M. I. KamenskiĬ, O. Yu. Makarenkov, and P. Nistri. An approach to the theory of ordinary differential equations with a small parameter. Dokl. Akad. Nauk, 388(4):439--442, 2003. [ bib ]