Inequalities and Limits Part A

Outline

- Inequalities: Markov, Chebyshev, Jensen, Hölder
- Limits
 - of Probability: Weak Law of Large Numbers
 - of Events: Strong Law of Large Numbers
 - of Cdfs: Central Limit Theorem
Inequalities: Preliminaries

- We are interested in moment-based inequalities that are informative about rvs.
- \(X(\omega) \leq Y(\omega) \) for \(\omega \in \Omega \) \(\Rightarrow \) \(E(X) \leq E(Y) \).
- For rvs \(X, Y \), \(P(X \leq Y) = 1 \) \(\Rightarrow \) \(E(X) \leq E(Y) \).
 - For rv \(Z \), \(P(Z \leq 0) = 1 \) \(\Rightarrow \) \(E(Z) \leq 0 \). Let \(Z = X - Y \) to obtain the above inequality.
 - For rv \(X \) and number \(y \), \(P(X \leq y) = 1 \) \(\Rightarrow \) \(E(X) \leq y \).

- Ex: A rv \(X \in [a, b] \) has the variance bound \(V(X) \leq \frac{(b-a)^2}{4} \).
 1. Consider the quadratic function \(g(\beta) : \mathbb{R} \to \mathbb{R} \) given as
 \[
 g(\beta) = E(X - \beta)^2 = E(X^2) - 2E(X)\beta + \beta^2 \quad \text{for all } \beta \in (-\infty, \infty).
 \]
 2. The function \(g(\beta) \) is minimized at \(\beta_0 = E(X) \).
 3. So \(V(X) = g(E(X)) \leq E(X - \beta)^2 \) for all \(\beta \in (-\infty, \infty) \).
 4. In particular, for \(\beta = \frac{a+b}{2} \), \(V(X) \leq g\left(\frac{a+b}{2}\right) = E\left(X - \frac{a+b}{2}\right)^2 \).
 5. Then \(V(X) \leq E\left(X - \frac{a+b}{2}\right)^2 = E\left(X^2 - aX - bX + \left(\frac{a+b}{2}\right)^2\right) = E\left((X - a)(X - b) + \left(\frac{a-b}{2}\right)^2\right) \).
 6. Since \(X \in [a, b] \), we have \(E((X - a)(X - b)) \leq 0 \).
 7. Hence, \(V(X) \leq \left(\frac{a-b}{2}\right)^2 \).

- The variance bound is tight because it is achieved by the rv \(X \) with \(P(X = a) = P(X = b) = \frac{1}{2} \).
- For this rv, \(E(X) = \frac{a}{2} + \frac{b}{2}, E(X^2) = \frac{a^2}{2} + \frac{b^2}{2} \) and \(V(X) = \frac{a^2}{2} + \frac{b^2}{2} - \left(\frac{a}{2} + \frac{b}{2}\right)^2 = \left(\frac{a-b}{2}\right)^2 \).
Markov’s and Chebyshev’s Inequalities

- For a nonnegative rv Y and positive constant α and positive integer k,
 \[E(Y^k) = \int_{y \geq 0} y^k f_Y(y) \, dy \geq \int_{y \geq \alpha} y^k f_Y(y) \, dy \geq \int_{y \geq \alpha} \alpha^k f_Y(y) \, dy = \alpha^k P(Y \geq \alpha) \]

- Inserting $Y = |X|$ into the above expression
 - Markov’s Inequality: $P(|X| \geq \alpha) \leq \frac{1}{\alpha^k} E(|X|^k)$ for $\alpha \geq 0$, $k \in \{1, 2, \ldots\}$.

- This can also be written as $P(|X| \geq \alpha) \leq \min_{k \in \{1, 2, \ldots\}} \left\{ \frac{1}{\alpha^k} E(|X|^k) \right\}$.

- In the special case of $k = 2$: $P(|X| \geq \alpha) \leq \frac{1}{\alpha^2} E(|X|^2)$ for $\alpha \geq 0$.

- Inserting $X = Z - E(Z)$ into the above inequality
 - Chebyshev’s Inequality: $P(|Z - E(Z)| \geq \alpha) \leq \frac{1}{\alpha^2} V(Z)$ for $\alpha \geq 0$.

- Ex: A rv X is in the interval $\left(E(X) - m\sqrt{V(X)}, E(X) + m\sqrt{V(X)} \right)$ with probability
 \[P\left(|X - E(X)| < m\sqrt{V(X)} \right) = 1 - P\left(|X - E(X)| \geq m\sqrt{V(X)} \right) \geq 1 - \frac{1}{m^2 V(X)} V(X) = 1 - \frac{1}{m^2} \]
 - When $m = 3$, $P\left(X \in \left(E(X) - 3\sqrt{V(X)}, E(X) + 3\sqrt{V(X)} \right) \right) \geq 1 - \frac{1}{9} \approx 0.88$.
 - When $m = 4$, $P\left(X \in \left(E(X) - 4\sqrt{V(X)}, E(X) + 4\sqrt{V(X)} \right) \right) \geq 1 - \frac{1}{16} \approx 0.9375$.
 - Hence, a random variable is likely to be around its mean.
Jensen’s Inequality

- **Jensen’s Inequality:** \(g(E(X)) \leq E(g(X)) \) for a convex function \(g \).
 - Convex function \(g(x) \) has a supporting hyperplane \(y = ax + b \) at each \(x_0 \) such that \(g(x_0) = ax_0 + b \) and \(g(x) \geq ax + b \) for every \(x \).
 - A hyperplane for a convex function is defined for the convex set \(\{(x, y): g(x) \leq y\} \)
 - The set is called the epigraph of the function and has one more dimension than its lower boundary defining the convex function. For \(g: \mathbb{R}^n \to \mathbb{R} \), the epigraph \(\{(x, y): g(x) \leq y\} \) is in \(\mathbb{R}^{n+1} \).
 - For \(g: \mathbb{R} \to \mathbb{R} \) and random variable \(X \), consider the supporting hyperplane at \((E(X), g(E(X))) \) given by \(y = a_0 x + b_0 \) for particular values of \(a_0, b_0 \).
 \[g(E(X)) = a_0 E(X) + b_0 \quad \text{and} \quad (a_0 X + b_0) \leq (g(X)) \]
 - Take the expectation in the inequality and combine:
 \[g(E(X)) = a_0 E(X) + b_0 = E(a_0 X + b_0) \leq E(g(X)) \]

- **Ex:** \(g(x) = \exp(x) \) is convex as \(g''(x) = \exp(x) \geq 0 \) for \(x \in \mathbb{R} \).
 - Let \(x_0 = 0 \), the derivative at \(x_0 = 0 \) is \(\exp(0) = 1 \).
 - The supporting hyperplane at \(x_0 = 0 \) has the slope of \(a = 1 \), so it has the form \(y = x + b \).
 - To find \(b \), we set \(1 = g(x_0 = 0) = 0 + b \). This gives \(b = 1 \) and in turn \(y = x + 1 \).
 - You can check visually \(g(x) = \exp(x) \geq x + 1 \).

- **Ex:** Use Jensen's inequality to prove \(E(X^{2k}) - E(X^k)^2 \geq 0 \) for integer \(k \geq 0 \).
 - Let \(g(u) = u^2 \) and note that it is convex.
 - \((E(X^k))^2 = g\left(E(X^k) \right) \leq E\left(g(X^k) \right) = E(X^{2k}) \).
 - Setting \(k = 1 \) yields \(V(X) = E(X^2) - E(X)^2 \geq 0 \). Also obtain \(E(X^4) \geq (E(X^2))^2 \geq (E(X))^4 \).
Jensen’s Inequality

Ex: In inventory theory, inventory holding and backorder costs can be represented by \(c(y, x) \) for inventory level \(y \) and demand \(x \).
- E.g., \(c(y, x) = h(y - x)^+ + b(x - y)^+ \) with \(h \) and \(b \) respectively as the unit holding and backordering costs.
- \(c(y, x) \) is jointly convex.
- For every inventory level \(y \), we set \(g_y(\cdot) = c(y, \cdot) \), which is convex
- Use Jensen's inequality: \(c(y, E(X)) = g_y(E(X)) \leq E(g_y(X)) = E(c(y, X)) \) for every \(y \).
- The evaluation of the cost against the expected demand turns out to be lower than the true cost.
- This idea can be used to obtain lower bounds for the optimal cost.
Hölder’s Inequality

- **Young’s inequality** \(ab \leq \frac{a^p}{p} + \frac{b^q}{q} \) for \(a, b \geq 0; \ p, q > 1 \) and \(\frac{1}{p} + \frac{1}{q} = 1 \)
 - Since \(a, b \geq 0 \), we can set \(s = p \ln a \) and \(t = q \ln b \).
 - From the convexity of \(e^x \), the function \(e^{(p^{-1}s+q^{-1}t)} \leq p^{-1} e^s + q^{-1} e^t = \) chord connecting \((s, e^s)\) to \((t, e^t)\).
 - Inserting the values for \(s, t \) gives the desired inequality \(ab \leq p^{-1} a^p + q^{-1} b^q \).

- **Hölder’s Inequality**: \(E(|X||Y|) \leq (E(|X|^p))^{\frac{1}{p}} (E(|Y|^q))^{\frac{1}{q}} \) for \(\frac{1}{p} + \frac{1}{q} = 1 \).
 - Insert \(a = |X|/(E(|X|^p))^{\frac{1}{p}} \) and \(b = |Y|/(E(|Y|^q))^{\frac{1}{q}} \) into Young’s inequality
 \[
 \frac{|X|}{E(|X|^p)^{\frac{1}{p}}} \frac{|Y|}{E(|Y|^q)^{\frac{1}{q}}} \leq \frac{1}{p} \frac{|X|^p}{E(|X|^p)} + \frac{1}{q} \frac{|Y|^q}{E(|Y|^q)}
 \]
 - Take expected values on the both sides
 \[
 \frac{E(|X||Y|)}{E(|X|^p)^{\frac{1}{p}} E(|Y|^q)^{\frac{1}{q}}} \leq \frac{1}{p} \frac{E(|X|^p)}{E(|X|^p)} + \frac{1}{q} \frac{E(|Y|^q)}{E(|Y|^q)} = 1
 \]

- **Schwarz’s Inequality**: \(E(|X||Y|) \leq \sqrt{E(X^2)} \sqrt{E(Y^2)} \) by setting \(p = q = 2 \) in Hölder’s Inequality.

- Ex: Use Schwarz’s Inequality to get absolute value of correlation at most 1 for two rvs.
 - Shifting rvs by a constant does not affect their covariance or variance \(\Rightarrow \) WLOG, \(E(X) = E(Y) = 0 \).
 - \(\text{Cov}(X + a, Y + b) = E((X + a)(Y + b)) - E(X + a)E(Y + b) = E(XY) - E(X)E(Y) = \text{Cov}(X, Y) \) for \(a, b \in \mathbb{R} \)
 - \[1 \geq \frac{E(|X||Y|)}{\sqrt{E(X^2)} \sqrt{E(Y^2)}} = \frac{E(|X||Y|)}{\sqrt{V(X)V(Y)}} \geq \text{max} \left\{ \frac{E(XY)}{\sqrt{V(X)V(Y)}}, - \frac{E(XY)}{\sqrt{V(X)V(Y)}} \right\} = \text{max}\{\text{Cor}(X, Y), -\text{Cor}(X, Y)\} \]
 - Then \(-1 \leq \text{Cor}(X, Y) \leq 1\) for rvs \(X, Y \).
Summary

◆ Inequalities: Markov, Chebyshev, Jensen, Hölder

◆ Limits
 – of Probability: Weak Law of Large Numbers
 – of Events: Strong Law of Large Numbers
 – of Cdfs: Central Limit Theorem