Process Development and Process Integration of Semiconductor Devices

Mark T. Tinker, Ph.D.
Department of Electrical Engineering
University of Texas at Dallas
Process Development Activities

• Worked in Process Development for Fifteen Years Both at IBM and Texas Instruments

• Activities Ranged Across a Wide Variety of Different Areas
 ➢ Failure Analysis
 ➢ Reliability
 ➢ Process Engineering
 ➢ Equipment Engineering
 ➢ Yield Enhancement

• Main Focus of Activities Centered on Reliability and Yield Enhancement
Product Cycle

- Objective of Wafer Fab is to Produce Product
- Next Generation Product Requires Several Years to Develop
- Development Cycle Must Encompass Following Stages
 - Research
 - Early Development
 - Productization Development
 - Manufacturing
- Product Evolves from Basic Concepts and Processes to an Integrated Product and Finally Full Scale Manufacturing
Product Cycle Example

• IBM Employs a Product Cycle Encompassing Several Increasingly Demanding Checkpoints

• Checkpoints Include T0, T1, T2, S0, S1, and S2
 - T0 and T1 Includes Basic Development with Increasing Levels of Product Qualification
 - T2 Includes Extensive Functional and Reliability Qualification by an Independent Assurance Group
 - S0 and Beyond Involves Release to Manufacturing and Transition to Quality Control
Wafer Fab Culture

• Wafer Fabs are Manufacturing Facilities Running Around the Clock Seven Days a Week
• Most Development Runs in this Type of Environment
• Wafer Fabs are Large Multi-Billion Dollar Facilities Involving the Contribution of a Variety of Different Groups
• Process Engineering is One of the Most Key Groups in a Fab
• PE is a Very Interdisciplinary Area Involving Engineers from
 ➢ Materials Science
 ➢ Physics
 ➢ Chemistry
 ➢ Chemical Engineering
 ➢ Electrical Engineering
Wafer Fab Organization

• However, Numerous Organizations Contribute to the Development and Production of Semiconductor Products

• These Organizations Include
 ➢ Process Engineering
 ➢ Process Integration
 ➢ Equipment Engineering
 ➢ Equipment Vendors
 ➢ Yield Enhancement
 ➢ Quality Assurance
 ➢ Reliability
 ➢ Product Assurance
 ➢ Product Engineering
 ➢ Failure Analysis
 ➢ Design
 ➢ Final Test
 ➢ Manufacturing
Process Engineering

• Responsible for All Process Related Issues Throughout Wafer Fab

• Can Broadly Categorize PE Into Three General Functions
 ➢ Thin Films
 ➢ Photolithography
 ➢ Etch

• Process Engineers Have Very Specific Functions
 ➢ Ion Implant
 ➢ Poly Dep
 ➢ Oxide Deposition
 ➢ Metal Deposition
 ➢ CVD Barrier Metal
 ➢ Silicon Etch
 ➢ Oxide Etch
 ➢ Metal Etch
 ➢ CMP
 ➢ Clean

• PE is a Very Large and Important Engineering Area
Process Integration

• Responsible for Coordinating and Integrating Semiconductor Processes in Order to Develop a Functional, Reliable, and Yieldable Product

• Key Wafer Fab Organization

• Much Smaller Than Process Engineering Function
Equipment Engineering

• Sustains and Supports Manufacturing Equipment In-Line
• PE and EE Often Work Together on Resolving Tool Issues
• Responsible for Coordinating Tool Installs
• EE Oftentimes Works with PE on Evaluating and Accepting Next Generation Tools
Equipment Vendors

• Develops Equipment for Semiconductor Manufacturing
 ➢ Develops Tool Platform and Process for Manufacturing
 ➢ PE May Alter or Adjust Process to Meet Manufacturing Needs

• Often Supports and Maintains Their Equipment In-Line in Place of EE Under Equipment Service Contract
Yield Enhancement

• Drives Product Yield In-Line In Order to Expedite Yield Learning
 ➢ Shorten Product Cycle During Product Development
 ➢ Or Maximize Product Yield During Manufacturing
• Typically Uses Expensive Defect Detection Tools In-Line to Identify Yield Limiting Problems
• Companies Like IBM Also Depend Heavily Upon In-Line Parametrics on Test Sites to Drive Yield In-Line
• Problems May Range from Regular Daily Particle Excursions to Large Catastrophic Yield Problems
Quality Assurance

• Sets Up Control Charts and Limits for Various Process Parameters
• May Actively Monitor and Enforce Quality Standards
Reliability

• Assures and Monitors Product Reliability
 ➢ Serious Reliability Issues Can Be Disastrous for a Company
 ➢ Can Be Costly for a Company and Seriously Hurt Its Reputation
 ➢ Responding to a Reliability Problem in the Field Can Take Months

• Main Responsibilities Include
 ➢ Stressing Product During Product Qualification
 ➢ Implementing In-Line Monitors and Controls
 ➢ Monitoring Field Returns for Problems and Issues
Product Assurance

- Performs Qualification of Product Prior to Product Release
 - Extensive Reliability Test
 - Extensive Functionality Test
 - Assures Manufacturability of Product
- Performed by Independent Product Organization to Assure Unbiased Assessment
Product Engineering

• Drives Yield from End of Line By
 ➢ Evaluating End of Line Final Test Data and Parametrics
 ➢ Performing Failure Analysis of Defective Product

• Provides a Powerful Combination of Electrical Data Analysis with Physical Failure Analysis

• However, Issues Include
 ➢ Long Turnaround Time Before Product Reaches Final Test
 ➢ Extensive Time Required for Physical Failure Analysis
Failure Analysis

• Provides Physical Failure Analysis and Construction Analysis for Various Engineering Functions Including
 ➢ Process Engineering
 ➢ Process Integration
 ➢ Yield Enhancement
 ➢ Reliability
 ➢ Product Assurance
 ➢ Product Engineering

• Provides
 ➢ Basic Metallographic Services Such as Polishing and SEM
 ➢ More Sophisticated Services Such as STEM, SIMS, Auger, and ESCA
Design

• Design May Get Involved with Process Development Issues
 ➢ Most Issues Are Typically Resolved Through a Process Action
 ➢ However, Occasional Issues Must Be Resolved with a Design Change
Final Test

• Develops Final Test for Semiconductor Product
• Provides Electrical Parametric Data Which Drives Manufacturing Line
• Also, Provides Key Final Test Data Commonly Required to Fix Product Yield
Manufacturing

• Actually Runs the Product Through the Manufacturing Line
• Large and Powerful Group Within a Wafer Fab
• Typically Engineering Teams Must Work Around Manufacturing Even in Development in Order to
 ➢ Minimize Turnaround Times and Maximize Yield Learning in Development or
 ➢ Minimize Turnaround Times and Improve Tool Utilization in Manufacturing
Conclusions

• Process Development Very Long and Involved Engineering Process
• Requires Numerous Groups to Develop and Yield a Semiconductor Product