Introduction to Cryptography (CS 6377) 
      Time and Location     : TR 1:00-2:15pm ECSS 2.311

     
Instructor
                : Murat Kantarcioglu
Office Hours & Location : Tue 17:30-18:30, Wed 16:30-17:30 @ECSS 3.225


      
Teaching Assistant
: Ali Inan ([email protected])
Office Hours & Location : Tue 17:00-19:00 @ Undergrad Open Lab
Thr 15:00-17:00 @ ECSS 3.613



Prerequisites : CS 5333 and CS 5343
            
                         


Grading:

  •   Homeworks %15 (3 homeworks, each worth 5%)
  •   Project         %25 (Group project (up to 3 people) that requires programming)
  •   Midterm       %30
  •   Final            %30
  •   Class Part.  %5   (Bonus for Class Participation)

 



Course Topics: (tentative)
      • Computational number theory and Discrete Probability, Block ciphers, Pseudorandom functions  Symmetric encryption, Hash functions, Message authentication, Number-theoretic primitives   Asymmetric encryption, Digital signatures

         
           Textbook:            
                 Cryptography: Theory and Practice, Third Edition
                
Douglas R. Stinson, Chapman& Hall/CRC Press


 Course Outline:

Jan 8 Tu

  • Introduction to Modern Cryptogprahpy (slides)

Jan 10 Th :

  • Perfect Secrecy and One-time Pad   (slides)  (Chapter 2.1-2.3)

Jan 15 Tu :

  • Block Ciphers and  The Data Encryption Standard  (Chapter 3.1, 3.5) slides

Jan 17 Th :

  • The Advanced Encryption Standard slides  (Chapter 3.6)

Jan 22 Tu :

  • Block Cipher Modes of Operation  (slides) (Chapter 3.7)

Jan 24 Th :

Jan 29 Tu :
  • Secure Symmetric Encryption cont.

Jan 31 Th :

  • Secure Symmetric Encryption cont
Feb 5 Tu :

Feb 7 Th :

  • Iterated Hash Functions (Chapter 4.3)

Feb 12 Tu :

  • Iterated Hash Functions (Chapter 4.3)

Feb 14 Th :

  • Message Authentication Codes (Chapter 4.4) (slides)
  • Homework One is available on Webct  Due date: Feb 28 !!!
  • NO LATE SUBMISSION IS ACCEPTED

Feb 19 Tu :

Feb 21 Th :

  • Introduction to Public-Key Cryptography (Chapter 5.1)
  • Number Theory for Public Key (Chapter 5.2) (slides)
Feb 26 Tu :
  • Number Theory for Public Key (Chapter 5.2)

Feb 28 Th :

  • Discussion of Homework One Solutions

Mar 4 Tu :

  • !!! MIDTERM !!! 

Mar 6 Th :

  • RSA CryptoSystem (Chapter 5.3) (slides)

Mar 11 Tu :

  • SPRING BREAK

Mar 13 Th :

  • SPRING BREAK

Mar 18 Tu :

  • Primality Testing (Chapter 5.4) (slides)
  • Square roots Modulo n (Chapter 5.5)

Mar 20 Th :

  • Attacks on RSA (Chapter 5.7) (Only brief discussion. see the slides for the previous lecture.)
  • The Rabin-Crypto System (Chapter 5.8) (slides)

Mar 25 Tu :

  • Semantic Security of RSA (Chapter 5.9) (slides)
  • Homework Two is available on Webct !!!
  • Due Date is Apr 8th before class. (NO LATE SUBMISSIONS)

Mar 27 Th :

  • Probabilistic Encryption (Chapter 8.4)
  • Only Goldwasser-Micali System will be covered.
  • See the slides for the previous lecture.

Apr 1 Tu :

  • Overview of Rabin Crypto System (slides)
  • Elgamal Cryptosystem (Chapter 6.1) (slides)

Apr 3 Th :

  • Security of ElGamal Systems (Chapter 6.7.2 and 6.7.3)
  • See the slides for the ElGamal Cryptosystem.
  • Homework Three is available on Webct !!!
  • Due Date is Apr. 17th before class (NO LATE SUBMISSIONS)
Apr  8 Tu:
  • !!! MAKE-UP EXAM !!!
Apr 10 Th :
  • Security of ElGamal Systems (Chapter 6.7.2 and 6.7.3)
  • See the slides for the ElGamal Cryptosystem.

Apr 15 Tu :

  • Signature Schemes (Chapter 7.1-7.2) (slides)

Apr 17 Th :

  • Elgamal,Schnorr and DSA (Chapter 7.3-7.4)
Apr 22 Tu :
  • Elgamal,Schnorr and DSA (Chapter 7.3-7.4) cont.
Apr 24 Th:
  • Discussion of Homework Two and Three
  • Links related to  implementation pitfalls of cryptographic systems
Apr 24   Th:
  • !!! Take home final exam. Starts 2:30pm on April 24th ends on April 26th Saturday noon.
  • Please use Webct to submit your exam