
Public Key Encryption with keyword Search

Dan Boneh∗ Giovanni Di Crescenzo

Stanford University Telcordia

Rafail Ostrovsky† Giuseppe Persiano‡

UCLA Università di Salerno

Abstract

We study the problem of searching on data that is encrypted using a public key
system. Consider user Bob who sends email to user Alice encrypted under Alice’s
public key. An email gateway wants to test whether the email contains the keyword
“urgent” so that it could route the email accordingly. Alice, on the other hand does
not wish to give the gateway the ability to decrypt all her messages. We define and
construct a mechanism that enables Alice to provide a key to the gateway that enables
the gateway to test whether the word “urgent” is a keyword in the email without
learning anything else about the email. We refer to this mechanism as Public Key

Encryption with keyword Search. As another example, consider a mail server that
stores various messages publicly encrypted for Alice by others. Using our mechanism
Alice can send the mail server a key that will enable the server to identify all messages
containing some specific keyword, but learn nothing else. We define the concept of
public key encryption with keyword search and give several constructions.

1 Introduction

Suppose user Alice wishes to read her email on a number of devices: laptop, desktop, pager,
etc. Alice’s mail gateway is supposed to route email to the appropriate device based on
the keywords in the email. For example, when Bob sends email with the keyword “urgent”
the mail is routed to Alice’s pager. When Bob sends email with the keyword “lunch” the
mail is routed to Alice’s desktop for reading later. One expects each email to contain a
small number of keywords. For example, all words on the subject line as well as the sender’s
email address could be used as keywords. The mobile people project [24] provides this email
processing capability.

∗Supported by NSF and the Packard foundation.
†Partially supported by a gift from Teradata. Preliminary work done while visiting Stanford and while

at Telcordia.
‡Part of this work done while visiting DIMACS. Work supported by NoE ECRYPT.

1

Now, suppose Bob sends encrypted email to Alice using Alice’s public key. Both the
contents of the email and the keywords are encrypted. In this case the mail gateway cannot
see the keywords and hence cannot make routing decisions. As a result, the mobile people
project is unable to process secure email without violating user privacy. Our goal is to enable
Alice to give the gateway the ability to test whether “urgent” is a keyword in the email, but
the gateway should learn nothing else about the email. More generally, Alice should be able
to specify a few keywords that the mail gateway can search for, but learn nothing else about
incoming mail. We give precise definitions in section 2.

To do so, Bob encrypts his email using a standard public key system. He then appends
to the resulting ciphertext a Public-Key Encryption with keyword Search (PEKS) of each
keyword. To send a message M with keywords W1, . . . , Wm Bob sends

EApub
(M) ‖ PEKS(Apub, W1) ‖ · · · ‖ PEKS(Apub, Wm)

Where Apub is Alice’s public key. The point of this form of encryption is that Alice can
give the gateway a certain trapdoor TW that enables the gateway to test whether one of
the keywords associated with the message is equal to the word W of Alice’s choice. Given
PEKS(Apub, W

′) and TW the gateway can test whether W = W ′. If W 6= W ′ the gateway
learns nothing more about W ′. Note that Alice and Bob do not communicate in this entire
process. Bob generates the searchable encryption for W ′ just given Alice’s public key.

In some cases, it is instructive to view the email gateway as an IMAP or POP email
server. The server stores many emails and each email contains a small number of keywords.
As before, all these emails are created by various people sending mail to Alice encrypted
using her public key. We want to enable Alice to ask queries of the form: do any of the
messages on the server contain the keyword “urgent”? Alice would do this by giving the
server a trapdoor TW , thus enabling the server to retrieve emails containing the keyword W .
The server learns nothing else about the emails.

Related work. A related issue deals with privacy of database data. There are two different
scenarios: public databases and private databases, and the solutions for each are different.
Private databases: In this settings a user wishes to upload its private data to a remote
database and wishes to keep the data private from the remote database administrator. Later,
the user must be able to retrieve from the remote database all records that contain a partic-
ular keyword. Solutions to this problem were presented in the early 1990’s by Ostrovsky [26]
and Ostrovsky and Goldreich [17] and more recently by Song at al. [28]. The solution of Song.
at al [28] requires very little communication between the user and the database (proportional
to the security parameter) and only one round of interaction. The database performs work
that is linear in its size per query. The solution of [26, 17] requires poly-logarithmic rounds
(in the size of the database) between the user and the database, but allows the database
to do only poly-logarithmic work per query. An additional privacy requirement that might
be appealing in some scenarios is to hide from the database administrator any information
regarding the access pattern, i.e. if some item was retrieved more then once, some item
was not retrieved at all, etc. The work of [26, 17] achieves this property as well, with the
same poly-logarithmic cost1 per query both for the database-user interaction and the actual

1The poly-logarithmic construction of [26, 17] requires large constants, which makes it impractical; how-

2

database work. We stress that both the constructions of [26, 17] and the more recent work
of [10, 28, 16] apply only to the private-key setting for users who own their data and wish
to upload it to a third-party database that they do not trust.
Public Databases Here the database data is public (such as stock quotes) but the user is
unaware of it and wishes to retrieve some data-item or search for some data-item, without
revealing to the database administrator which item it is. The naive solution is that the user
can download the entire database. Public Information Retrieval (PIR) protocols allow user to
retrieve data from a public database with far smaller communication then just downloading
the entire database. PIR was first shown to be possible only in the setting where there are
many copies of the same database and none of the copies can talk to each other [5]. PIR
was shown to be possible for a single database by Kushilevitz and Ostrovsky [22] (using
homomorphic encryption scheme of [19]). The communication complexity of [22] solution
(i.e. the number of bits transmitted between the user and the database) is O(nε), where n
is the size of the database and ε > 0. This was reduced to poly-logarithmic overhead by
Cachin, Micali, and Stadler [4]. As pointed out in [22], the model of PIR can be extended
to one-out-of-n Oblivious Transfer and keyword searching on public data, and received a lot
of additional attention in the literature (see, for example, [22, 8, 20, 9, 23, 25, 27]. We stress
though that in all these settings the database is public, and the user is trying to retrieve or
find certain items without revealing to the database administrator what it is searching for.
In the setting of a single public database, it can be shown that the database must always
perform work which is at least linear in the size of the database.

Our problem does not fit either of the two models mentioned above. Unlike the private-
key setting, data collected by the mail-server is from third parties, and can not be “organized”
by the user in any convenient way. Unlike the publicly available database, the data is not
public, and hence the PIR solutions do not apply.

We point out that in practical applications, due to the computation cost of public key
encryption, our constructions are applicable to searching on a small number of keywords
rather than an entire file. Recently, Waters et al. [30] showed that public key encryption
with keyword search can be used to build an encrypted and searchable audit log. Other
methods for searching on encrypted data are described in [16, 12].

2 Public key encryption with searching: definitions

Throughout the paper we use the term negligible function to refer to a function f : R→ [0, 1]
where f(s) < 1/g(s) for any polynomial g and sufficiently large s.

We start by precisely defining what is a secure Public Key Encryption with keyword
Search (PEKS) scheme. Here “public-key” refers to the fact that ciphertexts are created by
various people using Alice’s public key. Suppose user Bob is about to send an encrypted
email to Alice with keywords W1, . . . , Wk (e.g., words in the subject line and the sender’s
address could be used as keywords, so that k is relatively small). Bob sends the following
message:

[

EApub
[msg], PEKS(Apub, W1), . . . , PEKS(Apub, Wk)

]

(1)

ever their basic O(
√

n) solution was recently shown to be applicable for some practical applications [10].

3

where Apub is Alice’s public key, msg is the email body, and PEKS is an algorithm with
properties discussed below. The PEKS values do not reveal any information about the
message, but enable searching for specific keywords. For the rest of the paper, we use as our
sample application a mail server that stores all incoming email.

Our goal is to enable Alice to send a short secret key TW to the mail server that will
enable the server to locate all messages containing the keyword W , but learn nothing else.
Alice produces this trapdoor TW using her private key. The server simply sends the relevant
emails back to Alice. We call such a system non-interactive public key encryption with
keyword search, or as a shorthand “searchable public-key encryption”.

Definition 2.1. A non-interactive public key encryption with keyword search (we sometimes
abbreviate it as “searchable encryption”) scheme consists of the following polynomial time
randomized algorithms:

1. KeyGen(s): Takes a security parameter, s, and generates a public/private key pair
Apub, Apriv.

2. PEKS(Apub, W): for a public key Apub and a word W , produces a searchable encryption
of W .

3. Trapdoor(Apriv, W): given Alice’s private key and a word W produces a trapdoor TW .
4. Test(Apub, S, TW): given Alice’s public key, a searchable encryption S = PEKS(Apub, W

′),
and a trapdoor TW = Trapdoor(Apriv, W), outputs ‘yes’ if W = W ′ and ‘no’ otherwise.

Alice runs the KeyGen algorithm to generate her public/private key pair. She uses Trap-

door to generate trapdoors TW for any keywords W that she wants the mail server or mail
gateway to search for. The mail server uses the given trapdoors as input to the Test() al-
gorithm to determine whether a given email contains one of the keywords W specified by
Alice.

Next, we define security for a PEKS in the sense of semantic-security. We need to ensure
that an PEKS(Apub, W) does not reveal any information about W unless TW is available.
We define security against an active attacker who is able to obtain trapdoors TW for any
W of his choice. Even under such attack the attacker should not be able to distinguish
an encryption of a keyword W0 from an encryption of a keyword W1 for which he did not
obtain the trapdoor. Formally, we define security against an active attacker A using the
following game between a challenger and the attacker (the security parameter s is given to
both players as input).
PEKS Security game:

1. The challenger runs the KeyGen(s) algorithm to generate Apub and Apriv. It gives
Apub to the attacker.

2. The attacker can adaptively ask the challenger for the trapdoor TW for any keyword
W ∈ {0, 1}∗ of his choice.

3. At some point, the attacker A sends the challenger two words W0, W1 on which it
wishes to be challenged. The only restriction is that the attacker did not previously
ask for the trapdoors TW0

or TW1
. The challenger picks a random b ∈ {0, 1} and

gives the attacker C = PEKS(Apub, Wb). We refer to C as the challenge PEKS.
4. The attacker can continue to ask for trapdoors TW for any keyword W of his choice

as long as W 6= W0, W1.

4

5. Eventually, the attacker A outputs b′ ∈ {0, 1} and wins the game if b = b′.

In other words, the attacker wins the game if he can correctly guess whether he was
given the PEKS for W0 or W1. We define A’s advantage in breaking the PEKS as

AdvA(s) = |Pr[b = b′]− 1

2
|

Definition 2.2. We say that a PEKS is semantically secure against an adaptive chosen
keyword attack if for any polynomial time attacker A we have that AdvA(s) is a negligible
function.

Chosen Ciphertext Security. We note that Definition 2.2 ensures that the construction
given in Eq. (1) is semantically secure whenever the public key encryption system EApub

is semantically secure. However, as is, the construction is not chosen ciphertext secure.
Indeed, a chosen ciphertext attacker can break semantic security by reordering the keywords
in Eq. (1) and submitting the resulting ciphertext for decryption. A standard technique can
make this construction chosen ciphertext secure using the methods of [7]. We defer this to
the full version of the paper.

2.1 PEKS implies Identity Based Encryption

Public key encryption with keyword search is related to Identity Based Encryption (IBE) [29,
2]. Constructing a secure PEKS appears to be a harder problem than constructing an IBE.
Indeed, the following lemma shows that PEKS implies Identity Based Encryption. The
converse is probably false. Security notions for IBE, and in particular chosen ciphertext
secure IBE (IND-ID-CCA), are defined in [2].

Lemma 2.3. A non-interactive searchable encryption scheme (PEKS) that is semantically
secure against an adaptive chosen keyword attack gives rise to a chosen ciphertext secure
IBE system (IND-ID-CCA).

Proof sketch: Given a PEKS (KeyGen, PEKS, Trapdoor, Test) the IBE system is as follows:

1. Setup: Run the PEKS KeyGen algorithm to generate Apub/Apriv. The IBE system
parameters are Apub. The master-key is Apriv.

2. KeyGen: The IBE private key associated with a public key X ∈ {0, 1}∗ is

dX = [Trapdoor(Apriv, X‖0), Trapdoor(Apriv, X‖1)] ,

where ‖ denotes concatenation.

3. Encrypt: Encrypt a bit b ∈ {0, 1} using a public key X ∈ {0, 1}∗ as: CT = PEKS(Apub, X‖b).

4. Decrypt: To decrypt CT = PEKS(Apub, X‖b) using the private key dX = (d0, d1).
Output ‘0’ if Test(Apub, CT, d0) = ‘yes’ and output ‘1’ if Test(Apub, CT, d1) = ‘yes’

5

One can show that the resulting system is IND-ID-CCA assuming the PEKS is semantically
secure against an adaptive chosen message attack.

This shows that building non-interactive public-key searchable encryption is at least as
hard as building an IBE system. One might be tempted to prove the converse (i.e., IBE
implies PEKS) by defining

PEKS(Apub, W) = EW [0k] (2)

i.e. encrypt a string of k zeros with the IBE public key W ∈ {0, 1}∗. The Test algorithm
attempts to decrypt EW [0] and checks that the resulting plaintext is 0k. Unfortunately, this
does not necessarily give a secure searchable encryption scheme. The problem is that the
ciphertext CT could expose the public key (W) used to create CT . Generally, an encryption
scheme need not hide the public key that was used to create a given ciphertext. But this
property is essential for the PEKS construction given in (2). We note that public key privacy
was previously studied by Bellare et al. [1].

Generally, it appears that constructing a searchable public-key encryption is a harder
problem than constructing an IBE scheme. Nevertheless, our first PEKS construction is
based on a recent construction for an IBE system. We are able to prove security by exploiting
extra properties of this system.

3 Constructions

We give two constructions for public-key searchable encryption: (1) an efficient system based
on a variant of the Decision Diffie-Hellman assumption (assuming a random oracle) and (2)
a limited system based on general trapdoor permutations (without assuming the random
oracle), but less efficient.

3.1 Construction using bilinear maps

Our first construction is based on a variant of the Computational Diffie-Hellman problem.
Boneh and Franklin [2] recently used bilinear maps on elliptic curves to build an efficient
IBE system. Abstractly, they use two groups G1, G2 of prime order p and a bilinear map
e : G1 ×G1 → G2 between them. The map satisfies the following properties:

1. Computable: given g, h ∈ G1 there is a polynomial time algorithms to compute
e(g, h) ∈ G2.

2. Bilinear: for any integers x, y ∈ [1, p] we have e(gx, gy) = e(g, g)xy

3. Non-degenerate: if g is a generator of G1 then e(g, g) is a generator of G2.

The size of G1, G2 is determined by the security parameter.
We build a non-interactive searchable encryption scheme from such a bilinear map. The

construction is based on [2]. We will need hash functions H1 : {0, 1}∗ → G1 and H2 : G2 →
{0, 1}log p. Our PEKS works as follows:

• KeyGen: The input security parameter determines the size, p, of the groups G1 and
G2. The algorithm picks a random α ∈ Z

∗
p and a generator g of G1. It outputs

Apub = [g, h = gα] and Apriv = α.

6

• PEKS(Apub, W): First compute t = e(H1(W), hr) ∈ G2 for a random r ∈ Z
∗
p.

Output PEKS(Apub, W) = [gr, H2(t)].

• Trapdoor(Apriv, W): output TW = H1(W)α ∈ G1.

• Test(Apub, S, TW): let S = [A, B]. Test if H2(e(TW , A)) = B.
If so, output ‘yes’; if not, output ‘no’.

We prove that this system is a non-interactive searchable encryption scheme semantically
secure against a chosen keyword attack in the random oracle model. The proof of security
relies on the difficulty of the Bilinear Diffie-Hellman problem (BDH) [2, 21].

Bilinear Diffie-Hellman Problem (BDH): Fix a generator g of G1. The BDH problem
is as follows: given g, ga, gb, gc ∈ G1 as input, compute e(g, g)abc ∈ G2. We say that BDH is
intractable if all polynomial time algorithms have a negligible advantage in solving BDH.

We note that the Boneh-Franklin IBE system [2] relies on the same intractability as-
sumption for security. The security of our PEKS is proved in the following theorem. The
proof is set in the random oracle model. Indeed, it is currently an open problem to build a
secure IBE, and hence a PEKS, without the random oracle model.

Theorem 3.1. The non-interactive searchable encryption scheme (PEKS) above is seman-
tically secure against a chosen keyword attack in the random oracle model assuming BDH is
intractable.

Proof : Suppose A is an attack algorithm that has advantage ε in breaking the PEKS.
Suppose A makes at most qH2

hash function queries to H2 and at most qT trapdoor queries
(we assume qT and qH2

are positive). We construct an algorithm B that solves the BDH
problem with probability at least ε′ = ε/(eqT qH2

), where e is the base of the natural logarithm.
Algorithm B’s running time is approximately the same asA’s. Hence, if the BDH assumption
holds in G1 then ε′ is a negligible function and consequently ε must be a negligible function
in the security parameter.

Let g be a generator of G1. Algorithm B is given g, u1 = gα, u2 = gβ, u3 = gγ ∈ G1. Its
goal is to output v = e(g, g)αβγ ∈ G2. Algorithm B simulates the challenger and interacts
with forger A as follows:

KeyGen. Algorithm B starts by giving A the public key Apub = [g, u1].

H1, H2-queries. At any time algorithm A can query the random oracles H1 or H2. To
respond to H1 queries algorithm B maintains a list of tuples 〈Wj, hj, aj , cj〉 called the
H1-list. The list is initially empty. When A queries the random oracle H1 at a point
Wi ∈ {0, 1}∗, algorithm B responds as follows:

1. If the query Wi already appears on the H1-list in a tuple 〈Wi, hi, ai, ci〉 then
algorithm B responds with H1(Wi) = hi ∈ G1.

2. Otherwise, B generates a random coin ci ∈ {0, 1} so that Pr[ci = 0] = 1/(qT + 1).
3. Algorithm B picks a random ai ∈ Zp.

If ci = 0, B computes hi ← u2 · gai ∈ G1.
If ci = 1, B computes hi ← gai ∈ G1.

7

4. Algorithm B adds the tuple 〈Wi, hi, ai, ci〉 to the H1-list and responds to A by
setting H1(Wi) = hi. Note that either way hi is uniform in G1 and is independent
of A’s current view as required.

Similarly, at any time A can issue a query to H2. Algorithm B responds to a query
for H2(t) by picking a new random value V ∈ {0, 1}log p for each new t and setting
H2(t) = V . In addition, B keeps track of all H2 queries by adding the pair (t, V) to an
H2-list. The H2-list is initially empty.

Trapdoor queries. When A issues a query for the trapdoor corresponding to the word Wi

algorithm B responds as follows:

1. Algorithm B runs the above algorithm for responding to H1-queries to obtain an
hi ∈ G1 such that H1(Wi) = hi. Let 〈Wi, hi, ai, ci〉 be the corresponding tuple on
the H1-list. If ci = 0 then B reports failure and terminates.

2. Otherwise, we know ci = 1 and hence hi = gai ∈ G1. Define Ti = uai

1 . Observe
that Ti = H(Wi)

α and therefore Ti is the correct trapdoor for the keyword Wi

under the public key Apub = [g, u1]. Algorithm B gives Ti to algorithm A.

Challenge. Eventually algorithm A produces a pair of keywords W0 and W1 that it wishes
to be challenged on. Algorithm B generates the challenge PEKS as follows:

1. Algorithm B runs the above algorithm for responding to H1-queries twice to obtain
a h0, h1 ∈ G1 such that H1(W0) = h0 and H1(W1) = h1. For i = 0, 1 let
〈Wi, hi, ai, ci〉 be the corresponding tuples on the H1-list. If both c0 = 1 and
c1 = 1 then B reports failure and terminates.

2. We know that at least one of c0, c1 is equal to 0. Algorithm B randomly picks a
b ∈ {0, 1} such that cb = 0 (if only one cb is equal to 0 then no randomness is
needed since there is only one choice).

3. Algorithm B responds with the challenge PEKS C = [u3, J] for a random J ∈
{0, 1}log p.

Note that this challenge implicitly defines H2(e(H1(Wb), u
γ
1)) = J . In other words,

J = H2(e(H1(Wb), u
γ
1)) = H2(e(u2g

ab, gαγ)) = H2(e(g, g)αγ(β+ab))

With this definition, C is a valid PEKS for Wb as required.

More trapdoor queries. A can continue to issue trapdoor queries for keywords Wi where
the only restriction is that Wi 6= W0, W1. Algorithm B responds to these queries as
before.

Output. Eventually, A outputs its guess b′ ∈ {0, 1} indicating whether the challenge C is
the result of PEKS(Apub, W0) or PEKS(Apub, W1). At this point, algorithm B picks a
random pair (t, V) from the H2-list and outputs t/e(u1, u3)

ab as its guess for e(g, g)αβγ,
where ab is the value used in the Challenge step. The reason this works is that, as we will
show, A must have issued a query for either H2(e(H1(W0), u

γ
1)) or H2(e(H1(W1), u

γ
1)).

Therefore, with probability 1/2 the H2-list contains a pair whose left hand side is

8

t = e(H1(Wb), u
γ
1) = e(g, g)αγ(β+ab). If B picks this pair (t, V) from the H2-list then

t/e(u1, u3)
ab = e(g, g)αβγ as required.

This completes the description of algorithm B. It remains to show that B correctly outputs
e(g, g)αβγ with probability at least ε′. To do so, we first analyze the probability that B does
not abort during the simulation. We define two events:

E1: B does not abort as a result of any of A’s trapdoor queries.
E2: B does not abort during the challenge phase.

We first argue as in [6] that both events E1 and E2 occur with sufficiently high probability.

Claim 1: The probability that algorithm B does not abort as a result of A’s trapdoor
queries is at least 1/e. Hence, Pr[E1] ≥ 1/e.

Proof. Without loss of generality we assume that A does not ask for the trapdoor of the same
keyword twice. The probability that a trapdoor query causes B to abort is 1/(qT + 1). To
see this, let Wi be A’s i’th trapdoor query and let 〈Wi, hi, ai, ci〉 be the corresponding tuple
on the H1-list. Prior to issuing the query, the bit ci is independent of A’s view — the only
value that could be given to A that depends on ci is H(Wi), but the distribution on H(Wi)
is the same whether ci = 0 or ci = 1. Therefore, the probability that this query causes B to
abort is at most 1/(qT + 1). Since A makes at most qT trapdoor queries the probability that
B does not abort as a result of all trapdoor queries is at least (1− 1/(qT + 1))qT ≥ 1/e.

Claim 2: The probability that algorithm B does not abort during the challenge phase is at
least 1/qT . Hence, Pr[E2] ≥ 1/qT .

Proof. Algorithm B will abort during the challenge phase if A is able to produce W0, W1

with the following property: c0 = c1 = 1 where for i = 0, 1 the tuple 〈Wi, hi, ai, ci〉 is
the tuple on the H1-list corresponding to Wi. Since A has not queried for the trapdoor
for W0, W1 we have that both c0, c1 are independent of A’s current view. Therefore, since
Pr[ci = 0] = 1/(qT + 1) for i = 0, 1, and the two values are independent of one another, we
have that Pr[c0 = c1 = 1] = (1−1/(qT +1))2 ≤ 1−1/qT . Hence, the probability that B does
not abort is at least 1/qT .

Observe that since A can never issue a trapdoor query for the challenge keywords W0, W1

the two events E1 and E2 are independent. Therefore, Pr[E1 ∧ E2] ≥ 1/(eqT).
To complete the proof of Theorem 3.1 it remains to show that B outputs the solution

to the given BDH instance with probability at least ε/qH2
. To do we show that during the

simulation A issues a query for H2(e(H1(Wb), u
γ
1)) with probability at least ε.

Claim 3: Suppose that in a real attack game A is given the public key [g, u1] and A asks to
be challenged on words W0 and W1. In response, A is given a challenge C = [gr, J]. Then, in
the real attack game A issues an H2 query for either H2(e(H1(W0), u

r
1)) or H2(e(H1(W1), u

r
1))

with probability at least 2ε.

Proof. Let E3 be the event that in the real attack A does not issue a query for either one
of H2(e(H1(W0), u

r
1)) and H2(e(H1(W1), u

r
1)). Then, when E3 occurs we know that the bit

b ∈ {0, 1} indicating whether C is a PEKS of W0 or W1 is independent of A’s view. Therefore,
A’s output b′ will satisfy b = b′ with probability at most 1

2
. By definition of A, we know

9

that in the real attack |Pr[b = b′] − 1/2| ≥ ε. We show that these two facts imply that
Pr[¬E3] ≥ 2ε. To do so, we first derive simple upper and lower bounds on Pr[b = b′]:

Pr[b = b′] = Pr[b = b′|E3] Pr[E3] + Pr[b = b′|¬E3] Pr[¬E3]

≤ Pr[b = b′|E3] Pr[E3] + Pr[¬E3] =
1

2
Pr[E3] + Pr[¬E3]

=
1

2
+

1

2
Pr[¬E3],

Pr[b = b′] ≥ Pr[b = b′|E3] Pr[E3] =
1

2
Pr[E3] =

1

2
− 1

2
Pr[¬E3].

It follows that ε ≤ |Pr[b = b′]−1/2| ≤ 1
2
Pr[¬E3]. Therefore, in the real attack, Pr[¬E3] ≥ 2ε

as required.
Now, assuming B does not abort, we know that B simulates a real attack game perfectly

up to the moment when A issues a query for either H2(e(H1(W0), u
γ
1)) or H2(e(H1(W1), u

γ
1)).

Therefore, by Claim 3, by the end of the simulation A will have issued a query for either
H2(e(H1(W0), u

γ
1)) or H2(e(H1(W1), u

γ
1)) with probability at least 2ε. It follows that A is-

sues a query for H2(e(H1(Wb), u
γ
1)) with probability at least ε. Consequently, the value

e(H1(Wb), u
γ
1) = e(gβ+ab, g)αγ will appear on the left hand side of some pair in the H2-list.

Algorithm B will choose the correct pair with probability at least 1/qH2
and therefore, as-

suming B does not abort during the simulation, it will produce the correct answer with
probability at least ε/qH2

. Since B does not abort with probability at least 1/(eqT) we see
that B’s success probability overall is at least ε/(eqT qH2

) as required.

3.2 A limited construction using any trapdoor permutation

Our second PEKS construction is based on general trapdoor permutations, assuming that the
total number of keywords that the user wishes to search for is bounded by some polynomial
function in the security parameter. (As a first step in our construction, we will make an even
stronger assumption that the total number of words Σ ⊂ {0, 1}∗ in the dictionary is also
bounded by a polynomial function, we will later show how to remove this additional assump-
tion.) We will also need a family of semantically-secure encryptions where given a ciphertext
it is computationally hard to say which public-key this ciphertext is associated with. This
notion was formalized by Bellare et al. [1]. We say that a public-key system that has this
property is source-indistinguishable. More precisely, source-indistinguishability for an
encryption scheme (G, E, D) is defined using the following game between a challenger and
an attacker A (here G is the key generation algorithm, and E/D are encryption/decryption
algorithms). The security parameter s is given to both players.
Source Indistinguishability security game:

1. The challenger runs algorithm G(s) two times to generate two public/private key
pairs (PK0, P riv0) and (PK1, P riv1).

2. The challenger picks a random M ∈ {0, 1}s and a random b ∈ {0, 1} and computes
an encryption C = PKb(M). The challenger gives (M, C) to the attacker.

3. The attacker outputs b′ and wins the game if b = b′.

10

In other words, the attacker wins if he correctly guesses whether he was given the
encryption of M under PK0 or under PK1. We define A’s advantage in winning the
game as:

AdvSIA(s) = |Pr[b = b′]− 1

2
|

Definition 3.2. We say that a public-key encryption scheme is source indistinguishable if
for any polynomial time attacker A we have that AdvSIA(s) is a negligible function.

We note that Bellare et al. [1] define a stronger notion of source indistinguishability
than the one above by allowing the adversary to choose the challenge message M . For our
purposes, giving the adversary an encryption of a random message is sufficient.

It is easy to check that source indistinguishability can be attained from any trapdoor
permutation family, where for a given security parameter all permutations in the family are
defined over the same domain. Such a family can be constructed from any family of trapdoor
permutations as described in [1]. Then to encrypt a bit b we pick a random x, and output
[f(x), GL(x) ⊕ b] where GL is the Goldreich-Levin hard-core bit [19]. We therefore obtain
the following lemma:

Lemma 3.3. Given any trapdoor permutation family we can construct a semantically secure
source indistinguishable encryption scheme.

We note that source indistinguishability is an orthogonal property to semantic security.
One can build a semantically secure system that is not source indistinguishable (by embed-
ding the public key in every ciphertext). Conversely, one can build a source indistinguishable
system that is not semantically secure (by embedding the plaintext in every ciphertext).

A simple PEKS from trapdoor permutations. When the keyword family Σ is of poly-
nomial size (in the security parameter) it is easy to construct searchable encryption from any
source-indistinguishable public-key system (G, E, D). We let s be the security parameter for
the scheme.

• KeyGen: For each W ∈ Σ run G(s) to generate a new public/private key pair PKW /PrivW

for the source-indistinguishable encryption scheme. The PEKS public key is
Apub = {PKW |W ∈ Σ}. The private key is Apriv = {PrivW | W ∈ Σ}.
• PEKS(Apub, W): Pick a random M ∈ {0, 1}s and output PEKS(Apub, W) = (M, E[PKW , M]),

i.e. encrypt M using the public key PKW .
• Trapdoor(Apriv, W): The trapdoor for word W is simply TW = PrivW .
• Test(Apub, S, TW): Test if the decryption D[TW , S] = 0s. Output ‘yes’ if so and ‘no’

otherwise.

Note that the dictionary must be of polynomial size (in s) so that the public and private
keys are of polynomial size (in s).

This construction gives a semantically secure PEKS as stated in the following simple
theorem. Semantically secure PEKS is defined as in Definition 2.2 except that the adversary
is not allowed to make chosen keyword queries.

Theorem 3.4. The PEKS scheme above is semantically secure assuming the underlying
public key encryption scheme (G, E, D) is source-indistinguishable.

11

Proof sketch: Let Σ = {W1, . . . , Wk} be the keyword dictionary. Suppose we have a
PEKS attacker A for which AdvA(s) > ε(s). We build an attacker B that breaks the source
indistinguishability of (G, E, D) where AdvSIB(s) > ε(s)/k2.

The reduction is immediate: B is given two public keys PK0, PK1 and a pair (M, C)
where M is random in {0, 1}s and C = PKb(M) for b ∈ {0, 1}. Algorithm B generates
k − 2 additional public/private keys using G(s). It creates Apub as a list of all k public
keys with PK0, PK1 embedded in a random location in the list. Let Wi, Wj be the words
associated with the public keys PK0, PK1. B sends Apub to A who then responds with two
words Wk, W` ∈ Σ on which A wishes to be challenged. If {i, j} 6= {k, `} algorithm B
reports failure and aborts. Otherwise, B sends the challenge (M, C) to A who then responds
with a b′ ∈ {0, 1}. Algorithm B outputs b′ as its response to the source indistinguishability
challenge. We have that b = b′ if algorithm B did not abort and A’s response was correct.
This happens with probability at least 1

2
+ε/k2. Hence, AdvSIB(s) > ε(s)/k2 as required.

We note that this PEKS can be viewed as derived from an IBE system with a limited
number of identities. For each identity there is a pre-specified public key. Such an IBE
system is implied in the work of Dodis et al. [13]. They propose reducing the size of the
public-key using cover-free set systems. We apply the same idea below to reduce the size of
the public key in the PEKS above.

Reducing the public key size. The drawback of the above scheme is that the public
key length grows linearly with the total dictionary size. If we have an upper-bound on the
total number of keyword trapdoors that the user will release to the email gateway (though
we do not need to know these keywords a-priori) we can do much better using cover-free
families [15] and can allow keyword dictionary to be of exponential size. Since typically a
user will only allow a third party (such as e-mail server) to search for a limited number of
keywords so that assuming an upper bound on the number of released trapdoors is within
reason. We begin by recalling the definition of cover-free families.

Definition 3.5. Cover-free families. Let d, t, k be positive integers, let G be a ground set
of size d, and let F = {S1, . . . , Sk} be a family of subsets of G. We say that subset Sj does
not cover Si if it holds that Si 6⊆ Sj. We say that family F is t-cover free over G if each
subset in F is not covered by the union of t subsets in F . Moreover, we say that a family of
subsets is q-uniform if all subsets in the family have size q.

We will use the following fact from [14].

Lemma 3.6. [14] There exists a deterministic algorithm that, for any fixed t, k, constructs
a q-uniform t-cover free family F over a ground set of size d, for q = dd/4te and d ≤
16t2(1 + log(k/2)/ log 3).

The PEKS. Given the previous PEKS construction as a starting point, we can significantly
reduce the size of public file Apub by allowing user to re-use individual public keys for different
keywords. We associate to each keyword a subset of public keys chosen from a cover free
family. Let k be the size of the dictionary Σ = {W1, . . . , Wk} and let t be an upper bound
on the number of keyword trapdoors released to the mail gateway by user Alice. Let d, q
satisfy the bounds of Lemma 3.6. The PEKS(d, t, k, q) construction is as follows:

12

• KeyGen: For i = 1, . . . , d run algorithm G(s) to generate a new public/private key pair
PKi/Privi for the source-indistinguishable encryption scheme. The PEKS public key
is Apub = {PK1, . . . , PKd}. The private key is Apriv = {Priv1, . . . , P rivd}. We will be
using a q-uniform t-cover free family of subsets F = {S1, . . . , Sk} of {PK1, . . . , PKd}.
Hence, each Si is a subset of public keys.
• PEKS(Apub, Wi): Let Si ∈ F be the subset associated with the word Wi ∈ Σ. Let

Si = {PK(1), . . . , PK(q)}. Pick random messages M1, . . . , Mq ∈ {0, 1}s and let M =
M1 ⊕ · · · ⊕Mq. Output the tuple:

PEKS(Apub, Wi) =
(

M, E[PK(1), M1], . . . , E[PK(q), Mq]
)

• Trapdoor(Apriv, Wi): Let Si ∈ F be the subset associated with word Wi ∈ Σ. The
trapdoor for word Wi is simply the set of private keys that correspond to the public
keys in the set Si.
• Test(Apub, R, TW):

Let TW = {Priv(1), . . . , P riv(q)} and let R = (M, C1, . . . , Cq) be a PEKS. For
i = 1, . . . , q decrypt each Ci using private key Priv(i) to obtain Mi. Output ‘yes’ if
M = M1 ⊕ · · · ⊕Mq, and output ‘no’ otherwise.

The size of the public key file Apub is much smaller now: logarithmic in the size of the
dictionary. The downside is that Alice can only release t keywords to the email gateway.
Once t trapdoors are released privacy is no longer guaranteed. Also, notice that the size of
the PEKS is larger now (logarithmic in the dictionary size and linear in t). The following
corollary of Theorem 3.4 shows that the resulting PEKS is secure.

Corollary 3.7. Let d, t, k, q satisfy the bounds of Lemma 3.6. The PEKS(d, t, k, q) scheme
above is semantically secure under a chosen keyword attack assuming the underlying public
key encryption scheme (G, E, D) is source-indistinguishable and semantically secure, and
that the adversary makes no more than t trapdoors queries.

Proof sketch: Let Σ = {W1, . . . , Wk} be the keyword dictionary. Suppose we have a
PEKS attacker A for which AdvA(s) > ε(s). We build an attacker B that breaks the source
indistinguishability of (G, E, D).

Algorithm B is given two public keys PK0, PK1 and a pair (M, C) where M is random
in {0, 1}s and C = PKb(M) for b ∈ {0, 1}. Its goal is to output a guess for b which it does by
interacting with A. Algorithm B generates d− 2 additional public/private keys using G(s).
It creates Apub as a list of all d public keys with PK0, PK1 embedded in a random location
in the list. Let Wi, Wj be the words associated with the public keys PK0, PK1.
B sends Apub to A. Algorithm A issues up to t trapdoor queries. B responds to a

trapdoor query for W ∈ Σ as follows: let S ∈ F be the subset corresponding to the word
W . If PK0 ∈ S or PK1 ∈ S algorithm B reports failure and aborts. Otherwise, B gives A
the set of private keys {Privi | i ∈ S}.

At some point, Algorithm A outputs two words W ′
0, W

′
1 ∈ Σ on which it wishes to be

challenged. Let S ′
0, S

′
1 ∈ F be the subsets corresponding to W ′

0, W
′
1 respectively. Let E be

the event that PK0 ∈ S ′
0 and PK1 ∈ S ′

1. If event E did not happen then B reports failure
and aborts.

13

We now know that PK0 ∈ S ′
0 and PK1 ∈ S ′

1. For j = 0, 1 let S ′
j = {PK

(1)
j , . . . , PK

(q)
j }.

We arrange things so that PK0 = PK
(c)
0 and PK1 = PK

(c)
1 for some random 1 ≤ c ≤ q.

Next, B picks random M1, . . . , Mc−1, Mc+1, . . . , Mq ∈ {0, 1}s and sets Mc = M . Let M ′ =
M1 ⊕ · · · ⊕Mq. Algorithm B defines the following hybrid tuple:

R =

(

M ′, E[PK
(1)
0 , M1], . . . , E[PK

(c−1)
0 , Mc−1], C,

E[PK
(c+1)
1 , Mc+1], . . . , E[PK

(q)
1 , Mq]

)

It gives R as the challenge PEKS to algorithm A. Algorithm A eventually responds with
some b′ ∈ {0, 1} indicating whether R is PEKS(Apub, W

′
0) or PEKS(Apub, W

′
1). Algorithm B

outputs b′ as its guess for b. One can show using a standard hybrid argument that if B does
not abort then |Pr[b = b′]− 1

2
| > ε/q2. The probability that B does not abort at a result of a

trapdoor query is at least 1−(tq/d). The probability that B does not abort as a result of the
choice of words W ′

0, W
′
1 is at least (q/d)2. Hence, B does not abort with probability at least

1/poly(t, q, d). Repeatedly running B until it does not abort shows that we can get advantage
ε/q2 in breaking the source indistinguishability of (G, E, D) in expected polynomial time in
the running time of A.

4 Construction using Jacobi symbols

Given the relation between Identity Based Encryption and PEKS it is tempting to construct
a PEKS from an IBE system due to Cocks [3]. The security of Cocks’ IBE system is based on
the difficulty of distinguishing quadratic residues from non-residues modulo N = pq where
p = q = 3(mod4).

Unfortunately, Galbraith [11] shows that the Cocks system as described in [3] is not
public-key private in the sense of Bellare et al. [1]. Therefore it appears that the Cocks system
cannot be directly used to construct a PEKS. It provides a good example that constructing
a PEKS is a harder problem than constructing an IBE.

5 Conclusions

We defined the concept of a public key encryption with keyword search (PEKS) and gave
two constructions. Constructing a PEKS is related to Identity Based Encryption (IBE),
though PEKS seems to be harder to construct. We showed that PEKS implies Identity Based
Encryption, but the converse is currently an open problem. Our constructions for PEKS

are based on recent IBE constructions. We are able to prove security by exploiting extra
properties of these schemes.

14

Acknowledgments

We thank Glenn Durfee for suggesting the use of H2 in the construction of Section 3.1. We
thank Yevgeniy Dodis, David Molnar, and Steven Galbraith for helpful comments on this
work.

References

[1] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval “Key-Privacy in Public-Key
Encryption,” in Advances in Cryptology - Asiacrypt 2001 Proceedings, LNCS Vol. 2248,
Springer-Verlag, 2001.

[2] D. Boneh and M. Franklin, Identity-based Encryption from the Weil Pairing, SIAM J.
of Computing, Vol. 32, No. 3, pp. 586-615, 2003, Extended abstract in Crypto 2001.

[3] C. Cocks, An identity based encryption scheme based on quadratic residues, Eighth IMA
International Conference on Cryptography and Coding, Dec. 2001, Royal Agricultural
College, Cirencester, UK.

[4] C. Cachin, S. Micali, M. Stadler Computationally Private Information Retrieval with
Polylogarithmic Communication Eurcrypt 1999.

[5] B. Chor, O. Goldreich, E. Kushilevitz and M. Sudan, Private Information Retrieval, in
FOCS 95 (also Journal of ACM).

[6] J. Coron, “On the exact security of Full-Domain-Hash”, in Advances in Cryptology –
Crypto 2000, Lecture Notes in Computer Science, Vol. 1880, Springer-Verlag, pp. 229–
235, 2000.

[7] D. Dolev, C. Dwork, and M. Naor, “Non-Malleable Cryptography,” in SIAM Journal
on Computing, 2000. Early version in proceedings of STOC ’91.

[8] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Universal service-providers for database
private information retrieval. In Proc. of the 17th Annu. ACM Symp. on Principles of
Distributed Computing, pages 91-100, 1998.

[9] G. Di Crescenzo, T. Malkin, and R. Ostrovsky. Single-database private information
retrieval implies oblivious transfer. In Advances in Cryptology - EUROCRYPT 2000,
2000.

[10] A. Iliev, S. Smith Privacy-enhanced credential services. Second an-
nual PKI workshop. (see also Darthmoth Technical Report TR-2003-442;
http://www.cs.dartmouth.edu/ sws/papers/ilsm03.pdf.

[11] S. Galbraith, private communications.

[12] Y. Desmedt, “Computer security by redefining what a computer is,” in Proceedings
New Security Paradigms II Workshop, pp. 160–166, 1992.

15

[13] Y. Dodis, J. Katz, S. Xu, and M. Yung. “Key-insulated public key cryptosystems,” in
Advances in Cryptology – Eurocrypt 2002, LNCS, Springer-Verlag, pp. 65–82, 2002.

[14] D. Z. Du and F. K. Hwang, Combinatorial Group Testing and its Applications, World
Scientific, Singapore, 1993.

[15] P. Erdos, P. Frankl and Z. Furedi, Families of finite sets in which no set is covered by
the union of r others, in Israeli Journal of Mathematics, 51: 79–89, 1985.

[16] E. Goh, “Building Secure Indexes for Searching Efficiently on Encrypted Compressed
Data,” http://eprint.iacr.org/2003/216/

[17] O. Goldreich and R. Ostrovsky. Software protection and simulation by oblivious RAMs.
JACM, 1996.

[18] Goldreich, O., S. Goldwasser, and S. Micali, “How To Construct Random Functions,”
Journal of the Association for Computing Machinery , Vol. 33, No. 4 (October 1986),
792-807.

[19] S. Goldwasser and S. Micali, Probabilistic Encryption, in Journal of Computer and
System Sciences. vol. 28 (1984), n. 2, pp. 270–299.

[20] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin Protecting data privacy in private
information retrieval schemes. In Proc. of the 30th Annual ACM Symposium on the
Theory of Computing, pp. 151-160, 1998.

[21] A. Joux, “The Weil and Tate Pairings as Building Blocks for Public Key Cryptosys-
tems”, in Proc. Fifth Algorithmic Number Theory Symposium, Lecture Notes in Com-
puter Science, Springer-Verlag, 2002.

[22] E. Kushilevitz and R. Ostrovsky, Replication is not needed: Single Database,
Computationally-Private Information Retrieval, in FOCS 97.

[23] E. Kushilevitz and R. Ostrovsky. One-way Trapdoor Permutations are Sufficient for
Non-Trivial Single-Database Computationally-Private Information Retrieval. In Proc.
of EUROCRYPT ’00, 2000.

[24] P. Maniatis, M. Roussopoulos, E. Swierk, K. Lai, G. Appenzeller, X. Zhao, and M.
Baker, The Mobile People Architecture. ACM Mobile Computing and Communications
Review (MC2R), Volume 3, Number 3, July 1999.

[25] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In Proc. of the
31th Annu. ACM Symp. on the Theory of Computing, pages 245–254, 1999.

[26] R. Ostrovsky. Software protection and simulation on oblivious RAMs. MIT Ph.D. The-
sis, 1992. Preliminary version in Proc. 22nd Annual ACM Symp. Theory Comp., 1990.

[27] W. Ogata and K. Kurosawa, “Oblivious keyword search,” to appear in J. of Complexity.

16

[28] D. Song, D. Wagner, and A. Perrig, Practical Techniques for Searches on Encrypted
Data, in Proc. of the 2000 IEEE symposium on Security and Privacy (S&P 2000).

[29] A. Shamir, Identity-based Cryptosystems and Signature Schemes, in CRYPTO 84.

[30] B. Waters, D. Balfanz, G. Durfee, D. Smetters, “Building an encrypted and searchable
audit log”, to appear in NDSS ’04.

17

