
Secure Data Storage and Retrieval in the Cloud
Vaibhav Khadilkar, Anuj Gupta, Murat Kantarcioglu, Latifur Khan, Bhavani Thuraisingham

The University of Texas at Dallas
800 W. Campbell Road
Richardson, TX 75080

Abstract—With the advent of the World Wide Web and
the emergence of e-commerce applications and social networks,
organizations across the world generate a large amount of
data daily. This data would be more useful to cooperating
organizations if they were able to share their data. Two major
obstacles to this process of data sharing are providing a common
storage space and secure access to the shared data. In this
paper we address these issues by combining cloud computing
technologies such as Hive and Hadoop with XACML policy
based security mechanisms that provide fine-grained access to
resources. We further present a web-based application that
uses this combination and allows collaborating organizations to
securely store and retrieve large amounts of data.

Index Terms—Cloud Computing, Hadoop, Hive, Web applica-
tions

I. INTRODUCTION

The World Wide Web (WWW) is envisioned as a system
of interlinked hypertext documents that are accessed using
the Internet [1]. With the emergence of organizations that
provide e-commerce such as Amazon.com1 and social network
applications such as Facebook2 and Twitter3 on the World
Wide Web, the volume of data generated by them daily is
massive [2]. It was estimated that the amount of data that
would be generated by individuals in the year 2009 would
be more than that generated in the entire history of mankind
through 2008 [3]. The large amount of data generated by
one organization could be valuable to other organizations or
researchers if it can be correlated with the data that they
have [4]. This is especially true for various governmental
intelligence organizations. This has led to another trend of
forming partnerships between business organizations and uni-
versities for research collaborations [5] and between business
organizations for data sharing to create better applications [6].

The two main obstacles to this process of collaboration
among organizations are arranging a large, common data
storage area and providing secure access to the shared data. Or-
ganizations across the world invest a great deal of resources on
minimizing storage costs and with the introduction of cloud-
based services it is estimated that this cost would be reduced
further [7]. Additionally, organizations spend a large amount
of their yearly budget on security but this is still not sufficient
to prevent security breaches [8], [9]. In this paper we present a
web-based system (Hive Access Control4) that aims to achieve

1http://www.amazon.com/
2http://www.facebook.com/
3http://twitter.com/
4http://cs.utdallas.edu/secure-cloud-repository/

the previously stated goals by combining cloud computing
techologies with policy-based security mechanisms. This idea
comes in part from the recommendations of the Cloud Security
Alliance for Identity and Access Management [10] and our
previous work using XACML policies [11]. We have combined
the Hadoop Distributed File System [12] with Hive [13] to
provide a common storage area for participating organizations.
Further, we have used a XACML [14] policy-based security
mechanism to provide fine-grained access controls over the
shared data. Users of our system are divided into groups based
on the kinds of queries that they can run such as SELECT and
INSERT. Our system provides a secure login feature to users
based on a salted hash technique. When a user logs into our
sytem, based on the group that the user belongs to he/she
is provided with different options. We allow collaborating
organizations to load data to the shared storage space in the
form of relational tables and views. Users can also define fine-
grained XACML access control policies on tables/views for
groups of users. Users can then query the entire database based
on the credentials that they have. We have provided some basic
query rewriting rules in our system that abstract users from
the query language of Hive (HiveQL). This allows them to
enter regular SQL queries in the web application which are
translated into HiveQL using the basic rewriting rules. Our
system also allows new users to register but only a designated
special user “admin” can assign these users to the appropriate
groups. The contributions of this paper include:

• Mechanism to load and query shared data securely that
is stored in HDFS using Hive.

• Additional layer of security above HDFS and Hive using
a XACML policy-based mechanism.

• Basic query rewriting rules that abstract a user from
HiveQL and allow him/her to enter SQL queries.

• Incorporation of the above mechanisms into a web-based
system.

This paper is structured as follows: Section II presents
the related work in the area of secure storage and retrieval
of information in the cloud. In section III we present our
architecture for solving the problem of secure large scale data
sharing based on combining cloud computing technologies
with XACML policy based security mechanisms. Further in
section IV we present the details of our implementation by
giving performance graphs and some sample screenshots.
Finally section V presents our conclusions and future work.



II. RELATED WORK

The aim of our paper is to combine cloud computing
technologies with security mechanisms so that cooperating
organizations can share vast amounts of data securely.

Since the birth of cloud computing technologies there has
been much interest generated among researchers, business
organizations and media outlets about security issues with
these technologies [15], [16]. This interest has resulted in
large-scale research and development efforts from business
organizations [17], [18], [19]. A part of the work related
to security in the cloud has been focused on implementing
security at the infrastructure level. Reference [19] presents the
vision for security design in Hadoop. This document presents
a few security risks with Hadoop and outlines solutions to
them. These solutions have been implemented in beta versions
of Hadoop v0.20. This development effort is an important
step towards securing cloud infrastructures but is only in its
inception stage. The goal of our system is to add another
layer of security above the security offered by Hadoop. Once
the security offered by Hadoop becomes robust it will only
strengthen the effectiveness of our system.

Amazon Web Services (AWS) is a web services infras-
tructure platform in the cloud [20]. Reference [18] offers an
overview of security aspects that are relevant to AWS such
as physical security, network security and AWS security. Our
system is different from AWS in the sense that our cloud in-
frastructure is completely private versus AWS’s infrastructure
that is in the public domain. This distinguishing factor makes
our infrastructure “trusted” over the AWS infrastructure where
data must be stored in an encrypted format since AWS is in
the public domain. In the future we plan to extend our work
to include both, public and private clouds.

The Windows Azure platform is an Internet-scale cloud
computing services platform hosted in Microsoft data centers
[17]. Reference [21] provides an overview of the security chal-
lenges and recommended approaches to design and develop
more secure applications for the Windows Azure platform.
However according to reference [22], the Windows Azure
platform is suitable for building new applications, but it is
not optimal to migrate existing applications. The main reason
that we did not use the Windows Azure platform is that we
wanted to port our existing application to an open source
system instead of writing our code from scratch as would be
needed with Windows Azure. We also did not want to be tied
to the Windows framework but rather allow our work to be
used on any kind of system. We will be able to test our system
on the Windows Azure platform once the platform supports
the use of virtual machines (VM’s) to run existing applications
[22].

As we see from the discussions above, the research efforts
identified in our study of related work have either just started
or fit a completely different domain. We believe, to the best
of our knowledge that our system is the first of its kind to
introduce a layer of security that is independent of the security
provided by current cloud infrastructures.

III. SYSTEM ARCHITECTURE

In this section we present our architecture that securely
provides access to a large common storage space (the “Cloud”)
thus allowing cooperating organizations to share data reliably.
We begin by giving an overview of the architecture followed
by a discussion of each of its component layers.
Figure 1 shows the architecture of our system. Each rectangle
in the figure represents a different component of our frame-
work. The various line styles for arrows indicate the flow of
control for a specific task that can be accomplished with this
system. Next we present each of the component layers in the
architecture.

A. The Web Application layer

The Web Application layer is the only interface provided by
our system to the user to access the cloud infrastructure. We
provide different functions based on the permissions assigned
to a user. The web application provides a login page that
can be used by any user to log into the system. We use the
Java simplified encryption (JASYPT) library’s [23] salted hash
technique to store usernames and passwords in a file. Further,
that file is stored in a secure location that is not accessible to
any user. The system currently supports three types of users,

• users who can only query the existing tables/views,
• users who can create tables/views and define XACML

policies on them in addition to querying all tables/views,
and finally,

• a special “admin” user who in addition to the previous
functions can also assign new users to either of the above
categories.

B. The ZQL Parser layer

The ZQL Parser [24] layer takes as input any query
submitted by a user and either proceeds to the XACML
policy evaluator if the query is successfully parsed or returns
an error message to the user. The ZQL Parser is a SQL parser
written in Java that takes a SQL query as input and fills
different Java Vectors with different parts of the query [24].
For example, given the query,

SELECT a.id, a.name FROM a WHERE a.id > 5;,

the ZQL Parser parses the query and constructs different Java
Vectors for every part of the query (SELECT, FROM and
WHERE). In our system, the Vector of attribute names in
the SELECT clause for the query above is returned to the
web application layer to be used in displaying the results
returned by the query. The Vector of table/view names in
the FROM clause is passed to the XACML Policy Evaluator
to ensure that the current user has permissions to access all
tables/views specified in the query. If the evaluator determines
that the current user has the required permissions, the query
is processed further, else an error message is returned to the
web application layer. The ZQL Parser currently supports the
SQL DELETE, INSERT, SELECT and UPDATE statements.



Fig. 1. System Architecture

Our future work involves adding support for other keywords
such as CREATE, DROP etc.

C. The XACML Policy layer

The eXtensible Access Control Markup Language
(XACML) is a XML-based language that is used to define
access control policies on resources. The same language
is also used to determine whether access is allowed for
a particular resource based on the policy defined for that
resource [14]. The following subsections explain how we
have defined and used XACML policies in our framework.

1) XACML Policy Builder: In our framework the tables
and views defined by users are treated as resources for
building XACML policies. Further, we have defined role
based access control [25], [26] policies on these resources
based on the kinds of queries that are provided by our system.
For every type of query supported by our framework we
define a mapping between this type and all users that are
allowed to run that kind of query. A sample listing of such a
mapping is given below,

INSERT admin user1 user2
SELECT admin user1 user3



In our system, for every table/view that a user wants to create
they are given the option of uploading their own pre-defined
XACML policy or having the framework build a policy for
them. If a user selects the latter option they must also specify
the kinds of queries (e.g. INSERT, SELECT etc.) that will
be allowed on the table/view. We then use Sun’s XACML
implementation [27] to build a policy for that table/view with
the groups specified by that particular user.

2) XACML Policy Evaluator: Our system uses Sun’s
XACML implementation [27] to evaluate if the current user
has access to all tables/views that are defined in any user query.
If permission is granted for all tables/views then the query is
processed further, else an error message is returned to the user.
The policy evaluator is used both, during regular user query
execution as well as during view creation since the only way
to create a view in Hive is by specifying a SELECT query on
the existing tables/views. The current user must have access
to all tables/views specified in this SELECT query before the
view can be created.

D. The Basic Query Rewriting layer

This layer enables us to add another layer of abstraction
between the user and HiveQL by allowing users to enter SQL
queries that are rewritten according to HiveQL’s syntax. In
our current system we provide two basic rewriting rules for
user-specified SQL queries,

• HiveQL does not allow multiple tables in the FROM
clause of a query, but rather expects this kind of query
to be given as a sequence of JOIN statements. The
user is abstracted from this fact by allowing him/her to
enter a regular SQL query with multiple tables in the
FROM clause that we transform to a sequence of JOIN
statements in conformance with HiveQL’s syntax. As an
example,
SELECT a.id, b.age FROM a, b;
⇒ SELECT a.id, b.age FROM a JOIN b;

• HiveQL uses a modified version of SQL’s INSERT-
SELECT statement, INSERT OVERWRITE TABLE
<tablename> SELECT rather than INSERT INTO
<tablename> SELECT. Again we abstract this from the
user by allowing him/her to enter the traditional INSERT
INTO <tablename> SELECT which we then rewrite into
HiveQL’s INSERT OVERWRITE TABLE <tablename>
SELECT. As an example,
INSERT INTO a SELECT * FROM b;
⇒ INSERT OVERWRITE TABLE a SELECT * FROM
b;

As part of our future work we plan to extend these basic
rewriting rules with more complicated rules in a complete
query rewriting engine.

E. The Hive layer

Hive is a data warehouse infrastructure built on top of
Hadoop [13]. Hive provides the ability to structure the data

in the underlying HDFS as well as to query this data. The
arrows in Figure 1 between the tables in this layer and the
files in the HDFS layer indicate that each table in Hive is
stored as a file in the HDFS. These files contain the data that
this table represents. There are no arrows between the views
in this layer and the files in the HDFS layer since a view is
only a logical concept in Hive that is created with a SELECT
query. In our framework, Hive is used to structure the data that
will be shared by collaborating organizations. Further we use
Hive’s SQL-like query language, HiveQL, to enable access to
this data. The advantage of using Hive in our system is that
users can query the data using a familiar SQL-like syntax.

F. The Hadoop Distributed File System (HDFS) layer

The Hadoop Distributed File System (HDFS) is a distributed
file system that is designed to run on basic hardware [12].
The HDFS layer in our framework stores the data files
corresponding to tables that are created in Hive [28]. Our
security assumption is that these files can neither be accessed
using Hadoop’s [29] web interface nor Hadoop’s command
line interface but only by using our system.

IV. IMPLEMENTATION DETAILS AND RESULTS

In this section we present the implementation details of
our system by providing performance graphs for the insert
and query processes for tables with different sizes. We begin
by giving a brief description of our implementation setup
followed by the implementation details.

A. Implementation Setup

Our implementation was done on a 19 node cluster with
a mix of two different configurations for nodes. Further,
all nodes are in the same rack. Out of the 19 nodes 11
nodes ran Ubuntu v10.04 Lucid Lynx, on an Intel Pentium
4, 3.2GHz CPU with 4GB SDRAM 400 MHz memory and
a 40GB Western Digital WDC WD400BB-75FJ SATA hard
drive as the primary drive and a 250GB Western Digital
WD2500AAJB-0 SATA hard drive as the secondary drive. The
other 8 nodes ran Ubuntu v9.04 Jaunty Jackalope, on an Intel
Pentium 4, 2.8 GHz CPU with 4GB SDRAM 333MHz mem-
ory and two 40GB Western Digital WDC WD400BB-75FJ
SATA hard drives. We used the Java version JRE v1.6.0 18
for our implementation. For the cloud infrastructure we used
Hadoop version v0.19.1, with a 1000MB heap space and Hive
version v0.5, with the default heap space. We also used Apache
Tomcat v7.0.0 as the web server for our application with a
2GB heap space. We also used default values for all parameters
that are provided by Hadoop and Hive. We understand that we
will have a performance gain when we set optimal values for
these parameters. But, since this is preliminary work we have
chosen not to focus on these parameters which will be done
in the future.

B. Experimental Datasets

We have used two different datasets to test the performance
of our system versus Hive. The first dataset is the Freebase



0.1M 0.3M 0.5M 1.67M
0

5

10

15

20

25

30
CREATE and LOAD Query

Ti
m

e 
in

 S
ec

on
ds

Number of Tuples(N)

 Application Time
 Hive Time

(a) Data Loading Time

0.1M 0.3M 0.5M 1.67M
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
SELECT * FROM Query

Ti
m

e 
in

 S
ec

on
ds

Number of Tuples (N)

 Application Time
 Hive Time

(b) “SELECT * FROM” Query Time

Fig. 2. Experimental comparison between our application and Hive for the Freebase dataset. The number of tuples, N = bactual table sizec

[30] system which is an open repository of structured data that
has approximately 12 million topics or entities. An entity is a
person, place or thing with a unique identifier. We wanted to
simulate an environment of cooperating organizations by using
the people, business, film, sports, organization and awards
datasets from the Freebase system. We assume that each
dataset is loaded into our system by a different organization
and further, users can run various queries across these datasets
based on their permissions. The queries we have used to test
our implementation were created by us based on the datasets
of the Freebase system.

The second dataset we have used to test our system is the
well known TPC-H benchmark [31]. The TPC-H benchmark
is a decision support benchmark that consists of a schema
that is typical to any business organization. The benchmark
contains 8 tables and provides 22 queries with a high degree
of complexity. We have used this benchmark to test the
performance of our system versus Hive in performing complex
queries. The TPC-H benchmark provides a tool for data
generation (DBGEN) and a tool for query generation (QGEN).
We have used DBGEN to generate datasets with varying Scale
Factor’s (SF) from 1 to 1000 as specified in the benchmark
document. The reader should note that a scale factor of 1 is
approximately 1GB of data. Thus we have tested our system
with data sizes varying from 1GB to 1000GB. The smaller of
these datasets (SF=1, SF=10, and SF=30) are used to test the
loading performance of our system versus Hive. On the other
hand, the larger datasets (SF=100, SF=300, and SF=1000) are
used to run a few of the benchmark queries. We have used
queries Q1, Q3, Q6 and Q13 of the TPC-H benchmark to
test our system. These queries were randomly selected after
applying the following criterion to the study given in [32].
The original query does not need to be divided into sub-
queries manually since our web application does not support

this feature. We also think that the results obtained by running
the queries selected above is indicative of the performance of
all the other TPC-H benchmark queries that can be run on our
system.

C. Implementation Results

We have tested our web-based system for performance
metrics such as data loading and querying times. Further, we
have compared these metrics with the Hive command line
interface (CLI). All query times that are used in performance
graphs and result tables in this subsection are averaged over
three separate runs. We ran two sets of experiments, one
using the Freebase system and the other using the TPC-H
benchmark.

Figure 2 shows a comparison of the data loading and
querying time of our application versus Hive for the Freebase
datasets. As we see from figure 2(a) the data loading time
for our application is almost the same as Hive’s time for
small tables (0.1 and 0.3 million tuples). As the number of
tuples increases to 0.5 million and then to 1.67 million tuples
our system gets slower than Hive at loading tuples. This is
primarily because of the overhead associated with establishing
a connection with the Hive database as well as the time
associated with building a XACML policy for the table being
loaded.

Figure 2(b) shows a comparison of the running time for
a simple “SELECT * FROM” query between our application
and Hive. We have run the query on the same tables that
were used for data loading in figure 2(a) but we restricted
our results by using the LIMIT clause to only the first 100
tuples. This was done to avoid the large time difference that
would occur between our application and Hive’s CLI since we
have implemented a paging mechanism on the results whereas
Hive’s CLI would display all results on the screen. We see that



TABLE I
COMPARISON OF RUNNING TIMES FOR VARIOUS QUERIES ON OUR SYSTEM versus HIVE FOR THE FREEBASE SYSTEM

Query Type Query System Time
(sec)

Hive Time
(sec)

Query Table SELECT name, id FROM Person LIMIT 100; 27.1 28.4

Query Table SELECT id FROM Person; 30.2 30.5

WHERE name = ’Frank Mann’ LIMIT 100;

Create View CREATE VIEW Person View AS 0.19 0.114

SELECT name, id FROM Person;

Query View SELECT name, id FROM Person View LIMIT 100; 22.5 23.2

Query View SELECT id FROM Person View 30.1 29.3

WHERE name = ’Sachin’ LIMIT 100;

Join Query SELECT p.name, d.place of death 70 68.6

FROM Person p JOIN Deceased people d

ON (p.id = d.id AND p.name = d.name)

LIMIT 100;

Aggregate Query SELECT p.name, COUNT(DISTINCT p.id) 64 64.3

FROM Person p GROUP BY p.name LIMIT 100;

Insert Query INSERT INTO Person Insert 29.2 27.77

SELECT name,id,profession FROM Person;

our application times are slightly faster than the running time
for the query on the Hive CLI. This difference is because of
the time taken by the Hive CLI to display the results of the
query on the screen. Both running times are fast because Hive
does not need to run a Map-Reduce [33] job for this query
but simply needs to return the whole file for the corresponding
table from the HDFS.

We have also run a number of other queries and compared
the running times of these queries on our system versus Hive
for the Freebase system. These queries test the performance of
our system in creating and querying views/tables versus Hive.
We have tested a variety of queries including insert, create,
select, aggregate and join queries. We present each query and
the average running time on our system and on Hive in table
I.

Figure 3 shows a comparison of the data loading time of
our application versus Hive for the “Customer” and “Supplier”
tables for SF = 1, 10 and 30 from the TPC-H benchmark.
Our system currently allows users to upload data files that are
at most 1GB in size. The TPC-H benchmark’s DBGEN tool
generates files for the “Customer” and “Supplier” tables for
SF = 1, 10, and 30 that are less than 1GB in size. These are the
reasons why we have selected the “Customer” and “Supplier”
tables with SF = 1, 10, and 30 to compare the data loading
performance of our system versus Hive. Figure 3 shows us
results that are similar to the results obtained from figure 2(a).

Our system performs similar to Hive at the smallest SF of 1
and as the SF increases our system gets slower than Hive for
data loading. Again, this difference in execution performance
is because of the overhead associated with the Hive database
connection and XACML policy generation. The trend for both,
our system and Hive is linear as expected, since the size of
these tables increases linearly with the SF.

Table II shows a comparison of the performance of four
TPC-H benchmark queries on our system versus Hive. We
see that our system performs as well as the Hive command
line interface for the selected queries. Based on the query
performance times for both, our system and Hive, we see that
as the size of the tables increases the time for benchmark
query execution also increases, as expected. In a production
environment such queries would not be performed at runtime
on large datasets. We would rather run these queries offline
and could store the results in Hive as views. We could then use
a query rewriting mechanism to return these results efficiently.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a system that allows
cooperating organizations to securely share large amounts of
data. We have ensured that the organizations have a large
common storage area by using Hadoop. Further, we have used
Hive to present users of our system with a structured view of
the data and to also enable them to query the data with a SQL-
like language. We have used a simple salted hash mechanism



0 5 10 15 20 25 30

0

20

40

60

80

100

120
CREATE and LOAD "Customer"

Ti
m

e 
in

 S
ec

on
ds

Scale Factor (SF)

 Application Time
 Hive Time

(a) “Customer” Table Loading Time

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

Ti
m

e 
in

 S
ec

on
ds

Scale Factor (SF)

 Application Time
 Hive Time

CREATE and LOAD "Supplier"

(b) “Supplier” Table Loading Time

Fig. 3. Comparison of Loading and Querying times between our application and Hive for the TPC-H benchmark.

TABLE II
COMPARISON OF RUNNING TIMES FOR TPC-H BENCHMARK QUERIES ON OUR SYSTEM versus HIVE

Query Scale Factor (SF) System Time (sec) Hive Time (sec)

100 605.24 590.663

Q6 300 1815.454 1806.4

1000 6240.33 6249.679

100 870.704 847.52

Q13 300 1936.351 1910.186

1000 7322.541 7304.392

100 1210.04 1209.786

Q1 300 5407.14 5411.616

1000 42780.67 42768.83

100 1675.19 1670.765

Q3 300 7532.23 7511.523

1000 61411.21 61390.71

to authenticate users in the current version of our system.
We plan to implement a more sophisticated technique for
authentication in future versions of our system. In this paper
we have used the ZQL parser to parse any SQL query that is
input by the user. We plan to extend this parser with support for
keywords such as DESCRIBE, JOIN etc that are currently not
supported in ZQL. We have abstracted the user from the use
of Hive by implementing some basic query rewriting rules. A
part of our future work is to implement materialized views
in Hive and extend the basic query rewriting rules into a
complete engine for Hive that takes into account all existing
tables/materialized views and the XACML policies defined on
them. We have provided fine-grained access control on the

shared data using XACML policies. We have also incorporated
role based access control in our framework based on the kinds
of queries that users will submit to our system. In the current
version of our system we only provide support for two types
of keywords, INSERT and SELECT, as groups for XACML
policies. In the future we plan to extend our system to include
other keyword based groups such as DELETE, UPDATE etc.
We also plan to test the impact of using different values for
parameters provided by Hadoop and Hive on query execution
performance. Lastly, the current system is implemented in a
private cloud which will be extended to include public clouds
such as Amazon Web Services and Amazon Simple Storage
Services in future versions.



ACKNOWLEDGEMENTS

The work carried out in this paper was funded by the Air
Force Office of Scientific Research under contract FA9550-
08-1-0260 on secure cloud computing. We thank Dr. Robert
Herklotz for his support and encouragement of our work. We
are also thankful to Mehul Vyas and Nikhil Mishra for helping
with the design and implementation of our framework. We
would also like to thank Arindam Khaled for providing us with
the source code for the XACML policy builder and evaluator.

REFERENCES

[1] World Wide Web. http://en.wikipedia.org/wiki/World Wide Web.
[2] Samuel Axon. Facebook Will Celebrate 500 Million Users

Next Week. http://news.yahoo.com/s/mashable/20100717/tc mashable/
facebook will celebrate 500 million users next week, July 2010.

[3] Andreas Weigend. The Social Data Revolution(s). http://blogs.hbr.org/
now-new-next/2009/05/the-social-data-revolution.html, May 2009.

[4] Ganesh Variar. Data Explosion: A guide to connecting the dots.
http://advice.cio.com/ganesh variar/data explosion a guide to
connecting the dots?source=rss Blogs and Discussion All, January
2010.

[5] Nokia Research Center - Open Innovation. http://research.nokia.com/
openinnovation.

[6] Salesforce.com and Facebook Create New Opportunities for Enterprise
Applications to Serve Facebook’s 120 Million Users. http://www.
facebook.com/press/releases.php?p=63948, November 2008.

[7] Ann All. Cloud Data Storage: It’ll Still Cost You, So Give
It Some Thought. http://www.itbusinessedge.com/cm/blogs/all/
cloud-data-storage-itll-still-cost-you-so-give-it-some-thought/?cs=
38733, January 2010.

[8] John Sawyer. Tech Insight: How To Cut Security Costs Without
A Lot Of Pain. http://www.darkreading.com/smb-security/security/
management/showArticle.jhtml?articleID=226200159, July 2010.

[9] First Annual Cost of Cyber Crime Security. Technical report, Ponemon
Institute, July 2010.

[10] Subra Kumaraswamy, Sitaraman Lakshminarayanan, Michael Re-
iter Joseph Stein, and Yvonne Wilson. Domain 12: Guidance for Identity
& Access Management V2.1, April 2010.

[11] Pranav Parikh. Secured Information Integration with a Semantic Web-
based Framework. Master’s thesis, The University of Texas at Dallas,
December 2009.

[12] Dhruba Borthakur. HDFS Architecture. http://hadoop.apache.org/
common/docs/current/hdfs design.html, 2010.

[13] Apache Hive. http://wiki.apache.org/hadoop/Hive.
[14] Tim Moses. eXtensible Access Control Markup Language

(XACML) Version 2.0. http://docs.oasis-open.org/xacml/2.0/access
control-xacml-2.0-core-spec-os.pdf, February 2005.

[15] David Talbot. How Secure Is Cloud Computing? http://www.
technologyreview.com/computing/23951/, November 2009.

[16] Robert L. Mitchell. Cloud storage triggers security worries. http:
//www.computerworld.com/s/article/340438/Confidence in the Cloud?,
July 2009.

[17] Windows Azure Platform - Whitepapers. http://www.microsoft.com/
windowsazure/whitepapers/.

[18] Amazon Web Services: Overview of Security Processes.
http://awsmedia.s3.amazonaws.com/pdf/AWS Security Whitepaper.pdf,
November 2009.

[19] Owen O’Malley, Kan Zhang, Sanjay Radia, Ram Marti, and Christopher
Harrell. Hadoop Security Design. http://bit.ly/75011o, October 2009.

[20] Amazon Web Services. http://aws.amazon.com/.
[21] Andrew Marshall, Michael Howard, Grant Bugher, and

Brian Harden. Security Best Practices For Developing
Windows Azure Applications. http://download.microsoft.com/
download/7/3/E/73E4EE93-559F-4D0F-A6FC-7FEC5F1542D1/
SecurityBestPracticesWindowsAzureApps.docx.

[22] Jon Brodkin. Microsoft Windows Azure and Amazon EC2
on collision course. http://www.networkworld.com/news/2010/
062510-microsoft-azure-amazon-ec2.html, June 2010.

[23] JASYPT - Java simplified encryption. http://www.jasypt.org/index.html.
[24] Zql: a Java SQL parser. http://www.gibello.com/code/zql/.

[25] David F. Ferraiolo and D. Richard Kuhn. Role-Based Access Controls.
In National Computer Security Conference, pages 554–563, 1992.

[26] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-Based Access Control Models. IEEE Computer,
29(2):38–47, 1996.

[27] Sun XACML Implemetation. http://sunxacml.sourceforge.net/.
[28] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad

Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham
Murthy. Hive - A Warehousing Solution Over a Map-Reduce Frame-
work. PVLDB, 2(2):1626–1629, 2009.

[29] Apache Hadoop. http://hadoop.apache.org/.
[30] Freebase. http://www.freebase.com/.
[31] TPC BENCHMARK H. http://tpc.org/tpch/spec/tpch2.11.0.pdf.
[32] Running the TPC-H Benchmark on Hive. https://issues.apache.org/jira/

secure/attachment/12416257/TPC-H on Hive 2009-08-11.pdf.
[33] Apache MapReduce. http://hadoop.apache.org/mapreduce/.


