\[M \cdot x = x \cdot y \]
\[\text{if } \lambda \text{, } M \text{ is } n \times n \text{ matrix } M \text{ vector} \]

given \(M \) and a vector \(v \)
compute \(y = M \cdot v \)
\[y_i = \sum_{j=1}^{n} M_{ij} \cdot v_j \]

Assumption:
\(y \) could fit in memory but \(M \)
cannot fit in memory if \(M \) is sparse.

If \(M \) is sparse, you can represent the elements of \(M \) as \((i, j, m_{ij})\)

Map: Input \((i, j, m_{ij})\)
output: \((i, \sum_{j} m_{ij})\)

Reduce: \(\sum_{\text{element } x \in \ell} x \)
for each \text{element } x \in \ell
\sum += x
return \((i, \sum)\)
Eigenvectors and eigenvalue:

\(R(A_1, \ldots, A_n) \)

Relational Algebra defines some ops.
on relational tables. (i.e. R)
\(\sigma_C(R) \rightarrow \text{select tuples that satisfy } C. \)
\(\Pi_A(R) \rightarrow \text{projection } \mid \text{RUS, LNS, R-S} \)

\(R_1 \times R_2 \rightarrow \text{cartesian product} \)
\(R_1 \bowtie R_2 \rightarrow \text{natural join of two table} \)
\[R_1 \bowtie R_2 = \sigma_C(R_1 \times R_2) \]
\(C \) check all common attributes are equal.

\(\phi(R) \)
\(\phi(\text{student table}) \)
Nationality, count(A)

where \(x \) is a grouping attribute

or \(f(A) \) where \(f \in \{ \text{sum, count, min, max, avg, by} \} \)
$\mathcal{C}(L)$ on map-reduce

map: input is a tuple t of L
output: if t satisfies C (condition) than output (t_1, t)
reduce: (t_1, t)
does nothing

$\mathcal{T}_A(L)$ on map-reduce

map: input tuple t
project attributes of t based on A.
Let's call projected values t'
output: (t', t')
key value
reduce $(t_1$ as key and list of $(t_1, ... t')$
reduce will convert
\[(t_1, [t_1, \ldots, t_1])\] to
\[(t_1, t_1)\]

output \((t_1, t_1)\)

union : \(R \times S\)

map: output \((t, t)\) for both \(R \times S\).

reduce : \((t_1, [t_1, \ldots, t_1])\)
output one \((t_1, t)\) \(\rightarrow\) union

For intersection: change the reduce
such that if the value list
has two tuples than output
\((t, t)\)

Assume we want to compute \(L - S\)
Map: output \((+, R)\) for \(R\)
output \((+, S)\) for \(S\).

Reduce: input \((+, l)\)

If \(l = [E, S] \mid l = [S_i, R]\)
output nothing

else \(l = [S]\)
output nothing

else (if \(l = [E]\))
output \((+, t)\)

\[\text{RMS: } 2CA, 1B) \quad SCB, C)\]

Map: output \((b, (a, R))\) for \(R\)
\((b, (c, S))\) for \(S\)

Reduce: input \((b, l)\)
for each \((c_i, 2)\) in \(l\)
for each \((g_i, S)\) in \(l\)
create \((a_i, b, c_i)\)
Output: \[
(b, (a_1, b, c_1), (a_2, b, c_2), (a, b, c))
\]

Grouping & Aggregation by map-reduce

given \(L(\alpha, \beta, \gamma) \) \(\Gamma(\eta, \Phi(\epsilon)) \)

\(L(\text{count, avg, } \ldots) \)

Map: for each tuple \(t \) of \(L \)

output \((a, b) \)

Reduce: input \(\rightarrow [a, \sum b_i, \ldots, b_k] \)

output \(\rightarrow (a, \Phi(b_1, \ldots, b_k)) \)

Given \(M \) is \(n \times t \) matrix

\(N \) is \(t \times r \) matrix

Our goal is to compute \(P = M \cdot N \)
\[
P_{ik} = \sum_{\tau=1}^{+} (m_{\tau i} \cdot \eta_{5k})
\]

MC \(I, f, u\) \(N\) \(j, k, w\)

for each \((r, f, m_{rf})\)

output \((f, (M, i, m_{rf})\)

for each \((f, k_i, m_{fk})\)

output \((f, (N, k_i, m_{fk})\)

reduce:
Input \((f, l)\)

output \((f, (i, k_l, m_{if} \cdot \eta_{5k_l})\)

second map-reduce step
map: \((key, value)\)

Output \((i, k_l, v)\) for each \((i, k_l, v)\) in the value list.
reduce
input: (i; k), [u_{1}, \ldots, u_{t}]
output: (i; k), \frac{\sum u_{i}}{n_{i}}

Exercise: Do this only with one map-reduce!