
UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Overview of Virtual Machines *

 *This presentation are based on the slides from Vmware

http://labs.vmware.com/academic/introduction-to-virtualization

http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�

FEARLESS engineering

Types of Virtualization

Process Virtualization
– Language-level Java, .NET, Smalltalk
– OS-level processes, Solaris Zones, BSD Jails,

Virtuozzo
– Cross-ISA emulation Apple 68K-PPC-x86, Digital

FX!32
Device Virtualization

– Logical vs. physical VLAN, VPN, NPIV, LUN, RAID
System Virtualization

– “Hosted” VMware Workstation, Microsoft VPC,
Parallels

– “Bare metal” VMware ESX, Xen, Microsoft Hyper-V

Presenter
Presentation Notes
Virtual systems
 Abstract physical components/details using logical objects
 Dynamically bind logical objects to physical configurations

This talk will be concentrating system virtualization.

FEARLESS engineering

Another taxonomy of virtual machine
architectures

FEARLESS engineering

Starting Point: A Physical Machine

• Physical Hardware
– Processors, memory,

chipset, I/O devices,
etc.

– Resources often grossly
underutilized

• Software
– Tightly coupled to

physical hardware
– Single active OS

instance
– OS controls hardware

FEARLESS engineering

What is a Virtual Machine?

• Software Abstraction
– Behaves like hardware
– Encapsulates all OS

and application state

• Virtualization Layer
– Extra level of indirection
– Decouples hardware,

OS
– Enforces isolation
– Multiplexes physical

hardware across VMs

Presenter
Presentation Notes
Virtualization can be defined many ways. I will try to define it formally and also define it by giving a few examples. However loosely, virtualization is the addition of a software layer (the virtual machine monitor) between the hardware and the existing software that exports an interface at the same level as the underlying hardware.

In the strictest case the exported interface is the exact same as the underlying hardware and the virtual machine monitor provides no functionality except multiplexing the hardware among multiple VMs. This was largely the case in the old IBM VM/360 systems.

However the layer really can export a different hardware interface as the case in cross-ISA emulators. Also the layer can provide additional functionality not present in the operating system.

I think of virtualization as the addition of a layer of software that can run the original software with little or no changes.

FEARLESS engineering

Why Virtualize?

Consolidate resources
– Server consolidation
– Client consolidation

 Improve system management
– For both hardware and software
– From the desktop to the data center

 Improve the software lifecycle
– Develop, debug, deploy and maintain applications in

virtual machines
 Increase application availability

– Fast, automated recovery

FEARLESS engineering

Consolidate resources

Server consolidation
– reduce number of servers
– reduce space, power and cooling
– 70-80% reduction numbers cited in industry

Client consolidation
– developers: test multiple OS versions, distributed

application configurations on a single machine
– end user: Windows on Linux, Windows on Mac
– reduce physical desktop space, avoid managing

multiple physical computers

FEARLESS engineering

Improve system management

Data center management
– VM portability and live migration a key enabler
– automate resource scheduling across a pool of servers
– optimize for performance and/or power consumption
– allocate resources for new applications on the fly
– add/remove servers without application downtime

Desktop management
– centralize management of desktop VM images
– automate deployment and patching of desktop VMs
– run desktop VMs on servers or on client machines

 Industry-cited 10x increase in sysadmin efficiency

FEARLESS engineering

Improve the software lifecycle

Develop, debug, deploy and maintain applications
in virtual machines
Power tool for software developers

– record/replay application execution deterministically
– trace application behavior online and offline
– model distributed hardware for multi-tier applications

Application and OS flexibility
– run any application or operating system

Virtual appliances
– a complete, portable application execution

environment

FEARLESS engineering

Increase application availability

 Fast, automated recovery
– automated failover/restart within a cluster
– disaster recovery across sites
– VM portability enables this to work reliably across

potentially different hardware configurations
 Fault tolerance

– hypervisor-based fault tolerance against hardware
failures [Bressoud and Schneider, SOSP 1995]

– run two identical VMs on two different machines,
backup VM takes over if primary VM’s hardware
crashes

– commercial prototypes beginning to emerge (2008)

FEARLESS engineering

Why virtualize?
Virtualization makes hardware and software more

flexible and efficient
Virtualization improves the way people use and

manage computers

FEARLESS engineering

Virtualization Properties

 Isolation
– Fault isolation
– Performance isolation

 Encapsulation
– Cleanly capture all VM state
– Enables VM snapshots, clones

 Portability
– Independent of physical hardware
– Enables migration of live, running VMs

 Interposition
– Transformations on instructions, memory, I/O
– Enables transparent resource overcommitment,

encryption, compression, replication …

Presenter
Presentation Notes
Virtualization has three main properties that give rise to all its applications.

Isolation
First, virtualization provides isolation. Isolation is key for many applications and comes in several flavors.

 Fault Isolation. If one virtual machine contains a buggy operating system, that OS can start scribbling all over physical memory. These wild rights must be contained within the VM boundaries.
 Performance Isolation. Ideally VMs performance would be independent of the activity going-on on the hardware. This must be accomplished by smart scheduling and resource allocation policies in the monitor.
 Software Isolation. Most of the issues with computers today are complex software configurations. DLL hell on PCs, operating system and library versions, viruses, and other security threats. VMs are naturally isolated for each other by running in separate software environments.

Encapsulation
Encapsulation is the property that all VM state can be described and recorded simply. The VM state is basically the dynamic memory, static memory, and the register state of the CPU and devices. These items typically have a simple layout and are easy to describe. We can checkpoint a VM by writing out these items to a few files. The VM can be moved and copied by moving these files around. You can think about this as similar to doing a backup at the block level vs. doing a backup by recording all the packages, configuration and data files that encompass a file system.

Interposition
At some level all access to the hardware passes through the monitor first. This gives the monitor and chance to operate on these accesses. The best example of this is encrypting all data written to a disk. The advantage of this is that it does it without the knowledge of the OS.

Why not in the OS?
This brings up a good point. Why not do these things in the OS. By splitting up the system this way the OS functions more like a large application library. The VMM functions more like a smart set of device drivers. This is a nice split and can simplify overall system design. It also provides a natural administration boundary. However the monitor is often at a disadvantage because it does not have the same insight into what’s happening as the OS has. For example, the OS knows the distinction between data and metadata when implementing an encrypted file system. So there is a tradeoff there.

FEARLESS engineering

What is a Virtual Machine Monitor?

Classic Definition (Popek and Goldberg ’74)

VMM Properties

– Fidelity
– Performance
– Safety and Isolation

FEARLESS engineering

Classic Virtualization and Applications

• Classical VMM
– IBM mainframes:

IBM S/360, IBM VM/370
– Co-designed proprietary

hardware, OS, VMM
– “Trap and emulate” model

• Applications
– Timeshare several

single-user OS instances
on expensive hardware

– Compatibility

From IBM VM/370 product announcement, ca.
1972

FEARLESS engineering

Modern Virtualization Renaissance

Recent Proliferation of VMs
– Considered exotic mainframe technology in 90s
– Now pervasive in datacenters and clouds
– Huge commercial success

Why?
– Introduction on commodity x86 hardware
– Ability to “do more with less” saves $$$
– Innovative new capabilities
– Extremely versatile technology

FEARLESS engineering

Modern Virtualization Applications

 Server Consolidation
– Convert underutilized servers to VMs
– Significant cost savings (equipment, space, power)
– Increasingly used for virtual desktops

 Simplified Management
– Datacenter provisioning and monitoring
– Dynamic load balancing

 Improved Availability
– Automatic restart
– Fault tolerance
– Disaster recovery

 Test and Development

FEARLESS engineering

Processor Virtualization

 Trap and Emulate
Binary Translation

FEARLESS engineering

Trap and Emulate

Guest OS + Applications

Virtual Machine Monitor

Page
Fault

Undef
Instr

vIRQ

MMU
Emulation

CPU
Emulation

I/O
Emulation

U
np

riv
ile

ge
d

Pr
iv

ile
ge

d

Presenter
Presentation Notes
Direct execution

FEARLESS engineering

“Strictly Virtualizable”

A processor or mode of a processor is strictly
virtualizable if, when executed in a lesser
privileged mode:
 all instructions that access privileged state trap
 all instructions either trap or execute identically

Presenter
Presentation Notes
Again another operational definition. This idea behind strictly virtualizable is the whether trap and emulate will work.

The x86 is not strictly virtualizable. One reason is the popf instruction. popf takes a word off the stack and puts in into the flags register. One flag in that register is the interrupt enable flag. At system level the flag is updated by popf. When the designers of the x86 introduced user mode they realized that modifications of this flag by the user would break the OS. So they solved this by silently dropping updates to the IF at user level. This works for OS’s put breaks VMMs. When a VMM runs the OS by boosting it into user level all modifications the OS make to the IF are silently dropped and the VMM looses track of whether the OS whats interrupts to be enabled or disabled. The way to do this would be to make popf trap, or better yet make popf’s that modify IF to trap.

Note that these conditions are necessary but not sufficient. For example on the x86 there are several other reasons why trap and emulate will not work.

FEARLESS engineering

Issues with Trap and Emulate

Not all architectures support it
 Trap costs may be high
VMM consumes a privilege level

– Need to virtualize the protection levels

FEARLESS engineering

Binary Translation

vEP
C

mov ebx, eax

cli

and ebx, ~0xfff

mov ebx, cr3

sti

ret

mov ebx, eax

mov [VIF], 0

and ebx, ~0xfff

mov [CO_ARG], ebx

call HANDLE_CR3

mov [VIF], 1

test [INT_PEND], 1

jne

call HANDLE_INTS

jmp HANDLE_RET

start

Guest Code Translation Cache

Presenter
Presentation Notes
Dynamic binary translation is used in virtualizing the CPU by translating potentially dangerous (or non-virtualizable) instruction sequences one-by-one into safe instruction sequences.

 It works like this:

The monitor inspects the next sequence of instructions. An instruction sequence is typically defined as the next basic block, that is all instructions up to the next control transfer instruction such as a branch. There may be reasons to end a sequence earlier or go past a branch but for now lets assume we go to the next branch.
Each instruction is translated and the translation is copied into a translation cache.
Instructions are translated as follows:
Instructions which pose no problems can be copied into the translation cache with modification. We call these “ident” translations.
Some simple dangerous instructions can be translated into a short sequence emulation code. This code is placed directly into the translation cache. We call this “inline” translation. An example is the modification of the Interrupt Enable flag.
Other dangerous instructions need be performed by emulation code in the monitor. For these instructions calls to the monitor are made. These are called “Call-outs”. An example of these is a change to the page table base.
The branch ending the basic block needs a call out.
The monitor can now jump to the start of the translated basic block with the virtual registers in the hardware registers.

So dangerous instructions can be privileged instructions, non-virtualizable instructions, control flow, memory accesses.

FEARLESS engineering

Issues with Binary Translation

 Translation cache management
PC synchronization on interrupts
Self-modifying code

– Notified on writes to translated guest code
Protecting VMM from guest

FEARLESS engineering

Memory Virtualization

Shadow Page Tables
Nested Page Tables

FEARLESS engineering

Traditional Address Spaces

Virtual Address Space
0 4GB

Physical Address Space
0 4GB

Presenter
Presentation Notes
In a traditional system there are typically 2 address spaces – the virtual address space (VAS) and the physical address space (PAS). The OS and user processes run in the VAS. The OS manages the mapping from VAS to PAS through the use of the Memory Management Unit (MMU) provided in the processor. The OS maintains a page table that maps each page in the current VAS to a page in the PAS. Typically the OS will maintain one page table per user level process.

FEARLESS engineering

Traditional Address Translation

Virtual Address Physical
Address

Process
Page Table

1 2

2

3

4 5

TLB

Operating
System’s

Page Fault
Handler

Presenter
Presentation Notes
Lets follow the path when the required mapping is not in the TLB.

There is a miss in the TLB. The hardware will walk the current process’s page table to find the mapping. The page table structure will probably be more complicated than I’m showing here.
One of two things can happen:
The required mapping is found in the page table and placed in the TLB. The instruction is restarted and all proceeds normally. Note that in this case the hardware does all the work.
The required mapping is not present. An page fault exception is generated by the hardware and trapped into the operating system. The OS will do what it does to figure out the correct mapping.
The new translation is put into the current process’s page table.
The OS resume’s execution at the faulting nstruction. Now the hardware TLB refill mechanism will work.
The hardware put the new mapping in the TLB and life goes on.

FEARLESS engineering

Virtualized Address Spaces

Virtual Address Space
0 4GB

Physical Address Space
0

Machine Address Space
0

Guest Page Table

VMM PhysMap

4GB

4GB

Presenter
Presentation Notes
In a virtualized system the physical address layer becomes the virtual-physical address layer. We continue to call this the physical address layer to remain consistent with the guest’s view. However the real memory of the system is renamed to the machine address layer. The VMM is responsible for maintaining the current VM’s mapping from physical addresses to machine addresses. Most of the machine memory backing the physical address layer can be allocated on demand.

FEARLESS engineering

Virtualized Address Spaces w/ Shadow Page
Tables

Virtual Address Space
0 4GB

Physical Address Space
0

Machine Address Space
0

Guest Page Table

VMM PhysMap

4GB

4GB

Sh
ad

ow

Pa
ge

 T
ab

le

Presenter
Presentation Notes
Because of the vast number of instructions that access memory, including the instruction fetch itself, the hardware TLB must be used to translate virtual addresses to machine addresses. So the common case should be that the TLB holds the virtual to machine mapping. To do this we can use a shadow page table. The real hardware MMU points to the shadow page table. The shadow page table holds virtual to machine mappings. The VMM page fault handler is responsible for filling in the appropriate entries in the shadow page table based on the guest page table and PhysMap.

FEARLESS engineering

Virtualized Address Translation w/ Shadow Page
Tables

Virtual Address Machine
Address

Shadow
Page Table

Guest
Page Table PMap

1 2

2

3

4
5

3

6

TLB

A

Presenter
Presentation Notes
Lets follow the path when the required mapping is not in the TLB.

There is a miss in the TLB. The hardware will walk the shadow page table to find the mapping. The page table structure will probably be more complicated than I’m showing here.
One of two things can happen:
The required mapping is found in the page table and placed in the TLB. The instruction is restarted and all proceeds normally. Note that in this case the hardware does all the work.
The required mapping is not present. An page fault exception is generated by the hardware and trapped into the VMM. The VMM needs to translate the virtual address to a machine address. It starts by walking the guest’s page table to determine the virtual to physical mapping. Note that the layout of the guest page table will be determined by the hardware being virtualized.
Once the VMM finds the guest mapping one of two things can happen:
The guest mapping is not present. In this case the guest expects a page fault exception. So the VMM must generate an exception on the virtual cpu state and resume executing on the first instruction of the guest exception handler. This is called a true page fault because the hardware page fault results in a guest visible page fault.
If the guest mapping is present then the VMM must translate the physical page to a machine page. This is called a hidden page fault because the hardware fault is a fault that would not have occurred in non-virtualized system. In order to translate the physical page to machine page the VMM must look in a data structure that maps physical pages to machine pages. This data structure is defined by the VMM, for example PMap. (A) The VMM might have perform further processing if there is no machine page backing the physical page or in other special circumstances. More on this later.
The virtual to machine translation is complete. The new translation is put into the shadow page table.
The VMM restarts the guest instruction that faulted. Now the hardware TLB refill mechanism will work.
The hardware put the new mapping in the TLB and life goes on.

FEARLESS engineering

Issues with Shadow Page Tables

Guest page table consistency
– Rely on guest’s need to invalidate TLB

Performance considerations
– Aggressive shadow page table caching necessary
– Need to trace writes to cached page tables

Presenter
Presentation Notes
One thing to worry about is keeping the shadow page table consistent with the guest page table. What happens when the guest changes an entry in its page table? What happens when the guest switches to a new page table on a process context switch?

On real hardware, when the guest updates an entry in its page table, its is required to notify the hardware. This is because the TLB is a cache and the effected entry might be cached. The OS invalidate entries out of the TLB usually through a special instruction. This instruction can be used by the VMM to update or invalidate the corresponding instruction in the shadow page table.

Similarly on a process context switch the OS must do something to notify the hardware that a new process is running. In the most straightforward case, when this happens the VMM can simply flush the shadow page table. It flushes the shadow page table by looping over every entry and marking it invalid. In this way the shadow page table acts as a maximally sized TLB.

However the key to minimizing the overhead of virtualization and specifically the overhead of memory virtualization is to minimize hidden page faults. Aggressive flushing of the shadow page table will cause a flood of hidden page faults every guest context switch as the entries representing the working set are faulted in.

One technique to minimize the flushing on context switches is to keep one shadow page table per guest process. Each time the guest switches processes the VMM can just switch to the corresponding cached shadow page table. What problem does this introduce? While a process is inactive the guest might update the page table. Depending on the hardware no TLB invalidate may be necessary because when the process gets switched back in the whole TLB will be flushed at that time. With the caching scheme the VMM may swap the shadow page table with old entries back in. To prevent this the VMM can trace or watch the cached guest page table and invalidate any entry that is written to by the guest. Tracing will be explained in detail shortly. A negative with this is the added memory overhead.

FEARLESS engineering

Virtualized Address Spaces w/ Nested Page
Tables

Virtual Address Space
0 4GB

Physical Address Space
0

Machine Address Space
0

Guest Page Table

VMM PhysMap

4GB

4GB

Presenter
Presentation Notes
Nested Page Tables are an example of hardware asisted virtualization. In this case the hardware will do 2 consective address translations on TLB faults. The guest page table is now used directly by the hardware. The VMM’s PhysMap becomes a hardware defined data structure that is used on the second address translation.

FEARLESS engineering

Virtualized Address Translation w/ Nested Page
Tables

Virtual Address Machine
Address

Guest
Page Table

PhysMap
By VMM

1

2

TLB

3

2

3

Presenter
Presentation Notes
What is the issue with nested page tables.

There is a miss in the TLB. The hardware will walk the guest page table to find the mapping. The page table structure will probably be more complicated than I’m showing here.
One of two things can happen:
The required mapping is not present. An page fault exception is generated to the VMM. The VMM typically passes this exception onto the guest – a true page fault.
The required mapping is found in the page. The hardware proceeds to walk the second page table.
During the hardware lookup into the PhysMap one of two things can happen:
The required mapping is not present. A page fault is generated to the VMM. The VMM handles the fault in the appropriate way. This would be a hidden page fault.
If the guest mapping is present then the hardware places the composite mapping in the TLB and the instruction is restarted.

FEARLESS engineering

Issues with Nested Page Tables

Positives
– Simplifies monitor design
– No need for page protection calculus

Negatives
– Guest page table is in physical address space
– Need to walk PhysMap multiple times

• Need physical-to-machine mapping to walk guest page table
• Need physical-to-machine mapping for original virtual address

Other Memory Virtualization Hardware Assists
– Monitor Mode has its own address space

• No need to hide the VMM

FEARLESS engineering

VM1

Interposition with Memory Virtualization Page
Sharing

Virtual

Physical

Machine

Read-Only
Copy-on-write

VM2

Virtual

Physical

FEARLESS engineering

I/O Virtualization

Hardware

Guest

H.W. Device Driver H.W. Device Driver

Virtual Device Driver

Virtual Device Model

Abstract Device Model
Device Interposition

 Compression Bandwidth Control Record / Replay
 Overshadow Page Sharing Copy-on-Write Disks
 Encryption Intrusion Detection Attestation

Device Back-ends
 Remote Access Cross-device Emulation Disconnected Operation

Multiplexing
 Device Sharing Scheduling Resource Management

Virtual Device Driver

Virtual Device Model

Virtual Device Driver

Virtual Device Model

FEARLESS engineering

I/O Virtualization Implementations

Device Driver

I/O Stack

Guest OS

Device Driver

Device Emulation

Device Driver

I/O Stack

Guest OS

Device Driver

Device Emulation Device Emulation

Host OS/Dom0/
Parent Domain

Guest OS

Device Driver

Device
Manager

Hosted or Split Hypervisor Direct
Passthrough I/O

VMware Workstation, VMware Server,
Xen, Microsoft Hyper-V, Virtual Server

VMware ESX VMware ESX (FPT)

Emulated I/O

http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip�
http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip�
http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip�
http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip�
http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip�

FEARLESS engineering

Issues with I/O Virtualization

Need physical memory address translation
– need to copy
– need translation
– need IO MMU

Need way to dispatch incoming requests

FEARLESS engineering

Brief History of VMware x86 Virtualization

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009. . .

VMware founded

Workstation 1.0
Workstation 2.0

ESX Server 1.0
ESX 2.0 (vSMP)

x86-64

Workstation 5.5 (64 bit guests)

Intel VT-x

ESX 3.0

AMD-V
AMD RVI

Intel EPT

ESX 3.5
ESX 4.0

FEARLESS engineering

Passthrough I/O Virtualization

• High Performance
– Guest drives device

directly
– Minimizes CPU

utilization

• Enabled by HW
Assists

– I/O-MMU for DMA
isolation
e.g. Intel VT-d, AMD
IOMMU

– Partitionable I/O device
e.g. PCI-SIG IOV spec

• Challenges
– Hardware independence
– Migration,

suspend/resume
– Memory

overcommitment

 I/O MMU

Device
Manager

VF VF VF

PF

PF = Physical Function, VF = Virtual Function

I/O Device

Guest OS

Device Driver

Guest OS

Device Driver

Guest OS

Device Driver

Virtualization
Layer

http://vmweb.vmware.com/product_mktg/diagrams/images/icons/NIC_icon.zip�

UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

CPU Virtualization Basics *

 *This presentation are based on the slides from Vmware

http://labs.vmware.com/academic/introduction-to-virtualization

http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�

FEARLESS engineering

Computer System Organization

NIC

LA
N

CPU
MMU

Memory

Controller

Local Bus

Interface

High-Speed
I/O Bus

Controller Bridge Frame
Buffer

Low-Speed
I/O Bus

USB CD-ROM

FEARLESS engineering

CPU Organization

 Instruction Set Architecture (ISA)
Defines:
– the state visible to the programmer

• registers and memory

– the instruction that operate on the state
 ISA typically divided into 2 parts

– User ISA
• Primarily for computation

– System ISA
• Primarily for system resource management

FEARLESS engineering

User ISA - State

User Virtual
Memory

Program Counter

Condition Codes

Reg 0

Reg 1

Reg n-1

FP 0

FP 1

FP n-1

Special-Purpose
Registers

General-Purpose
Registers

Floating Point
Registers

FEARLESS engineering

User ISA – Instructions

Add
Sub
And
Compare
…

Load byte
Load Word
Store Multiple
Push
…

Jump
Jump equal
Call
Return
…

Add single
Mult. double
Sqrt double
…

Integer Memory Control Flow Floating Point

Fetch Registers Issue

Integer

Integer

Memory

FP

Typical Instruction Pipeline

Decode

Instruction Groupings

FEARLESS engineering

System ISA

Privilege Levels
Control Registers
 Traps and Interrupts

– Hardcoded Vectors
– Dispatch Table

System Clock
MMU

– Page Tables
– TLB

 I/O Device Access

Syste
m

User

User

Extension

Kernel
Level 0

Level 1

Level 2

FEARLESS engineering

Outline

CPU Background
Virtualization Techniques

– System ISA Virtualization
– Instruction Interpretation
– Trap and Emulate
– Binary Translation
– Hybrid Models

FEARLESS engineering

Isomorphism

 Formally, virtualization involves the construction of
an isomorphism from guest state to host state.

Guest
Si Sj

Host

Si
’

Sj
’

e(Si)

e’(Si’)

V(Si) V(Sj)

Presenter
Presentation Notes
Virtualization software constructs an isomorphism from guest to host.

All guest state S is mapped onto host state S’ through some function V(S).

Additionally for every state changing operation e(S) in the guest there is a corresponding state changing operation e’(S’) in the host.

Virtualization software must implement V() and e().

FEARLESS engineering

Virtualizing the System ISA

Hardware needed by monitor
– Ex: monitor must control real hardware interrupts

Access to hardware would allow VM to
compromise isolation boundaries

– Ex: access to MMU would allow VM to write any page
So…

– All access to the virtual System ISA by the guest must
be emulated by the monitor in software.

– System state kept in memory.
– System instructions are implemented as functions in

the monitor.

FEARLESS engineering

Example: CPUState

Goal for CPU virtualization techniques
– Process normal instructions as fast as possible
– Forward privileged instructions to emulation routines

static struct {
 uint32 GPR[16];
 uint32 LR;
 uint32 PC;
 int IE;
 int IRQ;
} CPUState;

void CPU_CLI(void)
{
 CPUState.IE = 0;
}

void CPU_STI(void)
{
 CPUState.IE = 1;
}

FEARLESS engineering

Instruction Interpretation

Emulate Fetch/Decode/Execute pipeline in
software
Postives

– Easy to implement
– Minimal complexity

Negatives
– Slow!

FEARLESS engineering

Example: Virtualizing the Interrupt Flag w/ Instruction
Interpreter

void CPU_Run(void)
{
 while (1) {
 inst = Fetch(CPUState.PC);

 CPUState.PC += 4;

 switch (inst) {
 case ADD:
 CPUState.GPR[rd]
 = GPR[rn] + GPR[rm];
 break;
 …
 case CLI:
 CPU_CLI();
 break;
 case STI:
 CPU_STI();
 break;
 }

 if (CPUState.IRQ
 && CPUState.IE) {
 CPUState.IE = 0;
 CPU_Vector(EXC_INT);
 }
 }
}
void CPU_CLI(void)
{
 CPUState.IE = 0;
}

void CPU_STI(void)

{
 CPUState.IE = 1;
}

void CPU_Vector(int exc)
{
 CPUState.LR = CPUState.PC;
 CPUState.PC = disTab[exc];
}

FEARLESS engineering

Trap and Emulate

Guest OS + Applications

Virtual Machine Monitor

Page
Fault

Undef
Instr

vIRQ

MMU
Emulation

CPU
Emulation

I/O
Emulation

U
np

riv
ile

ge
d

Pr
iv

ile
ge

d

Presenter
Presentation Notes
Direct execution

FEARLESS engineering

“Strictly Virtualizable”
A processor or mode of a processor is strictly

virtualizable if, when executed in a lesser
privileged mode:

– all instructions that access privileged state trap
– all instructions either trap or execute identically
– …

Presenter
Presentation Notes
Again another operational definition. This idea behind strictly virtualizable is the whether trap and emulate will work.

The x86 is not strictly virtualizable. One reason is the popf instruction. popf takes a word off the stack and puts in into the flags register. One flag in that register is the interrupt enable flag. At system level the flag is updated by popf. When the designers of the x86 introduced user mode they realized that modifications of this flag by the user would break the OS. So they solved this by silently dropping updates to the IF at user level. This works for OS’s put breaks VMMs. When a VMM runs the OS by boosting it into user level all modifications the OS make to the IF are silently dropped and the VMM looses track of whether the OS whats interrupts to be enabled or disabled. The way to do this would be to make popf trap, or better yet make popf’s that modify IF to trap.

Note that these conditions are necessary but not sufficient. For example on the x86 there are several other reasons why trap and emulate will not work.

FEARLESS engineering

Issues with Trap and Emulate

Not all architectures support it
 Trap costs may be high
Monitor uses a privilege level

– Need to virtualize the protection levels

FEARLESS engineering

Binary Translator

Translator

Guest
Code

Translation
Cache Callouts TC

Index

CPU
Emulation
Routines

FEARLESS engineering

Basic Blocks

vPC mov ebx, eax

cli

and ebx, ~0xfff

mov ebx, cr3

sti

ret

Guest Code

Straight-line code

Control flow

Basic Block

FEARLESS engineering

Binary Translation

vPC mov ebx, eax

cli

and ebx, ~0xfff

mov ebx, cr3

sti

ret

mov ebx, eax

call HANDLE_CLI

and ebx, ~0xfff

mov [CO_ARG], ebx

call HANDLE_CR3

call HANDLE_STI

jmp HANDLE_RET

start

Guest Code Translation Cache

Presenter
Presentation Notes
Dynamic binary translation is used in virtualizing the CPU by translating potentially dangerous (or non-virtualizable) instruction sequences one-by-one into safe instruction sequences.

 It works like this:

The monitor inspects the next sequence of instructions. An instruction sequence is typically defined as the next basic block, that is all instructions up to the next control transfer instruction such as a branch. There may be reasons to end a sequence earlier or go past a branch but for now lets assume we go to the next branch.
Each instruction is translated and the translation is copied into a translation cache.
Instructions are translated as follows:
Instructions which pose no problems can be copied into the translation cache with modification. We call these “ident” translations.
Some simple dangerous instructions can be translated into a short sequence emulation code. This code is placed directly into the translation cache. We call this “inline” translation. An example is the modification of the Interrupt Enable flag.
Other dangerous instructions need be performed by emulation code in the monitor. For these instructions calls to the monitor are made. These are called “Call-outs”. An example of these is a change to the page table base.
The branch ending the basic block needs a call out.
The monitor can now jump to the start of the translated basic block with the virtual registers in the hardware registers.

So dangerous instructions can be privileged instructions, non-virtualizable instructions, control flow, memory accesses.

FEARLESS engineering

Binary Translation

vPC mov ebx, eax

cli

and ebx, ~0xfff

mov ebx, cr3

sti

ret

mov ebx, eax

mov [CPU_IE], 0

and ebx, ~0xfff

mov [CO_ARG], ebx

call HANDLE_CR3

mov [CPU_IE], 1

test [CPU_IRQ], 1

jne

call HANDLE_INTS

jmp HANDLE_RET

start

Guest Code Translation Cache

Presenter
Presentation Notes
Dynamic binary translation is used in virtualizing the CPU by translating potentially dangerous (or non-virtualizable) instruction sequences one-by-one into safe instruction sequences.

 It works like this:

The monitor inspects the next sequence of instructions. An instruction sequence is typically defined as the next basic block, that is all instructions up to the next control transfer instruction such as a branch. There may be reasons to end a sequence earlier or go past a branch but for now lets assume we go to the next branch.
Each instruction is translated and the translation is copied into a translation cache.
Instructions are translated as follows:
Instructions which pose no problems can be copied into the translation cache with modification. We call these “ident” translations.
Some simple dangerous instructions can be translated into a short sequence emulation code. This code is placed directly into the translation cache. We call this “inline” translation. An example is the modification of the Interrupt Enable flag.
Other dangerous instructions need be performed by emulation code in the monitor. For these instructions calls to the monitor are made. These are called “Call-outs”. An example of these is a change to the page table base.
The branch ending the basic block needs a call out.
The monitor can now jump to the start of the translated basic block with the virtual registers in the hardware registers.

So dangerous instructions can be privileged instructions, non-virtualizable instructions, control flow, memory accesses.

FEARLESS engineering

Basic Binary Translator

void BT_Run(void)
{
 CPUState.PC = _start;
 BT_Continue();
}

void BT_Continue(void)
{
 void *tcpc;

 tcpc = BTFindBB(CPUState.PC);

 if (!tcpc) {
 tcpc = BTTranslate(CPUState.PC);
 }

 RestoreRegsAndJump(tcpc);
}

void *BTTranslate(uint32 pc)
{
 void *start = TCTop;
 uint32 TCPC = pc;

 while (1) {
 inst = Fetch(TCPC);
 TCPC += 4;

 if (IsPrivileged(inst)) {
 EmitCallout();
 } else if (IsControlFlow(inst)) {
 EmitEndBB();
 break;
 } else {
 /* ident translation */
 EmitInst(inst);
 }
 }

 return start;
}

FEARLESS engineering

Basic Binary Translator – Part 2

void BT_CalloutSTI(BTSavedRegs regs)
{
 CPUState.PC = BTFindPC(regs.tcpc);
 CPUState.GPR[] = regs.GPR[];

 CPU_STI();

 CPUState.PC += 4;

 if (CPUState.IRQ
 && CPUState.IE) {
 CPUVector();
 BT_Continue();
 /* NOT_REACHED */
 }

 return;
}

FEARLESS engineering

Issues with Binary Translation

 Translation cache index data structure
PC Synchronization on interrupts
Self-modifying code

– Notified on writes to translated guest code

FEARLESS engineering

Other Uses for Binary Translation

Cross ISA translators
– Digital FX!32

Optimizing translators
– H.P. Dynamo

High level language byte code translators
– Java
– .NET/CLI

FEARLESS engineering

Hybrid Approach

 Binary Translation for the Kernel
 Direct Execution (Trap-and-emulate) for the User
 U.S. Patent 6,397,242

DirectExec
OK?

Direct Execution
Jump to Guest

PC

Yes

Execute
In TC

TC
Validate

Handle
Priv.

Instruction
No Callout

Trap

FEARLESS engineering

Traditional Address Spaces

0 4GB
Physical

Address Space
RAM ROM Devices Frame

Buffer

Presenter
Presentation Notes
In a traditional system there are typically 2 address spaces – the virtual address space (VAS) and the physical address space (PAS). The OS and user processes run in the VAS. The OS manages the mapping from VAS to PAS through the use of the Memory Management Unit (MMU) provided in the processor. The OS maintains a page table that maps each page in the current VAS to a page in the PAS. Typically the OS will maintain one page table per user level process.

UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Memory Virtualization Basics *

 *This presentation are based on the slides from Vmware

http://labs.vmware.com/academic/introduction-to-virtualization

http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�
http://labs.vmware.com/academic/introduction-to-virtualization�

FEARLESS engineering

Traditional Address Spaces

Process Virtual Address Space
0 4GB

0 4GB

Background Process Operating System

Current Process

0 4GB

Operating System Virtual
Address Space

Physical
Address Space

RAM ROM Devices Frame
Buffer

Background Process Operating System

Presenter
Presentation Notes
In a traditional system there are typically 2 address spaces – the virtual address space (VAS) and the physical address space (PAS). The OS and user processes run in the VAS. The OS manages the mapping from VAS to PAS through the use of the Memory Management Unit (MMU) provided in the processor. The OS maintains a page table that maps each page in the current VAS to a page in the PAS. Typically the OS will maintain one page table per user level process.

FEARLESS engineering

Memory Management Unit (MMU)

Virtual Address to Physical Address Translation
– Works in fixed-sized pages
– Page Protection

 Translation Look-aside Buffer
– TLB caches recently used Virtual to Physical

mappings
Control registers

– Page Table location
– Current ASID
– Alignment checking

FEARLESS engineering

Types of MMUs

 Architected Page Tables
x86, x86-64, ARM, IBM System/370, PowerPC
– Hardware defines page table layout
– Hardware walks page table on TLB miss

 Architected TLBs
MIPS, SPARC, Alpha
– Hardware defines the interface to TLB
– Software reloads TLB on misses
– Page table layout free to software

 Segmentation / No MMU
Low-end ARMs, micro-controllers
– Para-virtualization required

FEARLESS engineering

Traditional Address Translation w/Architected
Page Tables

Virtual Address Physical
Address

Process
Page Table

1 2

2

3

4 5

TLB

Operating System’s
Page Fault Handler

Presenter
Presentation Notes
Lets follow the path when the required mapping is not in the TLB.

There is a miss in the TLB. The hardware will walk the current process’s page table to find the mapping. The page table structure will probably be more complicated than I’m showing here.
One of two things can happen:
The required mapping is found in the page table and placed in the TLB. The instruction is restarted and all proceeds normally. Note that in this case the hardware does all the work.
The required mapping is not present. An page fault exception is generated by the hardware and trapped into the operating system. The OS will do what it does to figure out the correct mapping.
The new translation is put into the current process’s page table.
The OS resume’s execution at the faulting nstruction. Now the hardware TLB refill mechanism will work.
The hardware put the new mapping in the TLB and life goes on.

FEARLESS engineering

Virtualized Address Spaces

0 4GB

Current Guest Process

0 4GB

Guest OS Virtual
Address Spaces

Physical
Address Spaces

Virtual RAM Virtual
ROM

Virtual
Devices

Virtual
Frame
Buffer

Presenter
Presentation Notes
In a traditional system there are typically 2 address spaces – the virtual address space (VAS) and the physical address space (PAS). The OS and user processes run in the VAS. The OS manages the mapping from VAS to PAS through the use of the Memory Management Unit (MMU) provided in the processor. The OS maintains a page table that maps each page in the current VAS to a page in the PAS. Typically the OS will maintain one page table per user level process.

FEARLESS engineering

Virtualized Address Spaces

0 4GB

Current Guest Process

0 4GB

Guest OS Virtual
Address Spaces

Physical
Address Spaces

Virtual RAM Virtual
ROM

Virtual
Devices

Virtual
Frame
Buffer

0 4GB
Machine

Address Space
RAM ROM Devices Frame

Buffer

Presenter
Presentation Notes
In a traditional system there are typically 2 address spaces – the virtual address space (VAS) and the physical address space (PAS). The OS and user processes run in the VAS. The OS manages the mapping from VAS to PAS through the use of the Memory Management Unit (MMU) provided in the processor. The OS maintains a page table that maps each page in the current VAS to a page in the PAS. Typically the OS will maintain one page table per user level process.

FEARLESS engineering

Outline
Background
Virtualization Techniques

– Emulated TLB
– Shadow Page Tables

Page Protection
– Memory Tracing
– Hiding the Monitor

Hardware-supported Memory Virtualization
– Nested Page Tables

FEARLESS engineering

Virtualized Address Spaces w/ Emulated TLB

Virtual Address Space
0 4GB

Physical Address Space
0

Machine Address Space
0

Guest Page Table

VMM PhysMap

4GB

4GB

Em
ul

at
ed

 T
LB

Pa

ge
 T

ab
le

Presenter
Presentation Notes
Because of the vast number of instructions that access memory, including the instruction fetch itself, the hardware TLB must be used to translate virtual addresses to machine addresses. So the common case should be that the TLB holds the virtual to machine mapping. To do this we can use a shadow page table. The real hardware MMU points to the shadow page table. The shadow page table holds virtual to machine mappings. The VMM page fault handler is responsible for filling in the appropriate entries in the shadow page table based on the guest page table and PhysMap.

FEARLESS engineering

Virtualized Address Translation w/ Emulated TLB

Virtual Address Machine
Address

Emulated TLB
Page Table

Guest
Page Table PMap

1 2

2

3

4
5

3

6

TLB

A

Presenter
Presentation Notes
Lets follow the path when the required mapping is not in the TLB.

There is a miss in the TLB. The hardware will walk the shadow page table to find the mapping. The page table structure will probably be more complicated than I’m showing here.
One of two things can happen:
The required mapping is found in the page table and placed in the TLB. The instruction is restarted and all proceeds normally. Note that in this case the hardware does all the work.
The required mapping is not present. An page fault exception is generated by the hardware and trapped into the VMM. The VMM needs to translate the virtual address to a machine address. It starts by walking the guest’s page table to determine the virtual to physical mapping. Note that the layout of the guest page table will be determined by the hardware being virtualized.
Once the VMM finds the guest mapping one of two things can happen:
The guest mapping is not present. In this case the guest expects a page fault exception. So the VMM must generate an exception on the virtual cpu state and resume executing on the first instruction of the guest exception handler. This is called a true page fault because the hardware page fault results in a guest visible page fault.
If the guest mapping is present then the VMM must translate the physical page to a machine page. This is called a hidden page fault because the hardware fault is a fault that would not have occurred in non-virtualized system. In order to translate the physical page to machine page the VMM must look in a data structure that maps physical pages to machine pages. This data structure is defined by the VMM, for example PMap. (A) The VMM might have perform further processing if there is no machine page backing the physical page or in other special circumstances. More on this later.
The virtual to machine translation is complete. The new translation is put into the shadow page table.
The VMM restarts the guest instruction that faulted. Now the hardware TLB refill mechanism will work.
The hardware put the new mapping in the TLB and life goes on.

FEARLESS engineering

Issues with Emulated TLBs
Guest page table consistency

– Rely on Guest’s need to invalidate TLB
– Guest TLB invalidations caught by monitor, emulated

Performance
– Guest context switches flush entire software TLB

Presenter
Presentation Notes
One thing to worry about is keeping the shadow page table consistent with the guest page table. What happens when the guest changes an entry in its page table? What happens when the guest switches to a new page table on a process context switch?

On real hardware, when the guest updates an entry in its page table, its is required to notify the hardware. This is because the TLB is a cache and the effected entry might be cached. The OS invalidate entries out of the TLB usually through a special instruction. This instruction can be used by the VMM to update or invalidate the corresponding instruction in the shadow page table.

Similarly on a process context switch the OS must do something to notify the hardware that a new process is running. In the most straightforward case, when this happens the VMM can simply flush the shadow page table. It flushes the shadow page table by looping over every entry and marking it invalid. In this way the shadow page table acts as a maximally sized TLB.

However the key to minimizing the overhead of virtualization and specifically the overhead of memory virtualization is to minimize hidden page faults. Aggressive flushing of the shadow page table will cause a flood of hidden page faults every guest context switch as the entries representing the working set are faulted in.

One technique to minimize the flushing on context switches is to keep one shadow page table per guest process. Each time the guest switches processes the VMM can just switch to the corresponding cached shadow page table. What problem does this introduce? While a process is inactive the guest might update the page table. Depending on the hardware no TLB invalidate may be necessary because when the process gets switched back in the whole TLB will be flushed at that time. With the caching scheme the VMM may swap the shadow page table with old entries back in. To prevent this the VMM can trace or watch the cached guest page table and invalidate any entry that is written to by the guest. Tracing will be explained in detail shortly. A negative with this is the added memory overhead.

FEARLESS engineering

Shadow Page Tables

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual
CR3

Real CR3

FEARLESS engineering

Guest Write to CR3

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual
CR3

Real CR3

FEARLESS engineering

Guest Write to CR3

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual
CR3

Real CR3

FEARLESS engineering

Undiscovered Guest Page Table

Virtual
CR3

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Real CR3

Guest
Page Table

FEARLESS engineering

Undiscovered Guest Page Table

Guest
Page Table

Shadow
Page Table

Guest
Page Table

Guest
Page Table

Shadow
Page Table

Shadow
Page Table

Virtual
CR3

Real CR3

Guest
Page Table

Shadow
Page Table

FEARLESS engineering

Issues with Shadow Page Tables
Positives

– Handle page faults in same way as Emulated TLBs
– Fast guest context switching

Page Table Consistency
– Guest may not need invalidate TLB on writes to off-line

page tables
– Need to trace writes to shadow page tables to

invalidate entries
Memory Bloat

– Caching guest page tables takes memory
– Need to determine when guest has reused page tables

FEARLESS engineering

Memory Tracing
Call a monitor handler on access to a traced page

– Before guest reads
– After guest writes
– Before guest writes

Modules can install traces and register for
callbacks

– Binary Translator for cache consistency
– Shadow Page Tables for cache consistency
– Devices

• Memory-mapped I/O, Frame buffer

– ROM
– COW

FEARLESS engineering

Memory Tracing (cont.)
 Traces installed on Physical Pages

– Need to know if data on page has changed regardless
of what virtual address it was written through

Use Page Protection to cause traps on traced
pages

– Downgrade protection
• Write traced pages downgrade to read-only
• Read traced pages downgrade to invalid

FEARLESS engineering

Trace Callout Path

Virtual Address Machine
Address

Emulated TLB
Page Table

Guest
Page Table PMap

1 2

2

3

4
5

8

TLB

6

7

Mapping
installed with
downgraded

privileges

Presenter
Presentation Notes
Lets follow the path when the required mapping is not in the TLB.

There is a miss in the TLB. The hardware will walk the shadow page table to find the mapping. The page table structure will probably be more complicated than I’m showing here.
One of two things can happen:
The required mapping is found in the page table and placed in the TLB. The instruction is restarted and all proceeds normally. Note that in this case the hardware does all the work.
The required mapping is not present. An page fault exception is generated by the hardware and trapped into the VMM. The VMM needs to translate the virtual address to a machine address. It starts by walking the guest’s page table to determine the virtual to physical mapping. Note that the layout of the guest page table will be determined by the hardware being virtualized.
Once the VMM finds the guest mapping one of two things can happen:
The guest mapping is not present. In this case the guest expects a page fault exception. So the VMM must generate an exception on the virtual cpu state and resume executing on the first instruction of the guest exception handler. This is called a true page fault because the hardware page fault results in a guest visible page fault.
If the guest mapping is present then the VMM must translate the physical page to a machine page. This is called a hidden page fault because the hardware fault is a fault that would not have occurred in non-virtualized system. In order to translate the physical page to machine page the VMM must look in a data structure that maps physical pages to machine pages. This data structure is defined by the VMM, for example PMap. (A) The VMM might have perform further processing if there is no machine page backing the physical page or in other special circumstances. More on this later.
The virtual to machine translation is complete. The new translation is put into the shadow page table.
The VMM restarts the guest instruction that faulted. Now the hardware TLB refill mechanism will work.
The hardware put the new mapping in the TLB and life goes on.

FEARLESS engineering

Hiding the Monitor
Monitor must be in the Virtual Address space

– Exception / Interrupt handlers
– Binary Translator

• Translation Cache
• Callout glue code
• Register spill / fill locations
• Emulated control registers

FEARLESS engineering

Hiding the Monitor – Options for Trap-and-
Emulate

Address space switch on Exceptions / Interrupts
– Must be supported by the hardware

Occupy some space in guest virtual address
space

– Need to protect monitor from guest accesses
• Use page protection

– Need to emulate guest accesses to monitor ranges
• Manually translate guest virtual to machine
• Emulate instruction

– Must be able to handle all memory accessing instructions

FEARLESS engineering

Hiding the Monitor – Options for Binary
Translation

 Translation cache intermingles guest and monitor
memory accesses

– Need to distinguish these accesses
– Monitor accesses have full privileges
– Guest accesses have lesser privileges

On x86 can use segmentation
– Monitor lives in high memory
– Guest segments truncated to allow no access to

monitor
– Binary translator uses guest segments for guest

accesses and monitor segments for monitor accesses

FEARLESS engineering

Outline

 Background
 Virtualization Techniques

– Emulated TLB
– Shadow Page Tables

 Page Protection
– Memory Tracing
– Hiding the Monitor

 Hardware-supported Memory Virtualization
– Nested Page Tables

FEARLESS engineering

Virtualized Address Spaces w/ Nested Page
Tables

Virtual Address Space
0 4GB

Physical Address Space
0

Machine Address Space
0

Guest Page Table

VMM PhysMap

4GB

4GB

Presenter
Presentation Notes
Nested Page Tables are an example of hardware asisted virtualization. In this case the hardware will do 2 consective address translations on TLB faults. The guest page table is now used directly by the hardware. The VMM’s PhysMap becomes a hardware defined data structure that is used on the second address translation.

FEARLESS engineering

Virtualized Address Translation w/ Nested Page
Tables

Virtual Address Machine
Address

Guest
Page Table

PhysMap
By VMM

1

2

TLB

3

2

3

Presenter
Presentation Notes
What is the issue with nested page tables.

There is a miss in the TLB. The hardware will walk the guest page table to find the mapping. The page table structure will probably be more complicated than I’m showing here.
One of two things can happen:
The required mapping is not present. An page fault exception is generated to the VMM. The VMM typically passes this exception onto the guest – a true page fault.
The required mapping is found in the page. The hardware proceeds to walk the second page table.
During the hardware lookup into the PhysMap one of two things can happen:
The required mapping is not present. A page fault is generated to the VMM. The VMM handles the fault in the appropriate way. This would be a hidden page fault.
If the guest mapping is present then the hardware places the composite mapping in the TLB and the instruction is restarted.

FEARLESS engineering

Issues with Nested Page Tables
Positives

– Simplifies monitor design
– No need for page protection calculus

Negatives
– Guest page table is in physical address space
– Need to walk PhysMap multiple times

• Need physical to machine mapping to walk guest page table
• Need physical to machine mapping for original virtual address

Other Memory Virtualization Hardware Assists
– Monitor Mode has its own address space

• No need to hide the monitor

FEARLESS engineering

Interposition with Memory Virtualization Page
Sharing

VM1

Virtual

Physical

Machine

Read-Only
Copy-on-write

VM2

Virtual

Physical

	Overview of Virtual Machines *��
	Types of Virtualization
	Another taxonomy of virtual machine architectures
	Starting Point: A Physical Machine
	What is a Virtual Machine?
	Why Virtualize?
	Consolidate resources
	Improve system management
	Improve the software lifecycle
	Increase application availability
	Why virtualize?
	Virtualization Properties
	What is a Virtual Machine Monitor?
	Classic Virtualization and Applications
	Modern Virtualization Renaissance
	Modern Virtualization Applications
	Processor Virtualization
	Trap and Emulate
	“Strictly Virtualizable”
	Issues with Trap and Emulate
	Binary Translation
	Issues with Binary Translation
	Memory Virtualization
	Traditional Address Spaces
	Traditional Address Translation
	Virtualized Address Spaces
	Virtualized Address Spaces w/ Shadow Page Tables
	Virtualized Address Translation w/ Shadow Page Tables
	Issues with Shadow Page Tables
	Virtualized Address Spaces w/ Nested Page Tables
	Virtualized Address Translation w/ Nested Page Tables
	Issues with Nested Page Tables
	Interposition with Memory Virtualization Page Sharing
	I/O Virtualization
	I/O Virtualization Implementations
	Issues with I/O Virtualization
	Brief History of VMware x86 Virtualization
	Passthrough I/O Virtualization
	CPU Virtualization Basics *��
	Computer System Organization
	CPU Organization
	User ISA - State
	User ISA – Instructions
	System ISA
	Outline
	Isomorphism
	Virtualizing the System ISA
	Example: CPUState
	Instruction Interpretation
	Example: Virtualizing the Interrupt Flag w/ Instruction Interpreter
	Trap and Emulate
	“Strictly Virtualizable”
	Issues with Trap and Emulate
	Binary Translator
	Basic Blocks
	Binary Translation
	Binary Translation
	Basic Binary Translator
	Basic Binary Translator – Part 2
	Issues with Binary Translation
	Other Uses for Binary Translation
	Hybrid Approach
	Traditional Address Spaces
	Memory Virtualization Basics *��
	Traditional Address Spaces
	Memory Management Unit (MMU)
	Types of MMUs
	Traditional Address Translation w/Architected Page Tables
	Virtualized Address Spaces
	Virtualized Address Spaces
	Outline
	Virtualized Address Spaces w/ Emulated TLB
	Virtualized Address Translation w/ Emulated TLB
	Issues with Emulated TLBs
	Shadow Page Tables
	Guest Write to CR3
	Guest Write to CR3
	Undiscovered Guest Page Table
	Undiscovered Guest Page Table
	Issues with Shadow Page Tables
	Memory Tracing
	Memory Tracing (cont.)
	Trace Callout Path
	Hiding the Monitor
	Hiding the Monitor – Options for Trap-and-Emulate
	Hiding the Monitor – Options for Binary Translation
	Outline
	Virtualized Address Spaces w/ Nested Page Tables
	Virtualized Address Translation w/ Nested Page Tables
	Issues with Nested Page Tables
	Interposition with Memory Virtualization Page Sharing

