Virtual Machine Based Intrusion Detection

Murat Kantarcioglu

Based on Garfinkel et al. NDSS 2003 work

Intrusion Detection Systems

- Two types
 - Network based Intrusion Detection Systems (NIDS)
 - Resistant against attacks
 - Do not know the individual host states
 - Host based Intrusion Detection System (HIDS)
 - High host visibility
 - Easier to attack.
 - Kernel level HIDS
 - User programs can modify kernel (e.g. sys_call_table) through loadable kernel modules
 - IDS crash could create system vulnerable

Virtual Machine Introspection

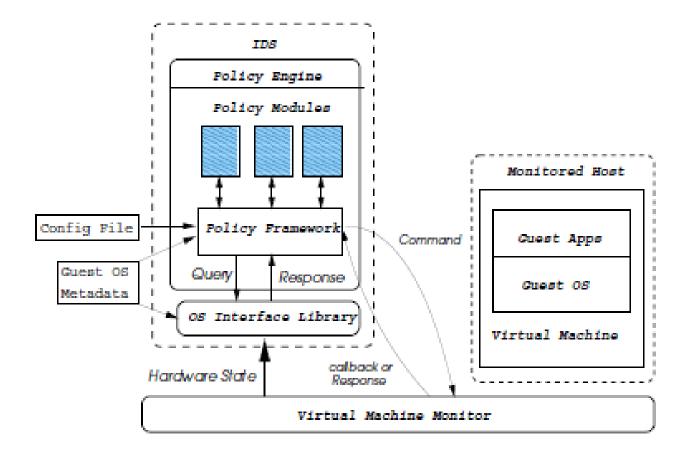
- Idea: Use VMM level IDS. Do Virtual Machine introspection to detect attacks.
 - Advantage: Can observe machine states, harder to attack
 - Disadvantage: Potential costs

VMM Capabilities

- VMM will be harder to attack
 - Simpler than traditional OS
 - Does not need to have networking
- Isolation due to VMM
 - IDS and Guest OS will be isolated.
- Inspection
 - VMI IDS can directly inspect the machine state
 - Harder to hide actions
- Interposition
 - VMI IDS can use VMM to be notified when certain events happen

Threat Model for VMI IDS

- Guest host is not trusted
 - All info. Gathered from guest host is assumed to be tainted and not to be trusted.
- VMM is trusted
- VMI IDS has some assumptions about the structure of the guest OS in order to implement some IDS policies.



Design Goals

- Low overhead
 - Only monitor events that are closely related to intrusions (e.g., sensitive memory modifications etc.)
- Minimize change to VMM
 - VMM should be kept simple and bug free.
- Limit VMM exposure
 - IDS and VMM could be kept separate.
 - IDS compromise must not affect the VMM security

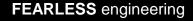
VMI IDS Design

VMM Interface

- Inspection Commands
 - Inspect state info such as memory, register, I/O devices
- Monitor Commands
 - Get notification for certain event occurrence.
- Administrative Commands
 - Allows the control of VM
 - Stop the VM if intrusion is detected.

OS Interface Library

- Provides necessary functionality to translate VMM states to OS level semantics
 - E.g., display the content of the task structure for PID 231.


Policy Engine

- Interprets the system state and event from VMM Interface and OS library interface
- Implements various policies such as burglar alarm, misuse detection, integrity checkers etc.
- Provides policy engine for more complex detection.

Example Policies:

- Polling policy modules
 - Check for activities in a certain time intervals
- Lie detectors
 - See whether guest os lies about the OS parameters
 - E.g., check whether what ps returns is consistent with what VMM observes
- User program integrity detector
 - Make sure the images in memory not modified
- Signature detector
- Raw socket detector (burglar alarm)

Event Driven Policy Modules

• Detecting tampering with OS code segment

Mark sensitive OS parts read only

- Use copy-on-write mechanism to detect changes
- NIC access enforcer
 - Detect Ethernet device with promiscuous mode on.

Name	Description	nic	ISW	sig	int	lie	mem
cdoor	Stealth user level remote backdoor		D				
t0m.	Precompiled user level rootkit			D		D	
Ramen	Linux Worm			D			
lrk5	Source based user level rootkit	Р		D	D	D	
knark-0.59	LKM based kernel backdoor/rootkit			D		D	Р
adore-0.42	LKM based kernel backdoor/rootkit			D		D	P
dsniff 2.4	All-purpose packet sniffer for switched networks	P					
SUCKIT	/dev/kmem patching based kernel backdoor			D		D	Р

Performance Overhead

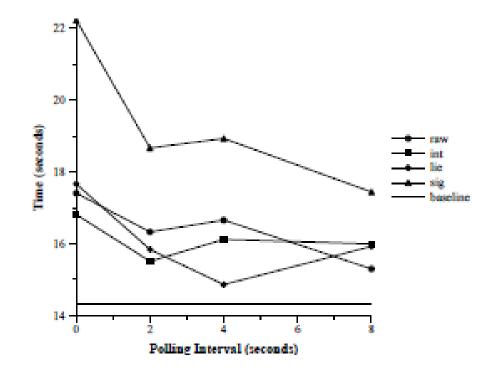


Figure 2. Performance of Polling Policy Modules

Potential Issues

- OS library interface is complex and could be evaded.
 - In Limewire OS interface library is run as a separate OS.
- VMM existence could be detected
 - Check I/O performance time
- VMM could be subverted.
- Policy Engine could be attacked.
 - Sanitize inputs
 - Simpler High level policy language
 - Failing closed (suspend VMM if something goes wrong)
 - Potential bugs?

Cloud auditing

- Such systems could be used for auditing purposes in cloud.
- Performance overhead is important.
- IDS typically have false positive issues
- Complex attacks may be harder to detect
 - (slowly stealing user private information)

