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Abstract—This paper explores an efficient and secure mech-
anism to partition computations across public and private
machines in a hybrid cloud setting. We propose a principled
framework for distributing data and processing in a hybrid
cloud that meets the conflicting goals of performance, sensitive
data disclosure risk and resource allocation costs. The proposed
solution is implemented as an add-on tool for a Hadoop and
Hive based cloud computing infrastructure. Our experiments
demonstrate that the developed mechanism can lead to a
major performance gain by exploiting both the hybrid cloud
components without violating any pre-determined public cloud
usage constraints.

I. INTRODUCTION

The rise of cloud computing has created a revolution

in the computing industry by giving end-users access to

sophisticated computational infrastructures, platforms, and

services using a pay-as-you-use model. Several new systems

like HadoopDB and Hive that support database query pro-

cessing on the cloud have emerged. Such systems investigate

the potential benefits of using cloud-based systems instead

of traditional relational databases. An emerging trend in

cloud computing is that of hybrid cloud. Unlike traditional

outsourcing where organizations push their data and data

processing to the cloud, in hybrid clouds in-house capabil-

ities/resources at the end-user site are seamlessly integrated

with cloud services to create a powerful, yet cost-effective

data processing solution. Hybrid cloud solutions offer similar

benefits as traditional cloud solutions. Yet, they provide

advantages in terms of disclosure control and minimizing

cloud resources given that most organizations already have

an infrastructure they can use. Exploiting such benefits,

however, opens numerous questions, the foremost of which

is how should one split the data and computation between

the public and private sides of the infrastructure? Different

choices have different implications from the perspectives

of sensitive data disclosure, computational performance and

resource allocation costs.

On one extreme, one may choose to outsource the entire

data and workload to the public cloud (as is typical to

outsourcing solutions). While simple to implement, such a

solution, incurs the highest resource allocation cost in terms

of cloud service (both storage and computing), and is most

vulnerable to data leakage1. In addition, the outsourcing

strategy may not even be optimal in terms of performance

since it wastes local resources which are now unused. An

alternate strategy might be to replicate data at both, the

private and public sides, and to split the workload between

the two sides. While simple queries may be computed on

the private side, the complex ones can be performed over

the public infrastructure. The above strategy exploits local

resources, and thereby reduces the cost of the required

cloud services. However, the resource allocation cost and the

amount of sensitive data that is exposed to the public cloud

will be maximum in this case. Another possibility could be

to only replicate some part of the data to the public side

so as to enable the distribution of the computation while

limiting the disclosure risks and resource allocation costs to

the desired thresholds.
The possibilities described above are just three of the

multitude of computation partitioning choices. The third

option seems to be the best one in terms of various end-user

requirements such as performance, costs, and sensitive data

exposure. An observation to be made here is that as different

variants of the computation partitioning problem are formu-

lated, a myriad of design choices present themselves. These

choices are based on various data and workload formats

(dynamic queries or batch jobs), as well as different query

execution techniques over hybrid clouds.
This paper formalizes the computation (and the implied

data) partitioning problem for hybrid clouds and develops a

framework for splitting data processing tasks such that the

desired goals of performance, disclosure risk and monetary

expenses are achieved. In particular, given a workload of

jobs (specifically SQL style HIVE queries), the underlying

dataset (assumed to be relational) and the machine charac-

teristics of private and public clouds, we propose a dynamic

programming approach to solve the computation partitioning

1Services such as S3 allow encrypted storage at no additional costs [1]
ensuring protection for data at rest, however, the data will be in cleartext
form when in memory and hence susceptible to memory attacks [2].
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problem. Our proposed approach is also extensively eval-

uated over the standard TPC-H benchmark dataset under

various parameter settings.

Our primary technical contributions are listed below:

• We formalize the optimal risk-aware workload distri-

bution problem as a mechanism for workload response

time minimization. Our formalization allows us to plug

in different levels of restrictions for public cloud usage.

We develop an algorithm that searches for an optimal

computation and data partitioning scheme given a query

workload and public cloud usage boundaries (resource

allocation cost and sensitive data disclosure).

• We present a formal model for estimating the monetary

cost of SQL queries in a hybrid cloud setting.

• We conduct extensive evaluation on realistic datasets

and experimentally validate the benefits of our algo-

rithm.

The rest of the paper is organized as follows: Section II

gives an overview of our Hadoop HDFS and Hive based

architecture for creating a hybrid cloud. While Section III

presents the details about the formalization of computa-

tion partitioning problem, Section IV covers our dynamic

programming solution to this problem. In Section V, we

present the results of our experimental evaluation for the

dynamic programming strategy using the TPC-H benchmark.

Section VI reviews the related work in the area of secure

distributed data processing. Finally, we describe our conclu-

sions and future work in Section VII.

II. SYSTEM ARCHITECTURE

Figure 1. The Hybrid Cloud Architecture

We begin by presenting an overview of our proposed

system architecture in Figure 1. The system mainly consists

of two components: The Statistics Gathering layer performs

the task of statistics collection over the dataset and query

jobs, while the Data and Query Management layer decides

on the data and workload partitioning for the given set of

queries. Our focus in this paper is on the Data and Query

Management layer of the system, though, as will become

clear, statistics gathering is essential to determine optimal

query workload and data distribution.

A user starts by submitting a set of relations,

R = {R1, R2, · · · , Rm}, a query workload, Q =
{q1, q2, . . . , qn}, and a set of resource allocation and sen-

sitive data disclosure constraints, C. The system initially

performs the task of statistics collection over R and Q
using the statistics gathering module. This module estimates

the minimum set of required data items and the I/O sizes

(alternatively running time) of base relations required to

answer each query in Q. Additionally, the statistics SR are

created as equi-width histograms and sent to the estimator

modules. The computation partitioning module receives R,

Q, C as well as the estimated I/O sizes and the minimum

required set of data items for each query in Q, and then

systematically solves the computation partitioning problem,

CPP. In solving CPP, the monetary cost estimator is used by

our algorithm to estimate the monetary costs of processing

public cloud queries as well as storing intermediate public-

side data partitions, whereas the disclosure risk estimator is

used to compute the amount of sensitivity that a solution

candidate includes. On solving CPP, this layer produces two

outputs: Rpub = {Rpu
1 , Rpu

2 , · · · , Rpu
m } where Rpu

i ⊆ Ri,

the public cloud portion of R; and furthermore, Qpub =
{qpu1 , qpu2 , · · · , qput }, the set of queries that will be executed

over the public cloud.

The private cloud stores the entire dataset R, whereas the

public cloud only maintains the public-side data partition,

Rpub. The non-sensitive and sensitive data in Rpub and R
are stored using an appropriate representation technique on

the public and private clouds respectively.2

Once the system has stored the data based on the solution

to CPP, the system is now ready to support query processing.

This is achieved by assigning the public and private side

queries to the corresponding Hive query engine. 3

III. COMPUTATION PARTITIONING PROBLEM

In this section, we formalize the computation partitioning

problem, CPP , in a hybrid cloud setting. The problem aims

to minimize the execution time of a given query workload

and is bounded by two separate constraints, the first of which

limits the total amount of processing that can be executed

on the public cloud by restricting the monetary expenses

incurred from the usage of public cloud resources, while the

2We use a Hadoop HDFS based infrastructure for implementing the
storage schemas. Hadoop HDFS is a distributed file system designed to
run on commodity hardware.

3We use a Hive based infrastructure for query processing where Hive
is a data warehouse built on Hadoop that allows a user to define structure
for files stored in the underlying HDFS. The system only allows inter-
query parallelism while executing the given set of queries. Nonetheless,
techniques exploiting intra-query parallelism can be developed to find better
solutions for CPP. However, this task is outside the scope of the current
paper.
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second captures the disclosure risk, the amount of sensitive

data that a user is willing to maintain on the public side.

The solution to the problem results in a partitioning of data

and computation between the public and private sides.

A. Notation
Before defining CPP , we explicitly introduce the nota-

tions that will be used throughout the paper to express CPP
as well as a solution for CPP .

• R: The dataset which will be partitioned over the hybrid

cloud.

• Q: The query workload defined over R across the

hybrid cloud. Q is represented as a set of queries,

Q = {q1, q2, . . . , qn}.
• sens(R

′
): The estimated number of sensitive cells

contained in R
′

where R
′ ⊆ R.

• baseTables(q): The estimated minimum set of data

items required to answer a query q ∈ Q. Observe that

∀i s.t. 1 ≤ i ≤ n baseTables(qi) ⊆ R.

• freq(q): The access frequency of the query q.

• runTx(q): The estimated running time of query q ∈ Q
at site x (either public or private).

• ORunT (Q
′
, Q

′′
): The overall execution time of the

queries in Q
′

over the hybrid cloud, given that the

queries in Q
′′

are executed on the public cloud. Note

that Q
′′ ⊆ Q

′
, otherwise it will be undefined. In other

words,

ORunT (Q
′
, Q
′′
) = max

⎧⎪⎨
⎪⎩

∑
q∈Q

′′
freq(q) × runTpub(q),

∑
q∈Q

′−Q
′′
freq(q) × runTpriv(q)

baseTables for each query are constructed by using a

parser for SQL-like queries. Our parser first parses the given

query string and identifies the tables (relations) involved in

that query. Then, for each associated table T , it scans the

query string to find its associated attributes and predicates.
Additional details about the computation of sens(R

′
), and

runTx(q) will be provided in subsequent sections.

B. CPP Formalization
Given the query workload and their associated base tables,

we can model the computation partitioning problem (CPP )

as an optimization problem whose goal is to split the query

workload over a hybrid cloud such that the overall execution

time of workload Q (or performance) is minimized.
CPP Problem Definition: CPP is constructed as an

optimization problem that tries to find a subset of the query

workload, Qpub ⊆ Q and a subset of the dataset Rpub ⊆ R.

minimize ORunT (Q,Qpub)

subject to (1)store(Rpub) +
∑

q∈Qpub

freq(q)× proc(q)

≤ PRA CONST

(2)sens(Rpub) ≤ DISC CONST

(3)∀q ∈ Qpub baseTables(q) ⊆ Rpub

(1)

where PRA CONST represents the maximum admissible

public resource allocation cost, and DISC CONST refers

to the maximum amount of sensitive data that can be

disclosed to the public cloud. The use of a query workload

splitting model in conjunction with constraints (public side

monetary cost and sensitive data disclosure) allows us to

capture several realistic scenarios within the same frame-

work. A few examples of such scenarios are as follows: (i)

Users that are extremely averse to storing sensitive data on a

public cloud possibly due to laws/regulations. (ii) Users that

want to achieve a speed-up in performance and are willing to

pay a price for the risk of storing sensitive data on the public

side. Furthermore, such a general framework also enables us

to study different trade off’s that exist within the problem

domain in a systematic fashion.

C. Cost Metrics

The formalization of CPP above refers to three different

metrics – query execution time (i.e., performance), monetary

costs and disclosure risk. We now discuss these metrics in

some detail:

Query Execution Time (runT imex(q)): Computing the

exact execution time of a query q on either the public

or private sides depends on multiple factors. Besides the

technical specifications of the underlying infrastructure such

as its processor speed and the memory available in each

machine, the selected query execution plan is an significant

factor that impacts the query response time. However, in

this paper we will use the I/O size of a query plan as a

substitute for the execution time in the estimation process.

Previous approaches to query cost estimation in a cloud

environment have also used a similar approach, e.g., Afrati et
al. [3] use an I/O based data-volume cost model to evaluate

different algorithms for executing query plans on a cluster.

In another paper, Wu et al. [4] propose an I/O based cost

model that is used to evaluate the performance of query

plans in the MapReduce framework. In addition, they also

observe that the cost model based on query response time

does not improve the accuracy of estimation by much over

a model that uses I/O size. The running time of a query plan

τ in a hybrid cloud can be estimated as:

runT imex(τ) =

∑

∀ op. ρ∈τ

inpSize(ρ) + outSize(ρ)

wx
, (2)

where inpSize(ρ) and outSize(ρ) reflect the estimated

input and output sizes of the operator ρ. The weight wx

accounts for how many I/O operations can be performed

per unit time at site x (public or private). It also captures

the difference in computational resources between a public

and private cluster. Additional details about the computation

of wx are given in Section V.

The I/O sizes for the various portions of the plan τ are

computed using statistics SR. Unfortunately, Hive does not
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maintain attribute level statistics for a relation. Therefore,

we implemented a statistics gathering module that analyzes

each relation in the dataset once, and maintains statistics for

the relations and its attributes using separate histograms for

non-sensitive (using partitions) and sensitive (using buckets)

parts of the relations. Then, the I/O sizes for a query are

estimated using histograms over the necessary attributes.

Monetary costs: All cloud providers typically support

competitive pricing models and provide different service

level agreements (SLA’s) for data storage and processing ser-

vices. For example, Amazon Web Services (AWS)4 provides

a tiered pricing model where, the amortized prices become

cheaper as more data and processing services are used. AWS

also provides SLA’s for Elastic Compute Cloud (EC2) or

Simple Storage Service (S3) that return a user between 10-

25% of their monthly fee if Amazon fails to meet their

commitment of at least 99% up time. Monetary costs can

be controlled by limiting the data and processing outsourced

to the public side, and therefore, we use this metric as a

constraint in our problem, since public cloud services will

usually be limited by an operational expenditure (OpEx). We

compute the total monetary cost for public side computation

as a sum of the following two components: a) store(Rpub):
The storage monetary cost of the public cloud partition,

Rpub. b) proc(q): The processing monetary cost of a public

side query q. Furthermore, the CPP problem ensures that

the overall monetary cost for storing the public-side parti-

tion and performing the public-side queries (i.e. Qpub and

Rpub) is limited by a maximum public resource allocation

constraint, PRA CONST .

Sensitive Data Disclosure Risk: Sensitive data exposure

is a significant issue for organizations that deal with sensitive

data, since in the event that they lose such sensitive informa-

tion, they will be required to pay compliance fines as well

as possible litigation expenses [5]5. An organization would

necessarily want to limit this risk, therefore, we model the

risk as a constraint in the computation partitioning problem.

For our problem, we estimate the total disclosure risk as

the number of sensitive cells contained within the data

partition for the public cloud (computed as sens(Rpub) or

sens(
⋃

q∈Qpub

(baseTables(q)))). Additionally, the disclosure

risk depends on the data representation used to store sensi-

tive data, which is fixed in our problem. Also, our problem

ensures that the computed disclosure cost is bounded by a

user-defined value, DISC CONST 6.

4http://aws.amazon.com
5See Accenture’s Technology Vision 2011 report, “Data Privacy Will

Adopt a Risk-based Approach” section.
6In this paper, we have restricted our attention to a framework that

selects optimal partitioning of computation given a fixed approach to
representing the data. Different choices of representation offer different
levels of information disclosure e.g., a clear text representation reveals the
sensitive data completely, while bucketization based on information hiding
techniques offers a higher level of protection and encrypted representations
offer the most protection.

We observe that the above two constraints can be merged

in a principled fashion into a single constraint. This will,

however, require us to find an accurate monetary cost metric

for the sensitive data exposed to the public cloud. Even

though sensitive data is very valuable to an organization, the

probability of such data being disclosed when it is shipped to

a public cloud should be taken into account. Therefore, we

leave such an undertaking for the future. We would also like

to stress that our model can incorporate other risk assessment

techniques by assigning different disclosure costs to different

cells in the dataset.

IV. SOLUTION TO CPP

As we stated earlier, the CPP problem tries to find a

subset of the given dataset and query workload that can

be shipped to the public cloud. The CPP problem tries to

achieve this goal by aiming to minimize the total processing

time of the query workload across the hybrid cloud under

several constraints.

Nevertheless, CPP can be simplified to a more triv-

ial version in which the problem only attempts to find

Qpub, since Rpub can be considered as being equivalent to

(
⋃

q∈Qpub

baseTables(q)). In other words, any other solution

R
′

that minimizes the overall performance should be a

superset of
⋃

q∈Qpub

baseTables(q) and, yet, the solution

⋃

q∈Qpub

baseTables(q) is the one with the least sensitive

data exposure and monetary cost. As a result, CPP can

be considered to be a problem that finds the subset of the

query workload which minimizes the workload execution

time without violating the given constraints.

To represent CPP along with its inputs

and constraints, we use the following notation:

CPP (Q,PRA CONST, SENS CONST ). We also

assume that the query workload, Q, and the constraints,

PRA CONST and DISC CONST are all given

beforehand.

A. Dynamic Programming Approach to Solve CPP

Given the exponential number of query workload subsets,

we use a dynamic programming approach to find the best

one. We now present our dynamic programming algorithm

that produces as its output a set of queries Qpub which form

a solution to CPP (Q,PRA CONST,DISC CONST ).
Algorithm 1 uses a data structure pubQ and frequently

calls a method labeled as checkConstr. The purpose of

these constructs is as follows:

• pubQ[i][j][k]: This data structure maintains the

query solution set for CPP (Qi, j, k) where Qi =
{q1, q2, . . . , qi}. Given that the maximum admissible

monetary cost and the maximum disclosure risk are

equal to j and k respectively, this data structure stores

queries from amongst the first i queries that are selected
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Algorithm 1 DYNAMIC PROGRAMMING()

Input: Q, PRA CONST , DISC CONST
Output: Qpub

1: initialize pubQ[][][]
2: for i = 1→ Q.size do
3: procCost← proc(qi)
4: totCost← procCost+ store(baseTables(qi))
5: disc← sens(baseTables(qi))
6: for j = 0→ PRA CONST do
7: for k = 0→ DISC CONST do
8: if i = 1 then
9: if checkConstr({q1}, j, k)

AND ORunT (Q1, Q1) < ORunT (Q1, ∅) then
10: pubQ[i][j][k]← {q1}
11: else
12: pubQ[i][j][k]← ∅
13: end if
14: else
15: pubCaseOT ←∞
16: (j

′
, k
′
)← (NaN,NaN)

17: if checkConstr({qi}, j, k) then
18: for all j − totCost ≤ iC ≤ j − procCost do
19: for all k − disc ≤ iD ≤ k do
20: tmpSet← pubQ[i][iC][iD] ∪ qi
21: if checkConst(tmpSet, iC, iD) AND

ORunT (Qi, tmpSet) < pubCaseOT then
22: pubCaseOT ← ORunT (Qi, tmpSet)

23: (j
′
, k
′
)← (iC, iD)

24: end if
25: end for
26: end for
27: end if
28: privCaseOT ← ORunT (Qi, pubQ[i− 1][j][k])
29: if privCaseOT ≤ pubCaseOT then
30: pubQ[i][j][k]← pubQ[i− 1][j][k]
31: else
32: pubQ[i][j][k]← pubQ[i− 1][j

′
][k
′
] ∪ {qi}

33: end if
34: end if
35: end for
36: end for
37: end for
38: return pubQ[Q.Size− 1][PRA CONST ][DISC CONST ]

to be processed over the public cloud so as to minimize

the overall response time of the first i queries. Notice

that pubQ[i][j][k] ⊆ Qi.

• checkConstr(Q
′
, j
′
,k
′
): This method returns

whether monetary cost bound j
′

and the disclosure

risk limit k
′

is satisfied when the queries in Q
′

are

executed on the public side. In particular, the method

checks if store(
⋃

q∈Q′
baseTables(q))+

∑

q∈Q′
(freq(q)×

proc(q)) ≤ j
′

and sens(
⋃

q∈Q′
baseTables(q)) ≤ k

′
.

To make it easily understandable for readers, we present

the notion behind our dynamic programming algorithm.

Intuitively, CPP (Qn, PRA CONST, SENS CONST )
can be generalized as CPP (Qi, j, k). As the solution to

this general problem will be a subset of Qi, there are

two possible assignments for the last query qi in Qi. The

query qi is either in the solution to CPP (Qi, j, k) or is

not. Therefore, both cases should be investigated carefully.

Before expanding on both cases, let us illustrate how our

algorithm works with an example. Assume that our query

workload Q consists of 3 queries (i.e. Q = q1, q2, q3) and

CPP (Q3, j, k) needs to be solved. The detailed information

about these 3 queries is given below.

q proc(q) store(baseTables(q)) sens(baseTables(q))
q1 $10 $15 20
q2 $20 $10 10
q3 $15 $10 20

Before investigating the two different cases in further

details, we need to check whether assigning q3 to the public

side violates any constraints (line 17). If we ship q3 to the

public side, then the overall monetary cost and the overall

disclosure risk will be at least $25 and 20 sensitive celss

respectively (assume that ∀1 ≤ i ≤ 3 freq(i) = 1). If

j < 25 or k < 20, then any solution considering q3 as a

public side query will not be a feasible one, and in turn

CPP (Q3, j, k) = CPP (Q2, j, k) (line 30). Note that, since

executing any query on the private side does not cause a

violation of any constraints, this case essentially does not

require a feasibility analysis. Now, we can go into the details

of each case.

Case 1: If q3 runs on the public side, then there will be

more than 1 CPP subproblems that need to be investigated.

This is due to the fact that the possible execution of q3 on the

public side will bring at least $15 and at most $25 into the

overall monetary cost value. In terms of disclosure risk, the

numbers will be between 0 and 20 sensitive cells. The reason

is that a portion of (or the entire) baseTables(q3) could

already be already partially included in the solution, Qs, to

some CPP (Q2, j
′
, k
′
), and in turn storing baseTables(q3)

in addition to
⋃

q∈Qs

baseTables(q) may not bring as much

monetary cost and disclosure risk as is represented in the

table above. Consequently, CPP (Q2, j
′
, k
′
) where j−25 ≤

j
′ ≤ j − 15 and k − 20 ≤ k

′ ≤ k should be investigated

in order to solve CPP (Q3, j, k) optimally (line 18-26).

However, every candidate set of queries formed by taking the

union of q3 with the solution of CPP (Q2, j
′
, k
′
), should be

tested to ensure that it does not violate any constraint and it

is the best solution in terms of performance from amongst all

the solutions obtained in Case 1(line 21). If it does produce

the best solution, it will be one of the solution candidates

with the one coming from Case 2 (line 21-24).

Case 2: In case query q3 runs on the private side, then

CPP (Q3, i, j) = CPP (Q2, i, j) (line 28).

After computing the best solution candidate for both

cases, our algorithm compares the overall expected running

times of both solutions and picks the minimum one as the

solution to CPP (Q3, j, k) (line 29-33).

The algorithm above requires us to determine various

costs (viz., disclosure, monetary, and query execution) for a

given workload of queries Q and the arbitrary data partitions.
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We note that the incurred disclosure risk, in our model, is

dependent only on the public-side partition Rpub, which in

turn is implicitly defined using the given query workload.

Determining query execution times and monetary costs,

however, depends upon the query workload. They can both

be estimated as the sum of costs of the individual queries7.

V. EXPERIMENTAL RESULTS

This section presents the results of experiments that we

conducted to validate the effectiveness of our dynamic

programming algorithm that solves the CPP problem. We

first present details of our setup followed by the experiments.

Experimental Setup: We conducted experiments on two

clusters, one of which was located at UTD while the other

one was located at UCI. The first cluster consists of 14 nodes

and was used as the private cloud, while the second cluster

consists of 38 nodes and was used as the public cloud. A

node in the private cloud consists of a Pentium IV processor

with ≈ 290GB-320GB disk space and 4GB of main memory,

while a node in the public cloud consists of an AMD Dual-

Core processor with ≈ 631GB disk space and 8GB of main

memory. Both clusters are setup using Hadoop v0.20.2 and

Hive v0.7.1.

Statistics collection: The statistics gathering module an-

alyzed the 100GB TPC-H dataset and generated equi-width

histograms for every attribute of TPC-H relations. We used

the data types, int, double and string in Hive to represent

TPC-H data. We also created a data type ‘date’ that allows

us to represent various dates from the TPC-H schema.

The number of partitions used in a histogram is dependent

on the data type; this number is fixed for a given data

type: (i) For integers and doubles, the number of partitions

= log2(max−min), where min and max represent the min

and max domain values mandated by TPC-H. (ii) For dates,

since TPC-H only allows dates between ‘1992-01-01’ and

‘1998-12-31’, we created one partition for each year from

1992 through 1998. (iii) For strings, we created 95 partitions

that cover alphabets (a − z and A − Z), digits (0 − 9) and

all special characters (!, @, #, etc.).
Query Workload: We have used the TPC-H benchmark

with a scale factor 100 in our experiments. We used a

query workload of 40 queries containing modified versions

of TPC-H queries Q1, Q3, Q6 and Q11. In particular, we

do not perform grouping and aggregate operations in any

query because of the high complexity of estimating overall

I/O size for these type of operators on HIVE. Further, we

assumed that each query was equally likely in the workload.

The predicates in each of the queries are randomly modified

to vary the range (as mandated by TPC-H) of the data that

is accessed.

7Recent work has explored techniques such as shared scans in the context
of executing queries over MapReduce frameworks [6] which can reduce
costs of query workloads. We, however, do not consider such optimizations
in developing our partitioning framework in this paper.

Estimation of weight wx: The weight wx is calculated

as the number of I/O operations that can be performed

per second on the public and private clouds. We estimated

the weights wpub and wpriv for our hybrid cloud infras-

tructure by running all 22 TPC-H queries for a 300GB

dataset on them. Then, wpub (resp. wpriv) was computed

as the average ratio of the I/O operations required by the

queries on the public side (resp. private side) to the total

time required to run all queries on the public side (resp.

private side). In this way, wpub and wpriv were estimated to

be 42306630.05 bytes/sec (≈ 40MB/sec) and 8786423.69

bytes/sec (≈ 8MB/sec). A larger value for wpub indicates

that our public cloud has a higher I/O throughput than our

private cloud.

Computation of resource allocation cost: The resource

allocation cost was computed using unit prices from Amazon

Web Services. We specifically used Amazon S3 pricing to

determine storage ($0.140/GB + PUT) and communication

($0.120/GB + GET) costs, where the price for PUT and

GET operations is $0.01/1000 requests and $0.01/10000

requests respectively. Also, we used Amazon EC2 and

EMR pricing to calculate the processing cost ($0.085 +

$0.015 = $0.1/hour). Finally, we estimated the total public

cloud resource allocation cost, PUB MAX COST , by

shipping the entire dataset and query workload compu-

tation to the public side, as ≈ 25K, using the previ-

ously defined values. For our experiments, we then defined

PRA CONST as a fraction (25%, 50%, 75% and 100%)

of PUB MAX COST .

Definition of sensitive data disclosure risk: We defined

the sensitive data disclosure risk using the following two-

part strategy: (i) We defined an overall sensitivity level

for the dataset used in a given experiment. This sensitivity

level assumes that all cells for the c name, c phone and

c address attributes of the customer table are always

sensitive while fractions of tuples in the lineitem table

are made sensitive (≈ 1% or 5% or 10% of the lineitem
table is made sensitive). This gives us several different

overall sensitivity levels that are then used in the various

experiments. (ii) We then defined the DISC CONST as

being a fraction of the overall sensitivity level for a given

dataset, i.e., DISC CONST is varied between 0-100% of

the overall sensitivity level defined earlier. For example, in

the case when the sensitivity level for the lineitem table is

defined to be 10%, we now vary the DISC CONST to

be between 0% (none of the 10% sensitive tuples should be

exposed) and 100% (all of the 10% sensitive tuples may be

exposed).

Preliminary Experiments: For all our experiments, we

first computed the running time of the query workload

when all computations are performed on the private cloud

(Private). The experiments subsequently use this case as

a baseline to determine the performance of the dynamic

programming approach that was proposed earlier to solve
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Figure 2. Performance of the Dynamic Programming approach towards solving the CPP problem

the CPP problem.

Experiments for Dynamic Programming approach:

The goal of these experiments is to measure the perfor-

mance of the dynamic programming approach that was

proposed earlier for solving the CPP problem. To per-

form these experiments we varied all parameters under

consideration in the following way: (i) Resource allocation

cost: The resource allocation cost was varied between 25-

100% of the PRA CONST value that was defined earlier.

(ii) We defined four different overall sensitivity levels as,

No-Sensitivity (the entire dataset is non-sensitive), 1%-

Sensitivity, 5%-Sensitivity and 10%-Sensitivity (1%, 5% and

10% of the tuples of the lineitem table are made sensitive).

(iii) We defined seven different sensitive data exposure levels

as 0% (none of the sensitive data is exposed), 10%, 25%,

40%, 50%, 75% and 100% (all of the defined sensitive data

may be exposed).

We then computed the overall performance of the query

workload for different combinations of these three param-

eters, the results of which are presented in Figure 2. One

of the first observations that can be made from Figure 2

is that when a user is willing to take additional risks by

storing more sensitive data on the public side, they can

gain a considerable speed-up in overall execution time (even

greater than 50%). On the other hand, Figure 2 also shows

that the monetary expenditure on public side resources is

substantially low even when a user takes additional risks by

storing increasing amounts of sensitive data on the public

cloud (graphs for 50%, 75% and 100% resource allocation

cost show that even when more money is allowed to be

spent on public side resources the overall performance is

relatively the same for these cases suggesting that a budget

of only about 50% of PRA CONST is sufficient to boost

the performance savings by upto 50%).

Figure 2 also shows that when a user invests more

capital towards resource allocation, a considerable gain in

overall workload performance (even greater than 50%) can

be achieved. This is expected since when more resources are

allocated on the public side, we are better able to exploit

the parallelism that is afforded by a hybrid cloud. Thus, the

intuition that a hybrid cloud improves performance due to

greater use of inherent parallelism is justified. Finally, from

Figure 2, we also notice that we can achieve a considerable

improvement in query performance (≈ 50%) for a relatively

low risk (≈ 40%) and resource allocation cost (≈ 50%).

VI. RELATED WORK

Secure data processing in hybrid clouds has been explored

in various contexts. While Sedic, introduced in [7], studies

the problem only from the perspective of individual mapre-

duce jobs; Relational Cloud, proposed in [8], uses a graph-

based partitioning scheme to split data and computation into

public and private sides. The data partitions are encrypted

with multiple layers of encryption and stored on a server, and

will therefore possibly require multiple rounds of decryption

and communication between the public and private sides

while executing a query.

The distribution of query computation between trusted

and untrusted servers has been previously studied in the

context of database outsourcing [9], [10]. Such approaches

have focused on partitioning individual queries to identify

maximal portions that can be executed directly on encrypted

representations over untrusted servers. This line of work

has not considered a risk based approach to workload

distribution as studied in this paper. Nonetheless, techniques

for computing on encrypted data can be further exploited to

support improved risk aware processing in hybrid clouds.

We intend to explore such extensions as a part of the future

work.

The distribution of data and queries across multiple

servers has been considered in [11]. Their problem setting

and design goals are different, since in their model both

servers are assumed to be untrusted (but not colluding).

While they do not allow all attributes specified in a con-

fidentiality policy to be exposed to either one of the servers

at any time, we are willing to do so in a controlled manner

(risk based approach).

A risk based approach has been discussed in [12] for

single machine architectures under memory attacks. It has

not been studied for the cloud environment. To our knowl-

edge, our paper is the first work that does a risk based

data and workload partitioning for given relational database

workloads in hybrid clouds.
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Finally, previous research in the fields of data partitioning

(e.g. [3], [4], [5], [6]) and distributed query processing (e.g.,

evolution from systems such as SDD-1 [13] to DISCO [14]

that operates on heterogeneous data sources, to Internet-

scale systems such as Astrolabe [15], and cloud systems

[16]) are also related with our work. However, none of these

approaches is directly applicable for hybrid clouds.

VII. CONCLUSIONS AND FUTURE WORK

With the advent of cloud computing, a hybrid cloud is

suitable for users who wish to balance data security risks

while limiting the expenses for using public cloud services.

We have identified three challenges that must be overcome

before this approach can be adopted.

The first challenge deals with partitioning computations

between a private cloud and a service provider when there

is some sensitive information in the data. We formalized

this challenge as a risk-aware performance optimization

problem and presented a dynamic programming approach

that results in an optimal distribution of the query workload.

The second challenge relates to to keeping the amount of

sensitive data that is exposed to the public machines under

a given threshold. Finally, the last challenge addresses the

issue of limiting the monetary costs that arise from public

cloud usage.

We are primarily exploring the following ideas for future

research from amongst the various areas that we outlined

throughout the paper: 1) In this paper, we have only

considered inter-query parallelism while partitioning the

computation over a hybrid cloud. However, our current work

can be extended to make use of intra-query parallelism as

a possibility for executing the given query workload. 2) In

this paper, we solved the computation partitioning problem

for the case where the entire query workload is given to us

apriori. This work can be enhanced to support computation

distribution for dynamically changing (or arriving) work-

loads. 3) In our current implementation, we used Hadoop

and Hive as the underlying cloud computing technologies.

We aim to extend this work with more experiments into a

generalized tool that will work with other existing public

cloud services. 4) Data sensitivity model adopted in this

paper is restricted to whether a single attribute is sensitive

or not. We plan to solve the same problem under a different

sensitivity model in which an attribute might be insensitive

by itself, but it can be sensitive when it’s revealed together

with another attribute.
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