
BigSecret: A Secure Data Management Framework for Key-ValueStores

Erman Pattuk∗, Murat Kantarcioglu∗, Vaibhav Khadilkar∗, Huseyin Ulusoy∗, Sharad Mehrotra†
∗University of Texas at Dallas, Richardson, Texas USA

{erman.pattuk, muratk, vvk072000, huseyin.ulusoy}@utdallas.edu
†University of California, Irvine, California USA

sharad@ics.uci.edu

Abstract—Data storage is one of the most popular cloud
services, and is therefore offered by most service providers.
Among the various cloud based data storage services, key-
value stores has emerged as a popular option for storing and
retrieving billions of key-value pairs. Although using such cloud
based key-value store services could generate many benefits,
companies are reluctant to utilize such services due to security
concerns. For example, if keys are used to represent social
security numbers of health insurance customers, and values
are their medical claim details, then outsourcing such key-
value pairs to a public cloud could create significant privacy
and security risks. To mitigate such risks, we propose BigSecret,
a framework that enables secure outsourcing and processing of
encrypted data over public key-value stores. Furthermore, our
proposed framework could automatically make use of multiple
cloud providers, including existing private clouds, to securely
distribute data and workloads for improving efficiency and
performance. Our experiments show that efficient and secure
processing over outsourced encrypted data residing in key-
value stores is possible with a minor overhead in most cases.
In addition, we show that BigSecret’s data and workload
distribution algorithm can lead to major performance gains
in a multi-cloud setting.

I. I NTRODUCTION

To cope with millions of transactions every day, popular
web sites such as Facebook and Twitter have been using
Key-Value (KV) stores. Amazon’s Dynamo [1]; Memcached
used by Facebook, Zynga and Twitter; Apache HBase and
Apache Cassandra are some widely-used examples. Fur-
thermore, many cloud service providers offer KV storage
services (e.g., Amazon’s S3), so that data owners (DO) can
now get rid of the burden of database management. However,
outsourcing sensitive KV pairs (e.g., personal health records,
company financial data) to cloud providers incurs security
and privacy risks. To mitigate such risks, one could encrypt
data prior to outsourcing. This, however, complicates data
processing. Thus, solutions should be offered that intelli-
gently utilize cryptographic techniques, so that the efficiency
of query processing is not sacrificed for data security.

Performing secure operations over encrypted data has
been investigated previously in several contexts. Searchable
symmetric encryption (SSE) (e.g., [2], [3]) is one of the
widely investigated problems, where the aim is to provide
efficient keyword search capabilities over encrypted data.
Performing range queries over outsourced data [4] is another

example of secure data processing. Although such solutions
are interesting starting points, they need to be adapted for
KV stores to enable efficient and secure outsourcing.

One way to balance the security risks versus efficiency
when outsourcing to KV stores is to use hybrid cloud ar-
chitectures [5].Hybrid Cloudarchitectures leverage a DO’s
private cloud (i.e., cloud infrastructure already possessed by
a DO on its own premises), and offer cost-effective solutions
to data outsourcing. It allows a DO to control the amount of
sensitive data disclosure risk, by (i) outsourcing encrypted
data to a public cloud, and (ii) keeping a subset of data in
the private cloud in plaintext form. Another alternative may
be to keep parts of the KV store at different cloud providers.
This way, data is not vulnerable to a single cloud provider
attack, which reduces the disclosure risk. However, it comes
at a cost of efficiency specially if there is difference between
the computing capabilities of the service providers.

To enable efficient and secure outsourcing of KV stores,
we need to develop solutions that take into account various
options. For example, a DO may have access to a set of
KV storage providers, where each provider has its own
pricing policy and processing power. Moreover, a DO may
have different levels of trust towards each provider, various
monetary and risk constraints, and different private cloud
capabilities. Given such options and constraints, DOs needa
framework to maximize performance (i.e., minimize the total
execution time) by partitioning data and workloads over the
providers. Of course, once partitioning is performed, data
should be stored in a secure and efficient manner.

In this work, we proposeBigSecret, a secure data manage-
ment framework for KV stores. BigSecret offers a solution
for securely storing and processing KV data, by using one of
three different data storage techniques, which we refer to as
encryption models. Moreover, it uses a heuristic approach to
optimally distribute data and workloads over a cloud setup
consisting of multiple providers, (i.e.,Multi-Cloud Setup),
under varying monetary and disclosure risk constraints.

The primary contributions of this work can be listed as:
1) We formalize the data and workload partitioning prob-

lem over a multi-cloud setup, with monetary and
disclosure risk constraints. To solve instances of this
problem, we apply a heuristic approach based on the
Hill-Climbing technique.



2) We present encryption models that allow efficient and
secure storage and processing of encrypted data on
KV stores. Our solution is oblivious to the underlying
KV store and can work on any KV store.

3) We provide a formal security analysis of our encryp-
tion models.

4) We conduct extensive experiments to compare the per-
formance of our encryption models, and validate the
benefits of our partitioning algorithm in an example
multi-cloud setup.

The rest of the paper is organized as follows: In Section II,
we formally define the data and workload partitioning prob-
lem. Section III gives the necessary background information
on KV stores and cryptographic tools that we have used.
BigSecret is detailed in Section IV, while its security is
analyzed in Section V. We then present the results of our ex-
periments in Section VI. Finally, Section VII reviews related
work relevant to our paper, followed by the conclusions and
future work in Section VIII.

II. PROBLEM DEFINITION

Suppose a DO has access to a number of KV storage
providers (which may also include its private clouds), and
holds a KV dataset and query workload that needs to be
partitioned over these providers. Each provider may have
different processing capabilities, pricing methodologies and
trustworthiness. For instance, a DO could have access to a
Semi-trustedprovider (i.e., one that offers cloud services, but
tries to learn sensitive information) with very low pricing;
or aTrustedprovider (i.e., offers cloud services without any
adversarial intent) with weak processing capabilities. Inany
setup, a DO’s aim is to distribute the dataset and workload
over all providers, such that the total execution time of
the workload is minimized while satisfying (i) amonetary
constraint (i.e., the total monetary cost is held below a
specified threshold), and (ii) adisclosure constraint(i.e., the
number of sensitive KV entries that may be extracted from
outsourced data does not exceed a predefined value). We
name the problem of finding a data and workload distribution
that satisfies both of the above constraints over a multi-cloud
setup asMulti-Cloud Partitioning Problem(MCPP).

In this section, we first define the notations in MCPP. It
is followed by an explanation of cost metrics, i.e., the way
we measure performance, monetary cost, and disclosure.
Finally, we define MCPP formally, and discuss how it could
potentially create a trade-off between disclosure and cost.

A. Notations and Cost Metrics

Dataset D is composed of rows, which in turn are
composed of KV entries.Dq represents the set of rows
that are needed to answer queryq, while DQ represents
the set of rows needed to process queries in the workload
Q = {q1, . . . , qm}. For a queryq ∈ Q, f(q) is the frequency
of q in Q. For a providerPi, DPi

andQPi
denote the data

stored and queries executed onPi respectively. Finally, the
expected number of sensitive KV entries stored onPi is
denoted bysens(DPi

).
Metrics in MCPP are investigated in terms of monetary

cost, performance, and security.
Monetary Cost: Monetary cost is a DO’s expenditure

resulting from utilization of KV storage services. Two mon-
etary cost metrics are defined in MCPP: (i)Storage cost
is the cost of storing a datasetD on a providerPi, and
is represented ass(D, Pi). Similarly, the storage cost of a
single queryq is s(q, Pi) := s(Dq, Pi); (ii) Processing cost
is the cost of executingq on Pi, and is denoted asc(q, Pi).

In terms of KV stores, the storage cost may consist of
costs arising from a Put operation (defined in Sec. III-B)
that entails transferring data to a provider (communication
cost). On the other hand, the processing cost is the sum of
the costs of issuing a Get or Scan (Sec. III-B) operation,
and transferring the results to the client.

The total cost of executingq on Pi is the sum of the
storage cost and processing cost:t(q, Pi) := s(q, Pi) +
f(q) × c(q, Pi). Similarly, the total cost of executing a
workload Q on Pi is given by t(Q, Pi) := s(DQ, Pi) +∑

q∈Q

f(q) × c(q, Pi). The overall monetary cost of the par-

titioned workloadQP1
, . . . ,QPk

is the sum oft(QPi
, Pi)

over all providers, and should be less than the monetary
constraintCcost.

Security Metrics: Placing data on a semi-trusted provider
comes with a risk of sensitive data disclosure. This risk can
be modeled based on many different factors. In this paper,
we model it w.r.t.sens(DPi

), and the risk weight assigned to
providerPi (wPi

). Risk weights are user-defined variables,
and reflect a DO’s perspective on a provider’s reliability. For
instance, a trusted provider will havewPi

= 0, since it will
not try to infer any information from the outsourced data.
On the other hand, a semi-trusted provider will havewPi

∈
[0, 1], due to its adversarial intent. Thus, smaller values of
risk weight imply more trust towards a provider. Moreover,
a DO may not trust a provider, but may trust the underlying
cryptographic mechanism used. For instance, if data is stored
using only a semantically secure encryption scheme, then a
DO would be able to assignwPi

= 0.
The expected number of sensitive KV entries leaked to an

adversary onPi is calculated aswPi
×sens(DPi

). The total
disclosure is the sum ofwPi

×sens(DPi
) over all providers,

and should be less than the disclosure constraintCrisk.
Execution Time: We assume that the expected execu-

tion time of q on Pi is affected by the number of I/O
operations needed (io(q)), and the processing capabilities
of Pi (pow(Pi)); and represent it asr(q, Pi) := io(q)

pow(Pi)
.

Moreover, the expected execution time of a workloadQ is
the sum of the execution times of each queryq ∈ Q, and is
estimated asr(Q, Pi) :=

∑

q∈Q

f(q)× r(q, Pi).

In a KV store, measuringio(q) will naturally depend on



the number of rows, the distribution of rows among nodes
of the cluster, and the average number of rows per cluster
node. Additionally, [6] points out that having more nodes
in a cluster results in better performance. Thus,pow(Pi) is
proportional to the number of nodes in a cluster, and the
processing power of each cluster node.

OnceQ is partitioned intoQP1
, . . . ,QPk

, the total exe-
cution time of the entire workload is calculated as the sum
of the execution times of each partitioned workload.

OptRun(QP1
, . . . ,QPk

) :=
∑

Pi∈P

r(QPi
, Pi)

B. Formal Definition of MCPP

Given a workloadQ, a set of providersP, and a dataset
D, MCPP aims to optimize the total execution time, by
partitioningQ andD over P. A solution to MCPP should
satisfy both the monetary and disclosure constraints.

minimize: OptRun(QP1
, . . . ,QPk

)

subject to:
∑

t(QPi
, Pi) ≤ Ccost

∑
wPi

× sens(DPi
) ≤ Crisk

∀Pi ∈ P,∀q ∈ QPi
,Dq ⊆ DPi

By solving an instance of MCPP, a DO can achieve a
balance between monetary costs and security. It can be
checked if the expenditure can be reduced without exposing
too much sensitive data; or if security can be improved
with a tolerable increase in expenditure. While doing so, the
performance of the overall system is maximized, irrespective
of the constraints. An interested reader is referred to our
technical report for a more detailed discussion, where we
also show a reduction from the 0-1 Knapsack Problem to
MCPP, and thus prove that MCPP is NP-Hard [7].

III. B ACKGROUND

In this section, we give descriptions of BigSecret’s build-
ing blocks. Then, we provide a brief introduction to HBase,
the KV store that is currently supported by BigSecret.

A. Preliminaries

Symmetric Encryption: A symmetric encryption scheme
is composed of three polynomial-time algorithms,SKE :=
(Gen,E,D): (i) Gen takes a security parameterk, and
returns a secret keyK; (ii) E encrypts plaintext message
p with secret keyK; (iii) D decrypts ciphertextc using the
secret keyK. The symmetric encryption scheme used in this
work is assumed to be semantically secure [2].

Pseudo-Random Functions:A pseudo-random function
(PRF) is a polynomial-time computable function, whose
output is indistinguishable from a random function by any
polynomial-time adversary. A PRF is composed of two
functions PRF := (Gen,H): (i) Gen takes a security
parameterk, and returns a secret keyK; (ii) H takes a
secret keyK, a messagem, and returns a digesth.

Bucketization: BucketizationB := (Part, Ident,Map)
is composed of: (i) a partitioning functionPart that takes
a domainZ, number of partitionsn, and returns disjoint
partitionsp1, . . . , pn, where

⋃n

i=1 pi = Z; (ii) an identifier
function Ident that assigns unique random identifiers to
each partitionpi; (iii) a mapping functionMap that takes a
partitioned domain, a valuev from the domain, and returns
Ident(pi), wherev ∈ pi. In an order-preserving partitioning,
Ident(pi) < Ident(pj) if i < j. We will use the termBucket
Data for the partition-to-identifier mapping of a bucketizer.

B. HBase

HBase is an open source, distributed KV store based
on Google’s BigTable [8]. It is a persistent, and strictly
consistent storage system, which uses Hadoop Distributed
File System (HDFS) for data storage. HBase consists of
unique rows, and each row is composed of KV entries.
A KV entry has 5 parts: Row-key (row), family (fam),
qualifier (qua), timestamp (ts) and value (val). In a KV entry,
the key consists of the first four parts, and is denoted as
KEY := row‖fam‖qua‖ts. Four operations are provided
in HBase: (i) Put inserts data into an HBase table; (ii)
Get retrieves data of a specific row; (iii)Delete removes a
specific row’s data from an HBase table; (iv)Scanretrieves a
range of rows. The last three operations may also be limited
to a specific family, qualifiers, or a certain time range. We
denote the operations as follows:

QP :=(row, (fam, qua, val)+, ts)

QG :=(row, tsfrom, tsto, [(fam)|(fam, qua)]∗)

QD :=(row, tsfrom, tsto, [(fam)|(fam, qua)]∗)

QS :=(rowfrom, rowto, tsfrom, tsto, [(fam)|(fam, qua)]∗)

IV. B IGSECRET

BigSecret is our proposed framework, which provides
provable security for outsourced KV data; and enables
efficient query execution on encrypted data. To do so,
data is transformed prior to outsourcing usingEncryption
Models, which consist of the cryptographic functions from
Section III-A. Moreover, when used in a multi-cloud setup
containing any number of trusted or semi-trusted providers,
BigSecret automatically boosts the overall performance by
using a heuristic solution for MCPP.

In this paper, we base the KV entry structure of BigSecret
on HBase, i.e., a KV entry in BigSecret consists of five parts
as in HBase. Moreover, BigSecret offers the same set of
operations on the outsourced data as HBase. However, the
methodology used in BigSecret can be easily adapted to the
data model of any other KV store.

In this section, we begin by presenting BigSecret’s archi-
tecture. Then, we explain how data is stored on semi-trusted
providers using encryption models. Finally, query translation
is explained; followed by a discussion on the heuristic used
to solve MCPP.



Cloud Provider-1

Proxy

BigSecret

Provider &

Bucket Data

Client-1

Client-n

Cloud Provider-k

1

6

2

5

4
5

3

4

… ...

Figure 1. BigSecret Architecture

A. Architecture

Figure 1 shows an outline of the BigSecret architecture.
It consists of providers that a DO utilizes, the BigSecret
application, and a set of clients that want to perform queries
on the outsourced data.

Given a datasetD and a workloadQ, a DO uses BigSecret
to distributeD andQ over the set of providers. BigSecret
solves this partitioning problem (MCPP) using the heuristic
approach discussed in Section IV-D. During the partitioning,
BigSecret may need to access two different sets of data:
(i) Provider datathat contains information on a provider’s
parameters (e.g., risk weight, selected encryption model for
that provider); (ii) Bucket dataif bucketization is used.
These sets of data are kept on a proxy, which also hosts
the BigSecret application. This proxy is placed on a trusted
platform, such as a private cloud or a trusted public cloud.

Once partitioning is performed, clients will start inter-
acting with providers via the BigSecret proxy, rather than
communicating directly, as shown in Figure 1. When a client
wants to issue a query on the outsourced data, the query is
first sent to the BigSecret proxy (step 1). BigSecret translates
it into its encrypted form using bucket data and provider
data (steps 2-3), and sends it to the provider(s) (step 4).
BigSecret retrieves a set of results in encrypted form (step
5), decrypts, filters, and returns the final set of results to the
client (step 6). The client does not perform any operation,
and is oblivious to any security measure taken by BigSecret.

The BigSecret application handles all cryptographic pro-
cesses and makes sure that the correct set of results are
returned to the client. Since all communication passes via
the proxy, one may question if this creates a bottleneck.
It is obvious that BigSecret is horizontally scalable, i.e.,
many independent instances of BigSecret can run in parallel
to support multiple clients. Moreover in our experiments,
we show that increasing concurrent client requests does not
incur any more overhead than communicating directly.

B. Encryption Models

In BigSecret, we make use of crypto indices to perform
Delete, Get, and Scan operations over encrypted data. We
mainly utilize bucketization and PRF’s as crypto indices.
Primarily, both of them allow us to process a query by
checking/retrieving a very small subset of the entire dataset.

Due to its small collusion probability, the use of PRF’s
as a crypto index results in less false positives, and com-
munication overhead, when compared with bucketization.
However, since a PRF’s output is distributed (pseudo) ran-
domly over its range, order is not preserved; thus Scan
cannot be performed over encrypted data. But as proven
in Section V, its (pseudo) randomness enables building
provably secure constructions. On the other hand, one must
use bucketization to support Scan queries. A bucketizer’s
limited order preserving property enables Scan queries to
be executed over encrypted data. However, a bucketizer’s
range is not as large as a PRF’s range; and results in more
false positives compared to PRF’s. Moreover, we end up
with bucket data that needs to be stored on the proxy.

For any valuev, a crypto index is eitherMap(v), H(v),
or a constant value; and is denoted asI(v). Then for a KV
entrye := (row, fam, qua, ts, val) in BigSecret,encryption
modelis the definition of the entry’s translation toE(e) :=
(I(row), I(fam), I(qua)‖E(KEY ), I(ts), E(val)).

Model-1 Model-2 Model-3

row Map(row) H(row) H(row)
fam Map(fam) H(fam) 0
qua Map(qua)‖E(KEY ) H(qua)‖E(KEY ) E(KEY )
ts Map(ts) H(ts) 1
val E(val) E(val) E(val)

Table I
ENCRYPTION MODELS

Encryption models form the core of BigSecret, since they
allow (i) securing data on semi-trusted providers, and (ii)
performing queries on encrypted data. Table I gives an
overview of the models we have used. It shows how a key
part is encrypted using the security tools from Section III-A.
It should be noted that for eachE andH, a different cryp-
tographic keyis used. For instance, for Model-2, encryption
key used inE(KEY ) is different from the one used in
E(val). Similarly, a different partitioning is performed for
each key-part’s bucketizer.

Model-1 uses bucketization as the crypto index for all key
parts. This model should only be used if Scan queries need
to be performed over encrypted data. An important factor in
this model’s performance is the number of buckets in the row
bucketizer. Having less buckets results in a large number of
rows being mapped to the same bucket, thus increasing false
positives. The same is also true with bucketizers for the other
key parts. However, the row bucketizer has a larger impact
on the performance as compared to the other bucketizers.

Model-2 uses a PRF as the crypto index, and is very
suitable for workloads without Scan queries. Utilization
of PRF’s on all key-parts decreases the number of false
positives drastically as compared to Model-1, so a Get or
Delete query can be executed very efficiently over encrypted
data. As in Model-1, the range of the PRF used for the row-
key has the most impact on performance as compared to
PRF’s for the other key parts.



Model-3 uses a PRF as the crypto index, but only for
the row-key. The motivation for doing so is to reduce the
sensitivity disclosure arising from multi-dimensional index-
ing [9]. Fixed values are given to family and timestamp. As
before, the range of the PRF on the row-key has a major
effect on the performance.

C. Query Translation

Given a queryq ∈ {QP , QG, QD, QS} and an encryption
modelm ∈ {m1,m2,m3}, we define a translation function
T (m, q) := q∗.

Put: Given q ∈ QP , translation consists of applying the
necessary cryptographic operations based onm. For each
encryption modelmi, the translated queryq∗ ∈ QP is:

T (mi, q) := (I(row), (I(fam), I(qua)||E(KEY ), E(val))+, I(ts))

Get: For q ∈ QG, the translated queryq∗ ∈ QG changes
w.r.t. mi. For Model-1, we calculate index values for all key
parts as follows:

T (m1, q) := (I(row), I(tsfrom), I(tsto), [I(fam)|(I(fam), I(qua))]∗)

For Model-2, index values for timestamp parameters are not
translated, since order is not preserved. Instead,q∗ is issued
over the entire timestamp range, i.e.,[0, LongMax]:

T (m2, q) := (I(row), 0, LongMax,[I(fam)|(I(fam), I(qua))]∗)

Finally for Model-3, we use our only index (I(row)) to
translateq into q∗:

T (m3, q) := (I(row), 0, LongMax, null)

Delete:For q ∈ QD, translation is similar to the translation
for Get. We need to retrieve a subset of data, decrypt it
to see which KV entries need to be actually deleted. Then,
matching entries are marked with a deletion request and sent
to the providers.

Scan: Given q ∈ QS , translation is only possible for
Model-1. Moreover, processingq over encrypted data con-
sists of several steps: (i) Firstq is translated toq∗. (ii) Then
q∗ is issued on all possible providers, and an initial set of
results is retrieved. (iii) The retrieved data is decrypted, and
false-positives are discarded. (iv) Finally, the actual set of
results is given to the client row-by-row in sorted order.
Translation ofq to q∗ ∈ QS for Model-1 is as follows:

T (m1, q) :=(I(rowfrom), I(rowto), I(tsfrom), I(tsto),

[I(fam)|(I(fam), I(qua))]∗)

D. Heuristic Approach to MCPP

Given a datasetD, a workloadQ, a set of providersP,
and constraintsCcost andCrisk, the heuristic approach used
in BigSecret aims to minimize the total execution time by
using a Hill-Climbing Technique. By iterating over each
query, we check if a better overall performance can be
achieved by moving it to another provider, while satisfy-
ing the constraints. This process goes on until no further

improvements can be made to the total execution time. An
interested reader is directed to our technical report for a
more detailed explanation [7].

V. SECURITY ANALYSIS OF ENCRYPTION MODELS

A. Model-1

The security of using bucketization as a crypto index
is discussed in [4]. Hore et al. state that variance and
entropy in a bucket are major factors in limiting sensitive
data disclosure. Increased variance and entropy in a bucket
decreases sensitive data disclosure by making it harder for
an attacker to determine specific values in a bucket.

B. Model-2

PRF’s as crypto indices have been investigated in [9] in
terms of security and privacy. Damiani et al. point out that
using PRF’s will flatten the data distribution, thus making it
harder for an attacker to gather specific information about
the dataset. Decreasing the range of a PRF to a smaller size
ensures that many values end up having the same hash value,
which increases entropy and variance as in bucketization.

C. Model-3

We adapt the simulation based adaptive security definition
described in [2], which tolerates leakage of access and
search patterns to an adversary. In our security proof, we
assume that each row has only one KV entry. Since only
one KV entry will be read at a time for a query, where
each KV entry is computationally indistinguishable from one
another, access pattern does not reveal any information to
the adversary. We assume the datasetD hasn KV entries,
and I is the index on the row-key part for Model-3, (i.e.,
I := H(rowi) for 1 ≤ i ≤ n). We now provide some
preliminary definitions for our security proof.

History: A q-query history overD is a tupleH := (D,w)
that includes the datasetD and the set of queried row-keys
w := (w1, . . . , wq).

Search Pattern:The search pattern induced by the history
H is a q-by-q symmetric matrixσ(H), such thatσ[i, j] := 1
if qi = qj , and 0 otherwise.

Trace: The trace induced by the historyH is a sequence
τ(H) := (σ(H), |val1|, |KEY1|, . . . , |valn|, |KEYn|).
Trace is the data leaked to an adversary, and consists of
the search pattern, and the lengths of each KV entry.

View: View induced by the historyH is a sequence
v(H) = (I, I(w1), . . . , I(wq)). View is the data that is
accessible to an adversary, consisting of the index of each
row-key, and index values of queried row-keys.

Then, we have the following definition for adaptive secu-
rity from [2].

Definition 1. A symmetric searchable encryption scheme is
adaptively semantically secure, if there exists a probabilistic
polynomial time simulatorS that can adaptively simulate
an adversary’s view of the history from the trace with



probability negligibly close to 1. More formally, for any
polynomial size distinguisherD, for all polynomialspoly
and a larger:

Pr[D(v(H)) = 1]− Pr[D(S(σ(H))) = 1] <
1

poly(r)

Theorem 1. LetH be a secure PRF, and E be a semantically
secure encryption function, then BigSecret using Model-3
(BS-3) satisfies Definition 1, and is adaptively secure.

Proof: It suffices to show a polynomial size simulator
S := (S0, . . . , Sq) for all adversariesA := (A0, . . . , Aq).

S0 needs to generate an artificial datasetD∗, such that
the number of KV entries isn, and the length of the
entries are identical to the entries inD. For each KV
entry ei := (H(rowi), 0, E(KEYi), 1, E(vali)) in D, S0

creates three unique random stringsri, yi, and zi, such
that |ri| = |H(rowi)|, |yi| = |KEYi|, and |zi| = |vali|.
Furthermore, it is important thatr’s are also unique amongst
each other. Finally,S0 sets theith KV entry for the artificial
dataset asD∗[i] := (ri, 0, E(yi), 1, E(zi)).

SinceH is a secure PRF, andE is a semantically secure
encryption function,D and D∗ are indistinguishable from
one another. Otherwise, one could prove thatE or H is not
secure, which contradicts our assumption.

Then, an adversary starts querying the simulator, by
keeping its current state in a binary stringstA. WhenAi

askswi to Si, Si checks if that row-key was asked before.
If not, it randomly picks a KV entryD∗[k]; returnsyk, zk to
Ai, and updatesstA for the corresponding(D∗[k], wi) tuple.
Otherwise, it checksstA and returns the same information
that was returned before.

Since yi and zi are distinguishable from the real world
KV entry with negligible probability, the adversary cannot
distinguish simulated responses from real world responses.
Otherwise, our assumption would be wrong as mentioned
previously. Thus,BS−3 satisfies conditions in Definition 1,
and is semantically secure against adaptive adversaries.

VI. EXPERIMENTS

In this section, we start by describing our experimental
setup, followed by experiments on (i) the performance of
encryption models, (ii) varying number of concurrent clients,
(ii) varying number of buckets for Model-1, and (iv) a multi-
cloud setup with differentCcost andCrisk values.

Experimental Setup: We conducted experiments on a
cluster of 11 nodes, where a node consists of a Pentium
IV processor with≈ 290GB-320GB disk space and 4GB
of main memory. To perform experiments, we used Hadoop
v1.0.4, HBase v0.94.2, and Yahoo! Cloud Serving Bench-
mark (YCSB) v0.1.4 [6]. Each experiment is executed five
times, and the average is taken as the final result.

For the multi-cloud setup, we leveraged the same cluster
twice by storing data in two different forms.P1 is the
provider, where data is stored in plaintext format (without

any encryption);P2 is the provider, where data is stored
using Model-1. The choice of using Model-1 and plaintext
storage is based on our observations from the performance of
the encryption models. The results in Section VI-A show that
Model-2 and 3 perform with at most10% overhead when
compared with plaintext storage, while Model-1 always has
the worst performance. In such a situation, we check if
the overall performance can be improved by using Model-1
along with plaintext storage in a multi-cloud setup.

Dataset and Workload: To measure performance with
different table sizes, we created six tables having 1, 2, 4, 8,
16, and 32 million rows. Each row consists of 10 KV entries,
where each entry is 100B. Each table has 4 different copies:
one for each encryption model, and one in plaintext form.

We defined three workloads with different query fre-
quencies, where each workload consists of 100K queries
for the multi-cloud experiments, and 1K queries for all
other experiments: (i) Workload-1 contains5% Put and95%
Get queries; (ii) Workload-2 is95% Put and5% Get; (iii)
Workload-3 consists of25% Put, 25% Get and50% Scan
queries, where each Scan query’s range is100 rows.

Monetary Cost: Cost metrics used in our experi-
ments are calculated based on Amazon S3, EC2 and
EMR pricing. The price for a Put and Get operation
is $0.01/1000requests and $0.01/10000requests respec-
tively. The storage, communication, and processing cost is
$0.14/GB+PUT, $0.12/GB+GET and$0.1/hour respec-
tively. We calculated the total expected monetary cost, when
the entire dataset and workload is given toP1 as≈ $700,
and when they are given toP2 as≈ $3700. The difference
in costs is due to the overhead associated with Model-1. For
a given query, more data will be transferred each time from
P2 to BigSecret, which results in a larger processing cost.

We variedCcost between$700 and$3700 as a fraction of
$3000. We setCcost := 700 + rate ∗ (3700 − 700), where
rate ∈ {0%, 20%, 40%, 60%, 80%, 100%}.

Sensitivity Disclosure: We performed the multi-cloud
experiments on the dataset with 32M rows, and assumed that
all entries are sensitive. We then definedCrisk as a fraction
(0%, 20%, 40%, 60%, 80%, 100%) of the320M KV entries.

For the risk weights, we assignedwP1
:= 1, since data

will be in plaintext mode. Any sensitive data placed onP1

will be captured by an adversary. We estimatedwP2
:= 0.7

based on the results obtained in [9]. When indexing is
performed on all attributes of a table (four key parts in
our case), the ratio of disclosed data converges to0.7 as
the number of entries increases. Since risk weights are
user-defined values,wP2

:= 0.7 is an acceptable value,
and reflects a DO’s concerns about any possible sensitivity
disclosure from the bucketizers onP2.

Other Parameters: AES256 in CTR mode is used as
SKE, while HMAC-SHA-256 is used as a PRF. For each key
part, we created bucketizers with216 buckets. Moreover, for
the row-key part, we created three other bucketizers having



 1

 10

 100

 1000

1 2 4 8 16 32

T
ot

al
 T

im
e 

(s
ec

)

Table Size (M rows)

Plaintext
Model-1
Model-2
Model-3

Figure 2. Workload-1

 1

 10

 100

1 2 4 8 16 32

T
ot

al
 T

im
e 

(s
ec

)

Table Size (M rows)

Plaintext
Model-1
Model-2
Model-3

Figure 3. Workload-2

 1

 10

 100

 1000

1 2 4 8 16 32

T
ot

al
 T

im
e 

(s
ec

)

Table Size (M rows)

Plaintext
Model-1

Figure 4. Workload-3

 10

 100

 1000

1 2 4 8

La
te

nc
y 

(m
s)

Number of Clients

Plaintext
Model-1
Model-2
Model-3

Figure 5. Workload-1

 10

 100

 1000

 10000

12 14 16 18

T
ot

al
 T

im
e 

(s
ec

)

Number of Buckets (2x)

Model-1

Figure 6. Workload-1

 10

 100

 1000

 10000

12 14 16 18

T
ot

al
 T

im
e 

(s
ec

)

Number of Buckets (2x)

Model-1

Figure 7. Workload-3

 7600

 7800

 8000

 8200

 8400

 8600

 8800

 9000

0 20 40 60 80 100

T
ot

al
 T

im
e 

(s
ec

)

Cost Rate(%)

Multi-Cloud

Figure 8. Workload-3

 1000

 10000

 100000

0 20 40 60 80 100

T
ot

al
 T

im
e 

(s
ec

)

Risk Rate(%)

Multi-Cloud

Figure 9. Workload-3

212, 214, and218 buckets each.
To calculatepow(P1) and pow(P2), we ran Workload-3

with 10K queries over the 32M-row table, and calculated
the total I/O operations performed. For each operation, the
input size is the table size, while the output size depends on
the query type. Finally, we calculatedpow(P1) = 4.224 ×
108 io/sec andpow(P2) = 3.12× 108 io/sec.

A. Workload Experiments

For all experiments in this subsection, we used4 clients
to send queries to BigSecret concurrently. We varied the
number of rows from1M to 32M to observe the effect of
data size on each model and plaintext storage performance.

Figures 2, 3 and 4 show that Model-2 and 3 perform very
similar to plaintext storage, with at most10% overhead.
This is due to these models’ low false positive ratios. PRF
as a crypto index gives results that are almost as efficient
as plaintext storage. On the other hand, Model-1 performs
the worst due to its high false positive ratio, and has a
linear growth in total execution time as the number of rows
increases linearly for all workloads.

B. Number of Clients

The aim of this set of experiments is to show that
even an increased number of concurrent clients results in
latency values that are similar to plaintext storage. We show
results only for Workload-1, since it can be executed on
all encryption models, and has a high Get query ratio.
Figure 5 shows that latency values increase as the number
of concurrent clients doubles. Model-1’s latency is higher
compared to Model-2 and 3, while Model-3 has a lower
latency than Model-2 due to its use of a lesser number of
cryptographic operations.

C. Number of Buckets

Experiments are performed on the 32 million rows table,
with 4 concurrent clients. We varied the number of buckets
only for the row-key bucketizer, since the number of rows
(incurred by the row-key bucketizer) has the most impact on
performance. Figures 6 and 7 show results for Workload-1
and 3 respectively. We observe that increasing the number
of buckets decreases the total execution time exponentially.
The reason is that as the number of buckets increases, a
lesser number of actual rows end up having the same bucket
identifier. Then, for any Get or Scan query, a lesser number
of KV entries are requested by BigSecret.

D. Multi-Cloud Experiments

The multi-cloud setup experiments are performed with a
single client for the 32M-rows table. Figures 8 and 9 show
the results of our experiments on Workload-3. Queries are
partitioned overP1 and P2 using the heuristic approach
based on varying cost and risk values.

Figure 8 shows that for our multi-cloud setup,Ccost

does not have a major impact on the total execution time.
As it changes from0% to 100%, the total execution time
fluctuates between8450sec and8070sec. The reason is the
way we constructed our multi-cloud setup. For a constant
Crisk value, increasingCcost means that more queries can be
executed onP2. However, the algorithm will not assign more
queries toP2, since this will reduce the overall performance.
On the other hand, we observe from Figure 9 that the
total execution time decreases rapidly as we allow more
sensitive data disclosure. This is an expected situation, since
as Crisk increases, more queries will be executed onP1,
which improves the total performance by decreasing the total
execution time.



E. Discussion

We observe that Model-2 and 3 both perform similar to
plaintext storage, with an overhead of at most10% in most
cases. Thus, a DO should use one of these models for a
workload without any Scan query. On the other hand, if a
DO wants to perform Scan queries over outsourced data,
Model-1 has to be used, which does not perform well as the
table size gets larger. In such a scenario, it would be better
to use a multi-cloud setup with an allowed data disclosure
between40 − 80% and a monetary constraint of50%. To
further decrease the total execution time, Model-1 can be
used with an increased number of buckets for the row-key.

Finally, an interested reader is referred to our technical
report for experiments with additional workloads [7].

VII. R ELATED WORK

The problem of data and workload distribution among
trusted and untrusted servers was previously investigatedin
[10], [11]. Their aim was to optimize performance by finding
the maximum workload that can be executed on untrusted
servers. Unlike our work, they do not consider sensitive data
disclosure as a part of their data and workload distribution.

[12] uses a risk based approach, where sensitive data dis-
closure is examined for single machine architectures under
memory attacks. However, this work considered relational
databases; thus it is not directly applicable to a multi-cloud
setup with KV stores.

[13] performs optimization for query and data partition-
ing, with sensitive data disclosure and monetary cost con-
straints. This work concentrates on a hybrid cloud setup, and
aims to optimize the performance over relational databases.
Our work differs from [13] in terms of data model and cloud
setup. We consider a more general problem, a multi-cloud
setup, while their work is limited to a hybrid setup.

Data partitioning has been investigated in [14], [15], in
terms of relational databases, and Map-Reduce. However,
they are not directly applicable in our scenario due to
differences in data model and cloud setup.

VIII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we proposedBigSecret, a secure data
management framework for KV stores. We showed three
models that allow outsourcing of encrypted data with ef-
ficient processing capabilities, and provided a proof of
security for one of these models. We formalized the data
and workload partitioning problem over a multi-cloud setup
with sensitive data disclosure and monetary cost constraints,
and integrated a heuristic solution to this problem within
BigSecret. By empirical evaluations, we showed the benefits
of our approach, and the performance of our models.

In our experiments, we used a static dataset. Furthermore,
we assumed that the query workload is given to us before
partitioning is performed. An interesting future work would

be to manage a dynamic dataset, and to overcome a dynamic
workload scenario.

Finally, in our description of BigSecret, we say that it
can be transformed easily to operate over a different KV
implementation. In the future, we plan to support additional
KV stores other than HBase in BigSecret.

IX. A CKNOWLEDGMENTS

This work was partially supported by Air Force Of-
fice of Scientific Research MURI Grant FA9550-08-1-
0265 and FA9550-12-1-0082, National Institutes of Health
Grants 1R01LM009989 and 1R01HG006844, National Sci-
ence Foundation (NSF) Grants Career-CNS-0845803, CNS-
0964350, CNS-1016343, CNS-1111529, CNS-1228198 and
Army Research Office Grant W911NF-12-1-0558.

REFERENCES

[1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels, “Dynamo: amazon’s highly available key-
value store,” inSIGOPS, 2007.

[2] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Search-
able symmetric encryption: improved definitions and efficient
constructions,” inCCS, 2006.

[3] M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient
similarity search over encrypted data,” inICDE, 2012.

[4] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving
index for range queries,” inVLDB, 2004.

[5] V. Khadilkar, K. Y. Oktay, M. Kantarcioglu, and S. Mehrotra,
“Secure data processing over hybrid clouds,”IEEE Data Eng.
Bull., vol. 35, no. 4, pp. 46–54, 2012.

[6] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with ycsb,”
in SoCC, 2010.

[7] E. Pattuk, M. Kantarcioglu, V. Khadilkar, and H. Ulusoy,
“Bigsecret: A secure data management framework for
key-value stores,” Tech. Rep., 2013. [Online]. Available:
http://www.utdallas.edu/~exp111430/techReport.pdf

[8] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable:
A distributed storage system for structured data,”TOCS, 2008.

[9] E. Damiani, S. Vimercati, S. Jajodia, S. Paraboschi, and
P. Samarati, “Balancing confidentiality and efficiency in un-
trusted relational dbmss,” inCCS, 2003.

[10] H. Hacig̈umüs, B. Hore, and S. Mehrotra, “Privacy of out-
sourced data,”Encyclopedia of Cryptography and Security,
pp. 965–969, 2011.

[11] H. Hacig̈umüş, B. Iyer, C. Li, and S. Mehrotra, “Executing sql
over encrypted data in the database-service-provider model,”
in SIGMOD, 2002.

[12] M. Canim, M. Kantarcioglu, B. Hore, and S. Mehrotra,
“Building disclosure risk aware query optimizers for rela-
tional databases,”VLDB, 2010.

[13] K. Oktay, V. Khadilkar, B. Hore, M. Kantarcioglu, S. Mehro-
tra, and B. Thuraisingham, “Risk-aware workload distribution
in hybrid clouds,” inIEEE CLOUD, 2012.

[14] F. Afrati, V. Borkar, M. Carey, and N. Polyzotis, “Map-reduce
extensions and recursive queries,” inEDBT, 2011.

[15] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas, “Mrshare: Sharing across multiple queries in
mapreduce,”VLDB, 2010.


