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Abstract—Data storage is one of the most popular cloud
services, and is therefore offered by most service providers.
Among the various cloud based data storage services, key-
value stores has emerged as a popular option for storing and
retrieving billions of key-value pairs. Although using such cloud
based key-value store services could generate many benefits,
companies are reluctant to utilize such services due to security
concerns. For example, if keys are used to represent social
security numbers of health insurance customers, and values
are their medical claim details, then outsourcing such key-
value pairs to a public cloud could create significant privacy
and security risks. To mitigate such risks, we propose BigSecret,
a framework that enables secure outsourcing and processing of
encrypted data over public key-value stores. Furthermore, our
proposed framework could automatically make use of multiple
cloud providers, including existing private clouds, to securely
distribute data and workloads for improving efficiency and
performance. Our experiments show that efficient and secure
processing over outsourced encrypted data residing in key-
value stores is possible with a minor overhead in most cases.
In addition, we show that BigSecret's data and workload
distribution algorithm can lead to major performance gains
in a multi-cloud setting.

I. INTRODUCTION
To cope with millions of transactions every day, popular

example of secure data processing. Although such solutions
are interesting starting points, they need to be adapted for
KV stores to enable efficient and secure outsourcing.

One way to balance the security risks versus efficiency
when outsourcing to KV stores is to use hybrid cloud ar-
chitectures [5]Hybrid Cloud architectures leverage a DO’s
private cloud (i.e., cloud infrastructure already possddsy
a DO on its own premises), and offer cost-effective solugion
to data outsourcing. It allows a DO to control the amount of
sensitive data disclosure risk, by (i) outsourcing enasgpt
data to a public cloud, and (ii) keeping a subset of data in
the private cloud in plaintext form. Another alternativeyma
be to keep parts of the KV store at different cloud providers.
This way, data is not vulnerable to a single cloud provider
attack, which reduces the disclosure risk. However, it ®me
at a cost of efficiency specially if there is difference betwe
the computing capabilities of the service providers.

To enable efficient and secure outsourcing of KV stores,
we need to develop solutions that take into account various
options. For example, a DO may have access to a set of
KV storage providers, where each provider has its own
pricing policy and processing power. Moreover, a DO may
have different levels of trust towards each provider, vasio

web sites such as Facebook and Twitter have been usingonetary and risk constraints, and different private cloud
Key-Value (KV) stores. Amazon’s Dynamo [1]; Memcached capabilities. Given such options and constraints, DOs aeed
used by Facebook, Zynga and Twitter; Apache HBase anffamework to maximize performance (i.e., minimize theltota
Apache Cassandra are some widely-used examples. Fugxecution time) by partitioning data and workloads over the
thermore, many cloud service providers offer KV storageproviders. Of course, once partitioning is performed, data
services (e.g., Amazon’s S3), so that data owners (DO) cashould be stored in a secure and efficient manner.

now get rid of the burden of database management. However, In this work, we propos8igSecreta secure data manage-
outsourcing sensitive KV pairs (e.g., personal healthnds;o ment framework for KV stores. BigSecret offers a solution
company financial data) to cloud providers incurs securityfor securely storing and processing KV data, by using one of
and privacy risks. To mitigate such risks, one could encrypthree different data storage techniques, which we refesto a
data prior to outsourcing. This, however, complicates datancryption modelsMoreover, it uses a heuristic approach to
processing. Thus, solutions should be offered that intelli optimally distribute data and workloads over a cloud setup

gently utilize cryptographic technigues, so that the edficy
of query processing is not sacrificed for data security.

consisting of multiple providers, (i.eMulti-Cloud Setup,
under varying monetary and disclosure risk constraints.

Performing secure operations over encrypted data has The primary contributions of this work can be listed as:

been investigated previously in several contexts. Sehleha
symmetric encryption (SSE) (e.g., [2], [3]) is one of the
widely investigated problems, where the aim is to provide
efficient keyword search capabilities over encrypted data.
Performing range queries over outsourced data [4] is anothe

1) We formalize the data and workload partitioning prob-
lem over a multi-cloud setup, with monetary and
disclosure risk constraints. To solve instances of this
problem, we apply a heuristic approach based on the
Hill-Climbing technique.



2) We present encryption models that allow efficient andstored and queries executed #nrespectively. Finally, the
secure storage and processing of encrypted data oexpected number of sensitive KV entries stored Bnis
KV stores. Our solution is oblivious to the underlying denoted bysens(Dp,).

KV store and can work on any KV store. Metrics in MCPP are investigated in terms of monetary
3) We provide a formal security analysis of our encryp-cost, performance, and security.
tion models. Monetary Cost: Monetary cost is a DO’s expenditure

4) We conduct extensive experiments to compare the peresulting from utilization of KV storage services. Two mon-
formance of our encryption models, and validate theetary cost metrics are defined in MCPP: 8jorage cost
benefits of our partitioning algorithm in an example is the cost of storing a datas& on a providerP;, and
multi-cloud setup. is represented as(D, P;). Similarly, the storage cost of a

The rest of the paper is organized as follows: In Section 11Single queryg is s(q, P;) := s(Dy, P;); (i) Processing cost

we formally define the data and workload partitioning prob-iS the cost of executing on P;, and is denoted ag(q, F;).

lem. Section Il gives the necessary background informatio I terms of KV stores, the storage cost may consist of
on KV stores and cryptographic tools that we have usedSoSts arising from a Put operation (defined in Sec. 1lI-B)
BigSecret is detailed in Section 1V, while its security is that entails transferring data to a provider (communicatio
analyzed in Section V. We then present the results of our exc0St). On the other hand, the processing cost is the sum of
periments in Section VI. Finally, Section VII reviews reddt the costs of issuing a Get or Scan (Sec. IIl-B) operation,
work relevant to our paper, followed by the conclusions anc@nd transferring the resuilts to the client.

future work in Section VIII. The total cost of execut_ing on P; is the sum of the
storage cost and processing cofliy, P;) := s(q,P;) +
Il. PROBLEM DEFINITION f(q) x c(q,P;). Similarly, the total cost of executing a

Suppose a DO has access to a number of KV storag@orkload Q on P; is given by ¢(Q, F;) := s(Do, P;) +
providers (which may also include its private clouds), and >~ f(q) x c(g, F). The overall monetary cost of the par-

holds a KV dataset and query workload that needs to b%%igned workloadQp, ..., Qp, is the sum oft(Qp., P)
partitioned over these providers. Each provider may haV%ver all providers, air;d s,houllcd be less than the 1r,nonetary
different processing capabilities, pricing methodolsgaad constraintC,,.,

cost*

trustworthiness. For instance, a DO could have access 10 a g ity Metrics: Placing data on a semi-trusted provider
Semi-trustegbrovider (i.e., one that offers cloud services, but ., e \ith a risk of sensitive data disclosure. This risk can
tries to learn sensitive information) with very low pricing he modeled based on many different factors. In this paper,
or aTrus'Fedprowder .(|.e., offers cloud_serwces ‘,N,'t,hOUt any we model it w.r.t.sens(Dp, ), and the risk weight assigned to
adversarial lnter}t) V,V'th We'ak. processing capabilitiesariy provider P; (wp,). Risk weights are user-defined variables,
setup, a DOs_ aim is to distribute the dataset a_nd W_orkloa%nd reflect a DO’s perspective on a provider's reliabilityr F
over all providers, such that the total execution time of, <o 4 trusted provider will haves. — 0, since it will

the workload is minimized while satisfying (i) monetary o4 1y tg infer any information from the outsourced data.
constraint (i.e., the total monetary cost is held below a On the other hand. a semi-trusted provider will have €
specified threshp!d), and (ii)qh'sclosure constraini.e., the [0,1], due to its adversarial intent. Thus, smaller vallues of
number of sensitive KV entries that may be extracted fromyig) \veight imply more trust towards a provider. Moreover,
outsourced data does not exceed a predefined value). DO may not trust a provider, but may trust the underlying

name the .problem of finding a data and_workload diStri_bUtioncryptographic mechanism used. For instance, if data isstor
that satisfies both of the above constraints over a multietlo using only a semantically secure encryption scheme, then a

setup asMulti-Cloud Partitioning Problem(MCPP). DO would be able to assigmp, — 0.

_ In this section, we first define the notations in MCPP. It 1o expected number of sensitive KV entries leaked to an
is followed by an explanation of cost metrics, i.e., t'he WaYadversary orP; is calculated asop, x sens(Dp,). The total

we measure performance, monetary cost, and disclosUrgisciosure is the sum afip, x sens(Dp,) over all providers,
Finally, we define MCPP formally, and discuss how it could ;.4 should be less than the disclosure consti@int..
potentially create a trade-off between disclosure and. cost  gyecution Time: We assume that the expectéd execu-
tion time of ¢ on P; is affected by the number of I/O
operations neededid(q)), and the processing capabilities
of P; (pow(F;)); and represent it as(q, P;) = to(g)

A. Notations and Cost Metrics

DatasetD is composed of rows, which in turn are

i i : pow(P;) "
fﬁ;?peﬁzegezggjv tfnxﬁ? ripres\,mﬁz ;r;e fgt r((a);err?t\g s Moreover, the expected execution time of a workl@(}s
the set of rows needed to r%ceegi ueriesQin tﬁe workloat e sum of the execution times of each query Q, and is

P g stimated as(Q, P,) .= 3 f(q) x r(q, P).
€Q

Q={q,...,qn} Foraquery € Q, f(q) is the frequency p
of ¢ in Q. For a providerP;, Dp, and Qp, denote the data In a KV store, measuringo(q) will naturally depend on



the number of rows, the distribution of rows among nodes Bucketization: BucketizationB := (Part, Ident, Map)
of the cluster, and the average number of rows per clustes composed of: (i) a partitioning functioRart that takes
node. Additionally, [6] points out that having more nodesa domainZ, number of partitions:, and returns disjoint

in a cluster results in better performance. Thusy(P;) is  partitionsps, ..., p,, where(J!_, p; = Z; (i) an identifier
proportional to the number of nodes in a cluster, and thdunction Ident that assigns unique random identifiers to
processing power of each cluster node. each partitiorp;; (iii) a mapping functionM ap that takes a
Once Q is partitioned intoQp, , ..., 9p,, the total exe- partitioned domain, a value from the domain, and returns
cution time of the entire workload is calculated as the sum/dent(p;), wherev € p;. In an order-preserving partitioning,
of the execution times of each partitioned workload. Ident(p;) < Ident(p;) if i < j. We will use the ternBucket

Data for the partition-to-identifier mapping of a bucketizer.
OptRun(Qp,,...,2p,) = Z r(Qp;, P;)

PieP B. HBase

B. Formal Definition of MCPP HBase is an open source, distributed KV store based
Given a workloadQ, a set of providers?, and a dataset on Google's BigTable [8]. It is a persistent, and strictly
D, MCPP aims to optimize the total execution time, by consistent storage system, which uses Hadoop Distributed
partitioning @ and D over P. A solution to MCPP should File System (HDFS) for data storage. HBase consists of
satisfy both the monetary and disclosure constraints. unique rows, and each row is composed of KV entries.

A KV entry has 5 parts: Row-key (row), family (fam),
qualifier (qua), timestamp (ts) and value (val). In a KV entry
the key consists of the first four parts, and is denoted as
D wp; x sens(Dp,) < Crig KEY := rowl|| fam|qual|ts. Four operations are provided
VP; € P,Vq € Qp,,Dq C Dp, in HBase: (i) Put inserts data into an HBase table; (ii)
Get retrieves data of a specific row; (iieleteremoves a
By solving an instance of MCPP, a DO can achieve aspecific row's data from an HBase table; (Banretrieves a
balance between monetary costs and security. It can bgnge of rows. The last three operations may also be limited

Checked |f the expendlture can be reduced W|th0ut eXpOS|ng) a Spec|f|c fam”y, qua“ﬁers or a certain time range We
too much sensitive data; or if security can be improvedgenote the operations as follows:

with a tolerable increase in expenditure. While doing so, the
performance of the overall system is maximized, irrespecti

of the constraints. An interested reader is referred to our Q
technical report for a more detailed discussion, where we Qp
also show a reduction from the 0-1 Knapsack Problem to Qs
MCPP, and thus prove that MCPP is NP-Hard [7].

minimize:  OptRun(Qp,,...,2p,)
subject to: Zt(Qpi, P;) < Ceost

(row, (fam, qua,val) ¥, ts)

=(row, ts from, tsto, [(fam)|(fam, qua)]™)
(row, ts from, tsto, [(fam)|(fam, qua)]™)
(

TOW from, TOWto, tsf'rorru tsto, [(fam) ‘ (fa‘m7 qua‘)]*)

IV. BIGSECRET

Ill. BACKGROUND BigSecret is our proposed framework, which provides
In this section, we give descriptions of BigSecret’s build- provable security for outsourced KV data; and enables
ing blocks. Then, we provide a brief introduction to HBase, efficient query execution on encrypted data. To do so,

the KV store that is currently supported by BigSecret. data is transformed prior to outsourcing usiBgcryption
o Models which consist of the cryptographic functions from
A. Preliminaries Section IlI-A. Moreover, when used in a multi-cloud setup
Symmetric Encryption: A symmetric encryption scheme containing any number of trusted or semi-trusted providers
is composed of three polynomial-time algorithn$§( F := BigSecret automatically boosts the overall performance by

(Gen, E,D): (i) Gen takes a security parameté;, and  using a heuristic solution for MCPP.
returns a secret key; (i) E encrypts plaintext message In this paper, we base the KV entry structure of BigSecret
p with secret keyK; (iii) D decrypts ciphertext using the on HBase, i.e., a KV entry in BigSecret consists of five parts
secret keyK . The symmetric encryption scheme used in thisas in HBase. Moreover, BigSecret offers the same set of
work is assumed to be semantically secure [2]. operations on the outsourced data as HBase. However, the
Pseudo-Random Functions:A pseudo-random function methodology used in BigSecret can be easily adapted to the
(PRF) is a polynomial-time computable function, whosedata model of any other KV store.
output is indistinguishable from a random function by any In this section, we begin by presenting BigSecret's archi-
polynomial-time adversary. A PRF is composed of twotecture. Then, we explain how data is stored on semi-trusted
functions PRF := (Gen,H): (i) Gen takes a security providers using encryption models. Finally, query tratisia
parameterk, and returns a secret kek(; (i) H takes a is explained; followed by a discussion on the heuristic used
secret keyK, a messagen, and returns a digest. to solve MCPP.



Due to its small collusion probability, the use of PRF's
as a crypto index results in less false positives, and com-
munication overhead, when compared with bucketization.
However, since a PRF’s output is distributed (pseudo) ran-

Client-1

> domly over its range, order is not preserved; thus Scan
Cloud Providerk cannot _be perf_ormed over encrypted data. But as proven
Client-n in Section V, its (pseudo) randomness enables building

provably secure constructions. On the other hand, one must
use bucketization to support Scan queries. A bucketizer's
limited order preserving property enables Scan queries to
be executed over encrypted data. However, a bucketizer's
A. Architecture range is not as large as a PRF’s range; and results in more

Figure 1 shows an outline of the BigSecret architecturef@/Sé positives compared to PRF’s. Moreover, we end up
It consists of providers that a DO utilizes, the BigSecretWith bucket data that needs to be stored on the proxy.
application, and a set of clients that want to perform querie O @ny valuev, a crypto index is eithet/ap(v), H (v),
on the outsourced data. or a constant value; and is denotedlgs). Then for a KV
Given a dataseb and a workloadD, a DO uses BigSecret €ntrye := (row, fam, qua, s, val) in BigSecretencryption
to distributeD and Q over the set of providers. BigSecret M0delis the definition of the entry's translation #(e) :=
solves this partitioning problem (MCPP) using the heuwisti (£ (row), I(fam), I(qua)|E(KEY'), I(ts), E(val)).
approach discussed in Section IV-D. During the partitignin |

Figure 1. BigSecret Architecture

BigSecret may need to access two different sets of dat = I ]\/[Nzlz (;d(iloi) | ?I(Zfoe:j | ?I?foe;? |
(i) Provider datathat contains information on a provider's [fam Map(fam) H(fam) 0
parameters (e.g., risk weight, selected encryption maantel f [ qua || Map(qua)[[E(KEY) | H(qua)[[E(KEY) | E(KEY)
that provider); (ii) Bucket dataif bucketization is used. | Map(ts) H{ts) 1
These sets of data are kept on a proxy, which also hos oval Elval) E(val) E(val)
the BigSecret application. This proxy is placed on a trusted Table |

. . ENCRYPTIONMODELS
platform, such as a private cloud or a trusted public cloud.

Once partitioning is performed, clients will start inter- Encryption models form the core of BigSecret, since they
acting with providers via the BigSecret proxy, rather thanallow (i) securing data on semi-trusted providers, and (ii)
communicating directly, as shown in Figure 1. When a clienterforming queries on encrypted data. Table | gives an
wants to issue a query on the outsourced data, the query f/erview of the models we have used. It shows how a key
first sent to the BigSecret proxy (step 1). BigSecret traasla Partis encrypted using the security tools from SectiorAlll-
it into its encrypted form using bucket data and provider!t should be noted that for eadi and H, a different cryp-
data (steps 2-3), and sends it to the provider(s) (step 4}pgraph|c keyis used. For instance, for Model-2, encryption
BigSecret retrieves a set of results in encrypted form (steff€y used inE(KEY) is different from the one used in
5), decrypts, filters, and returns the final set of resulthieo t £(val). Similarly, a different partitioning is performed for
client (step 6). The client does not perform any operation€ach key-part's bucketizer. _
and is oblivious to any security measure taken by BigSecret. Model-1 uses bucketization as the crypto index for all key

The BigSecret application handles all cryptographic pro-Parts. This model should only be used if Scan queries need
cesses and makes sure that the correct set of results dfePe performed over encrypted data. An important factor in
returned to the client. Since all communication passes vidis model's performance is the number of buckets in the row
the proxy, one may question if this creates a bottleneckbucketizer. Having less buckets results in a large number of
It is obvious that BigSecret is horizontally scalable, ,i.e. FOWS being mapped to the same bucket, thus increasing false
many independent instances of BigSecret can run in para"é}ositives. The same is also true with bucketizers for theroth
to support multiple clients. Moreover in our experiments,key parts. However, the row bucketizer has a larger impact
we show that increasing concurrent client requests does n@n the performance as compared to the other bucketizers.

incur any more overhead than communicating directly. Model-2 uses a PRF as the crypto index, and is very
) suitable for workloads without Scan queries. Utilization
B. Encryption Models of PRF’s on all key-parts decreases the number of false

In BigSecret, we make use of crypto indices to performpositives drastically as compared to Model-1, so a Get or
Delete, Get, and Scan operations over encrypted data. WRelete query can be executed very efficiently over encrypted
mainly utilize bucketization and PRF’s as crypto indices.data. As in Model-1, the range of the PRF used for the row-
Primarily, both of them allow us to process a query bykey has the most impact on performance as compared to
checking/retrieving a very small subset of the entire ddatas PRF's for the other key parts.



Model-3 uses a PRF as the crypto index, but only forimprovements can be made to the total execution time. An
the row-key. The motivation for doing so is to reduce theinterested reader is directed to our technical report for a
sensitivity disclosure arising from multi-dimensionatlex-  more detailed explanation [7].
ing [9]. Fixed values are given to family and timestamp. As
before, the range of the PRF on the row-key has a major
effect on the performance. A. Model-1

The security of using bucketization as a crypto index
is discussed in [4]. Hore et al. state that variance and

Given a query; € {Qp,Qc,@p,Qs} and an encryption entropy in a bucket are major factors in limiting sensitive
modelm € {m1, m2,m3}, we define a translation function gata disclosure. Increased variance and entropy in a bucket
T(m,q) = q*. decreases sensitive data disclosure by making it harder for

Put: Giveng € Qp, translation consists of applying the an attacker to determine specific values in a bucket.
necessary cryptographic operations basedronFor each

encryption modeln;, the translated query* € Qp is: B. Model-2

PRF's as crypto indices have been investigated in [9] in
terms of security and privacy. Damiani et al. point out that
Get: For ¢ € Q¢, the translated query* € Q)¢ changes using PRF’s will flatten the data distribution, thus making i
w.r.t. m;. For Model-1, we calculate index values for all key harder for an attacker to gather specific information about
parts as follows: the dataset. Decreasing the range of a PRF to a smaller size
T(mi,q) == (I(row), I(t5 from)s I(tsto), [[(fam)|(I(fam), I(qua))]*) ENSUrES that many values end up having the same hash value,

which increases entropy and variance as in bucketization.
For Model-2, index values for timestamp parameters are not

translated, since order is not preserved. Inste&ads issued C. Model-3

over the entire timestamp range, i.f, LongM ax]: We adapt the simulation based adaptive security definition
described in [2], which tolerates leakage of access and
search patterns to an adversary. In our security proof, we
Finally for Model-3, we use our only index/ (row)) to  assume that each row has only one KV entry. Since only
translateg into ¢*: one KV entry will be read at a time for a query, where
each KV entry is computationally indistinguishable fromeon
another, access pattern does not reveal any information to
Delete: For g € Qp, translation is similar to the translation the adversary. We assume the dataBdtasn KV entries,

for Get. We need to retrieve a subset of data, decrypt itind I is the index on the row-key part for Model-3, (i.e.,
to see which KV entries need to be actually deleted. Then := H(row;) for 1 < i < n). We now provide some
matching entries are marked with a deletion request and septeliminary definitions for our security proof.

V. SECURITY ANALYSIS OF ENCRYPTION MODELS

C. Query Translation

T(mi,q) := (I(row), (I(fam),I(qua)||E(KEY), E(val))"'7 1(ts))

T(ma2,q) := (I(row), 0, LongMaz,[I(fam)|(I(fam), I(qua))]*)

T(ms,q) := (I(row), 0, LongMaz, null)

to the providers. History: A g-query history oveD is a tupleH := (D, w)
Scan: Given ¢ € Qg, translation is only possible for that includes the datas@t and the set of queried row-keys

Model-1. Moreover, processing over encrypted data con- w := (wy,...,w,).

sists of several steps: (i) Firstis translated tg*. (ii) Then Search Pattern: The search pattern induced by the history

q* is issued on all possible providers, and an initial set offf is a g-by-q symmetric matrix(H ), such thawv[i, j] := 1
results is retrieved. (iii) The retrieved data is decryp@ad  if ¢; = ¢;, and 0 otherwise.

false-positives are discarded. (iv) Finally, the actudl afe Trace: The trace induced by the histo#y is a sequence
results is given to the client row-by-row in sorted order.~(H) := (o(H),|vali|,|KEY1|,...,|val,|, | KEY,|).
Translation ofq to ¢* € Qs for Model-1 is as follows: Trace is the data leaked to an adversary, and consists of
T(m1,q) ==(L(row from), L(rowto), I(ts prom), I(tsto), the _search_ patt_ern, and the Iengths of eaph KV entry.
(I(fam)|(I(fam), I(qua))]*) View: View induced by the h|stor_yH is a sequence
v(H) = (I,I(w1),...,I(wg)). View is the data that is
D. Heuristic Approach to MCPP accessible to an adversary, consisting of the index of each

row-key, and index values of queried row-keys.
Then, we have the following definition for adaptive secu-
rity from [2].

Given a dataseD, a workloadQ, a set of providersP,
and constraint§’,.,.; andC,.;sx, the heuristic approach used
in BigSecret aims to minimize the total execution time by
using aHill-Climbing Technique By iterating over each Definition 1. A symmetric searchable encryption scheme is
query, we check if a better overall performance can beadaptively semantically secure, if there exists a prolisiil
achieved by moving it to another provider, while satisfy- polynomial time simulatoiS that can adaptively simulate
ing the constraints. This process goes on until no furthean adversary’'s view of the history from the trace with



probability negligibly close to 1. More formally, for any any encryption);P, is the provider, where data is stored
polynomial size distinguisheD, for all polynomialspoly using Model-1. The choice of using Model-1 and plaintext
and a larger: storage is based on our observations from the performance of
1 the encryption models. The results in Section VI-A show that
Model-2 and 3 perform with at most0% overhead when
compared with plaintext storage, while Model-1 always has
he worst performance. In such a situation, we check if
he overall performance can be improved by using Model-1
along with plaintext storage in a multi-cloud setup.
Proof: It suffices to show a polynomial size simulator Dataset and Workload: To measure performance with
S = (S,...,9,) for all adversariesd := (Ag, ..., Aq). different table sizes, we created six tables having 1, 2, 4, 8
So needs to generate an artificial dataget, such that 16, and 32 million rows. Each row consists of 10 KV entries,
the number of KV entries i, and the length of the where each entry is 100B. Each table has 4 different copies:
entries are identical to the entries iR. For each KV one for each encryption model, and one in plaintext form.
entry e; := (H(row;),0, E(KEY;),1, E(val;)) in D, Sy We defined three workloads with different query fre-
creates three unique random strings y;, and z;, such  quencies, where each workload consists of 100K queries
that |r;| = |H(row;)|, ly;| = |KEY;|, and|z;| = |val;].  for the multi-cloud experiments, and 1K queries for all
Furthermore, it is important thats are also unique amongst other experiments: (i) Workload-1 contaif% Put and95%
each other. FinallyS, sets the*”* KV entry for the artificial ~ Get queries; (ii) Workload-2 i95% Put and5% Get; (iii)
dataset a®*[i| := (14,0, E(y;), 1, E(z;)). Workload-3 consists o25% Put, 25% Get and50% Scan
Since H is a secure PRF, anH is a semantically secure queries, where each Scan query’s rang&0i$ rows.
encryption function,D and D* are indistinguishable from Monetary Cost: Cost metrics used in our experi-
one another. Otherwise, one could prove thabr H is not ments are calculated based on Amazon S3, EC2 and
secure, which contradicts our assumption. EMR pricing. The price for a Put and Get operation
Then, an adversary starts querying the simulator, bys $0.01/1000requests and $0.01/10000requests respec-
keeping its current state in a binary stringy. When A;  tively. The storage, communication, and processing cost is
asksw; to S;, S; checks if that row-key was asked before. $0.14/GB+PUT, $0.12/GB+GET and$0.1/hour respec-
If not, it randomly picks a KV entnyD* [k]; returnsyy, 2, to  tively. We calculated the total expected monetary cost,rwhe
A;, and updatest 4 for the correspondingD*[k], w;) tuple.  the entire dataset and workload is givenfp as~ $700,
Otherwise, it checkst4 and returns the same information and when they are given tB, as~ $3700. The difference
that was returned before. in costs is due to the overhead associated with Model-1. For
Sincey; and z; are distinguishable from the real world a given query, more data will be transferred each time from
KV entry with negligible probability, the adversary cannot P, to BigSecret, which results in a larger processing cost.
distinguish simulated responses from real world responses We variedC',,; between$700 and$3700 as a fraction of
Otherwise, our assumption would be wrong as mentione&3000. We setC.,s; := 700 + rate * (3700 — 700), where
previously. ThusBS — 3 satisfies conditions in Definition 1, rate € {0%, 20%, 40%, 60%, 80%, 100%}.
and is semantically secure against adaptive adversaries. Sensitivity Disclosure: We performed the multi-cloud
experiments on the dataset with 32M rows, and assumed that
VI. EXPERIMENTS all entries are sensitive. We then definéd,, as a fraction
In this section, we start by describing our experimental(0%, 20%, 40%, 60%, 80%, 100%) of the 320M KV entries.
setup, followed by experiments on (i) the performance of For the risk weights, we assignedp, := 1, since data
encryption models, (ii) varying number of concurrent clggn  will be in plaintext mode. Any sensitive data placed Bn
(if) varying number of buckets for Model-1, and (iv) a multi- will be captured by an adversary. We estimategd, := 0.7
cloud setup with differenC,,,; and C,;, values. based on the results obtained in [9]. When indexing is
Experimental Setup: We conducted experiments on a performed on all attributes of a table (four key parts in
cluster of 11 nodes, where a node consists of a Pentiurour case), the ratio of disclosed data converge$.foas
IV processor with~ 290GB-320GB disk space and 4GB the number of entries increases. Since risk weights are
of main memory. To perform experiments, we used Hadoopser-defined valueswp, := 0.7 is an acceptable value,
v1.0.4, HBase v0.94.2, and Yahoo! Cloud Serving Benchand reflects a DO’s concerns about any possible sensitivity
mark (YCSB) v0.1.4 [6]. Each experiment is executed fivedisclosure from the bucketizers dr.
times, and the average is taken as the final result. Other Parameters: AES256 in CTR mode is used as
For the multi-cloud setup, we leveraged the same clusteBKE, while HMAC-SHA-256 is used as a PRF. For each key
twice by storing data in two different formsP, is the part, we created bucketizers with® buckets. Moreover, for
provider, where data is stored in plaintext format (withoutthe row-key part, we created three other bucketizers having

Pr[D(v(H)) = 1] — Pr[D(S(c(H))) = 1] <
poly(r)

Theorem 1. Let H be a secure PRF, and E be a semantically
secure encryption function, then BigSecret using Model-
(BS-3) satisfies Definition 1, and is adaptively secure.
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To calculatepow(Fy) andpow(Ps), we ran Workload-3 Experiments are performed on the 32 million rows table,
with 10K queries over the 32M-row table, and calculated, iy, 4 concurrent clients. We varied the number of buckets
the total 1/0O operations performed. For each operation, th%nly for the row-key bucketizer, since the number of rows
input size is the ta}ble size, while the output size depends Oﬂncurred by the row-key bucketizer) has the most impact on
th% query type. Finally, we calculatsq@w(Pl) =4.224 X erformance. Figures 6 and 7 show results for Workload-1
10° io/sec andpow(P) = 3.12 x 10° io/sec. and 3 respectively. We observe that increasing the number
of buckets decreases the total execution time exponantiall
The reason is that as the number of buckets increases, a

For all experiments in this subsection, we ugedlients  lesser number of actual rows end up having the same bucket
to send queries to BigSecret concurrently. We varied thadentifier. Then, for any Get or Scan query, a lesser number
number of rows fromLM to 32M to observe the effect of of KV entries are requested by BigSecret.
data size on each model and plaintext storage performance.

Figures 2, 3 and 4 show that Model-2 and 3 perform veryD. Multi-Cloud Experiments

similar to plaintext storage, with at mos0’% overhead.  the multi-cloud setup experiments are performed with a
This is due to these models’ low false positive ratios. PRFjngie client for the 32M-rows table. Figures 8 and 9 show
as a crypto index gives results that are almost as efficienhg resuits of our experiments on Workload-3. Queries are

as plaintext storage. On the other hand, Model-1 performgiioned overP, and P, using the heuristic approach
the worst due to its high false positive ratio, and has g 55ed on varying cost and risk values.

linear growth in total execution time as the number of rows Figure 8 shows that for our multi-cloud setuglo.;

increases linearly for all workloads. does not have a major impact on the total execution time.
. As it changes from0% to 100%, the total execution time
B. Number of Clients fluctuates betweef450sec and8070sec. The reason is the
The aim of this set of experiments is to show thatway we constructed our multi-cloud setup. For a constant
even an increased number of concurrent clients results 0,5, value, increasing’.,s; means that more queries can be
latency values that are similar to plaintext storage. Wavsho executed or,. However, the algorithm will not assign more
results only for Workload-1, since it can be executed onqueries toP,, since this will reduce the overall performance.
all encryption models, and has a high Get query ratioOn the other hand, we observe from Figure 9 that the
Figure 5 shows that latency values increase as the numbéstal execution time decreases rapidly as we allow more
of concurrent clients doubles. Model-1's latency is highersensitive data disclosure. This is an expected situatinnes
compared to Model-2 and 3, while Model-3 has a loweras C,.;,; increases, more queries will be executed i&n
latency than Model-2 due to its use of a lesser number ofvhich improves the total performance by decreasing thé tota
cryptographic operations. execution time.

A. Workload Experiments



E. Discussion be to manage a dynamic dataset, and to overcome a dynamic

We observe that Model-2 and 3 both perform similar toWorkload scenario. _ _

plaintext storage, with an overhead of at mb&% in most Finally, in our description of BigSecret, we say that it
can be transformed easily to operate over a different KV

cases. Thus, a DO should use one of these models for - ;
workload without any Scan query. On the other hand, if a|mplementat|on. In the future, we plan to support additiona

DO wants to perform Scan queries over outsourced datd\V Stores other than HBase in BigSecret.
Model-1 has to be used, which does not perform well as the IX. ACKNOWLEDGMENTS

table size gets larger. In such a scenario, it would be better
to use a multi-cloud setup with an allowed data disclosurq(iC

betweend0 — 80% and a monetary constraint 60%. To o565 ang FAQ550-12-1-0082, National Institutes of Health
further decrease the total execution time, Model-1 can be, _ ..'1 n011 M009989 and 1RO1HG006844. National Sci-
used with an increased number of buckets for the row-key, . =0 \04ation (NSF) Grants Career-CNS-0845803. CNS-

Finally, an interested reader is referred to our technicaljgec 1250 =NS-1016343. CNS-1111529 CNS-1228158 and
report for experiments with additional workloads [7]. Army Re:search Office G’rant W911NF-1,2-1-0558.

This work was partially supported by Air Force Of-
e of Scientific Research MURI Grant FA9550-08-1-

VIlI. RELATED WORK REFERENCES
The problem of data and workload distribution among [1] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
trusted and untrusted servers was previously investigated A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
[10], [11]. Their aim was to optimize performance by finding and W. Vogels, “Dynamo: amazon's highly available key-

. value store,” inSIGOPS 2007.
the maximum workload that can be executed on untrusted[z] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Search-

servers. Unlike our work, they do not consider sensitivadat ™ apje symmetric encryption: improved definitions and efficient
disclosure as a part of their data and workload distribution constructions,” inCCS 2006.

[12] uses a risk based approach, where sensitive data disf3] M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient
closure is examined for single machine architectures under _ Similarity search over encrypted data,” l@DE, 2012.
memory attacks. However, this work considered relational [4] Fr{d';)? rf?)'r ?énl\gghcr‘ﬂgﬁég ??N?_bgszggh A privacy-preserving
databases; thus it is not directly applicable to a multisdlo 5] v/ Khadilkar, K. Y. Oktay, M. Kantarcioglu, and S. Mehrotra,
setup with KV stores. “Secure data processing over hybrid cloudEEE Data Eng.

[13] performs optimization for query and data partition- Bull., vol. 35, no. 4, pp. 46-54, 2012.
ing, with sensitive data disclosure and monetary cost con-[6] B- Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
straints. This work concentrates on a hybrid cloud setug, an R. Sears, "Benchmarking cloud serving systems with ycsb,

aims to optimize the performance over relational databases7] E‘ Spoact:tﬁk?ohﬁc_)kamamiogm, V. Khadilkar, and H. Ulusoy,

Our work differs from [13] in terms of data model and cloud “Bigsecret: A secure data management framework for
setup. We consider a more general problem, a multi-cloud  key-value stores,” Tech. Rep., 2013. [Online]. Available:
setup, while their work is limited to a hybrid setup. http://www.utdallas.edu/~exp111430/techReport.pdf

g . - . . [8] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
Data partitioning has been investigated in [14], [15], in M. Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable:

terms of relational databases, and Map-Reduce. However, A distributed storage system for structured dat&)CS 2008.
they are not directly applicable in our scenario due to [9] E. Damiani, S. Vimercati, S. Jajodia, S. Paraboschi, and

differences in data model and cloud setup. P. Samarati, “Balancing confidentiality and efficiency in un-
trusted relational dbmss,” i©CS 2003.
VIIl. CONCLUSIONS ANDFUTURE WORK [10] H. Hacigimis, B. Hore, and S. Mehrotra, “Privacy of out-
sourced data,Encyclopedia of Cryptography and Security
In this paper, we proposed@igSecret a secure data pp. 965-969, 2011.

management framework for KV stores. We showed thred1l] H.Hacigimis, B. lyer, C. Li, and S. Mehrotra, “Executing sql

. . 3 over encrypted data in the database-service-provider model,”
models that allow outsourcing of encrypted data with ef in SIGMOD, 2002.

ficient processing capabilities, and provided a proof ofi15) M. canim, M. Kantarcioglu, B. Hore, and S. Mehrotra,
security for one of these models. We formalized the data ~ “Building disclosure risk aware query optimizers for rela-

and workload partitioning problem over a multi-cloud setup tional databasesVLDB, 2010. _
with sensitive data disclosure and monetary cost conssain [13] K. Oktay, V. Khadilkar, B. Hore, M. Kantarcioglu, S. Mehro-

. . . : o tra, and B. Thuraisingham, “Risk-aware workload distribution
and integrated a heuristic solution to this problem within in hybrid clouds,” inlEEE CLOUD, 2012.

BigSecret. By empirical evaluations, we showed the benefit§l4] F. Afrati, V. Borkar, M. Carey, and N. Polyzotis, “Map-reduce
of our approach, and the performance of our models. extensions and recursive queries,”BDBT, 2011.

In our experiments, we used a static dataset. Furthermor&l5] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
we assumed that the query workload is given to us before ~ N- KogdaS"vl,iA[;SBhazr()eioShanng across multiple queries in
partitioning is performed. An interesting future work wdul mapreduce, ' :



