
56    communications of the acm    |   november 2012  |   vol.  55  |   no.  11

contributed articles

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 N
a

n
e

t
t

e
 H

o
o

g
s

l
a

g

E ncryption is  a  method for users to securely share 
data over an insecure network or storage server. Before 
the advent of public-key cryptography, a widely held 
view was that for two users to communicate data 
confidentially they would have to first establish a 
mutually held secret key k. While acceptable, perhaps, 
for some small or tight-knit organizations, such 
a solution is clearly infeasible for larger networks 
(such as today’s Internet). More than 30 years ago, 
Diffie and Hellman11,12 introduced the concept of 
public-key cryptography, where two parties securely 
communicate with each other without having a prior 
mutual secret, radically challenging the conventional 
wisdom of the time. 

Today, public-key encryption is in-
valuable, ubiquitous in securing Web 
communication (such as HTTPS and 
SSH), voice traffic, and storage sys-
tems. However, within the technical 
community, there is an ingrained view 
that: 

˲˲ Access to the encrypted data is “all 
or nothing”; one either decrypts the en-
tire plaintext or learns nothing about 
the plaintext (other than a bound on its 
length); and 

˲˲ Encryption is a method to encode 
data so a single secret key can decrypt 
that data. 

However, for many applications, this 
notion of public-key encryption is insuf-
ficient; for example, the encryptor may 
want to encrypt data so anyone satisfy-
ing a certain policy can then decrypt 
it. Consider encrypting a message to 
a company so the only users who can 
decrypt it are employees in, say, the ac-
counting or sales departments whose 
office is in the company’s main build-
ing. Realizing this application using 
existing public-key encryption raises 
several questions: 

˲˲ How do we discover the public 
keys of all individuals who satisfy this 
policy?; 

˲˲ What if someone joins the system 
or receives certain credentials well af-
ter the data is encrypted and stored?; 

˲˲ What if we want to give someone a 
partial view of the plaintext depending 
on their credentials?; and 

˲˲ Should a given user even be al-
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 key insights

 � �Unlike traditional encryption, where 
decryption is all or nothing, in a functional  
encryption system decryption keys may 
reveal only partial information about  
the plaintext; for example, decrypting  
an encrypted image with a cropping  
key will reveal a cropped version of  
the image and nothing else. 

 � �Many advances in public-key encryption 
over the past decade can be viewed as 
special cases of functional encryption. 

 � �Current functional encryption systems are 
quite expressive, yet much work remains 
in expanding the set of functionalities 
supported by existing constructions. 
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identification of each user, as well as 
the overhead of encrypting to each 
one individually. Moreover, this user-
specific encryption does not cover us-
ers who do not meet the criteria today 
but will in the future. 

Using functional encryption a user 
can directly express how the user (or 
organization) wishes to share the 
data in the encryption process. In par-
ticular, the user can encrypt x = (P,m) 
where m is the data the user wishes to 
share, and P is the access policy that 
describes how the user wants to share 
it. The user’s secret-key function sk[f] 
will then check whether the user’s cre-
dentials or attributes match the policy 
and reveal only m in this case. Cor-
responding to the example of an ac-
counting or sales department with an 
office in the company’s main building, 
P could embed the policy (“ACCOUNT-
ING” OR “SALES”) AND “MAIN BUILD-
ING.” A recipient’s function f would 
embed the attributes of the particular 
user and check if they satisfy the for-
mula and if so return m. 

Mining large datasets. Data mining 
is used in medical research, social net-
works, network security, and financial 
fraud detection. Administrators often 
want to give users the ability to mine 
datasets for certain types of queries 
but not let them learn anything else. 
Consider a medical researcher who 
wants to test if there is a link between a 
genotype and a type of cancer in a par-
ticular ethnic group. If the administra-
tor has data consisting of patient gene 
sequences and medical history, the 
administrator would like to give the re-
searcher the ability to test for this link-
age, without revealing the details of all 
patients’ medical conditions. 

Note that in practice, an adminis-
trator typically does not know the que-
ries that will be of interest until well 
after the data is created and stored. 
Functional encryption provides an el-
egant solution. When data is created 
it is simply encrypted in a functional-
encryption system. Later, a user re-
quests to be allowed to learn a certain 
query or function f of the data. If data 
access is authorized, the user is given 
sk[f] and can apply this key to (attempt 
to) decrypt existing or future encrypted 
data. Thus, in a functional-encryption 
system supporting a class of functions 
F a user could be given the ability to 

lowed to learn the identities of all indi-
viduals who have certain credentials? 

Functional encryption. It is time to 
adopt a new broad vision of encryp-
tion that takes into account such con-
cerns. To this end, we advocate the 
concept of “functional encryption” 
where a decryption key enables a user 
to learn a specific function of the en-
crypted data and nothing else. Briefly, 
in a functional-encryption system, a 
trusted authority holds a master secret 
key known only to the authority. When 
the authority is given the description 
of some function f as input, it uses its 
master secret key to generate a derived 
secret key sk[f] associated with f. Now 
anyone holding sk[f] can compute f(x) 
from an encryption of any x. In sym-
bols, if E(pk; x) is an encryption of x, 
then decryption accomplishes 

� given E(pk; x) and sk[f],  
decryption outputs f(x). 

Note it is f(x) that is made available 
to the secret key holder, even though 
x was the value that was encrypted. A 
functional-encryption system can sup-
port a variety of functions this way. In-
tuitively, the security of the functional-
encryption system should guarantee 
the secret-key holder can learn nothing 
else about x beyond f(x). We thus envi-
sion functional encryption as analo-
gous to secure computation18,33 but 
with the critical difference that func-
tional encryption is completely non-
interactive once a recipient obtains the 
recipient’s own secret key. 

Consider what is possible if func-
tional encryption would be realized for 
a broad set of functions: 

Spam filtering on encrypted mail. A 
user wishes to leverage a partially trust-

ed proxy to filter out all encrypted email 
messages identified as spam according 
to the user’s criteria. The user wants to 
achieve the seemingly conflicting goals 
of hiding the message’s contents from 
the proxy while allowing the proxy to 
determine if the message is spam ac-
cording to some arbitrary criteria. The 
user can achieve these goals by setting 
up a functional-encryption system, 
then giving the proxy a key sk[f] where 
f is the user-specified program that 
outputs 1 if the plaintext is spam and 
0 otherwise. The proxy can use sk[f] to 
test if an encrypted message is spam 
without learning anything more about 
the plaintext (see the figure here). 

One can naturally consider gener-
alizations of this idea; for instance, 
the proxy might selectively send im-
portant email messages (as deemed 
by the function f) to the user’s mobile 
device. Taking things further we can 
imagine the destination of a packet is 
encrypted, and the secret key sk[f] al-
lows a router to learn the next hop and 
nothing more. 

Expressive access control. In large 
organizations a user will often think 
of sharing data according to some ac-
cess policy. In addition to our corpo-
rate example, this might also occur in 
other domains (such as health care, 
insurance companies, government in-
stitutions, and universities). Bridging 
the gap between how a user thinks of 
sharing data and discovering the pub-
lic keys of all other users who match 
or will match such sharing can be dif-
ficult and is subject to the problems 
outlined earlier; for example, a system 
might try to encrypt data separately to 
the public key of every user matching a 
certain policy. However, as also noted, 
this user-specific encryption requires 

The email recipient, who has a master secret key sk, gives a spam-filtering service a key 
sk[f] for the functionality f; this f satisfies f(x) = 1 whenever message x is marked as spam 
by a specific spam predicate, otherwise f(x) = 0. A sender encrypts an email message x to 
the recipient, but the spam filter blocks the message if it is spam. The spam filter learns 
nothing else about the contents of the message.  

pk KeyGen sk

sk[f]
encrypted mail 

c = E(pk, x)
forward if 

D(sk[f], c) = f(x) = 0
spam 
filter
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compute any function from this class 
on the dataset. 

These three examples of functional-
ity motivate the research agenda we put 
forward here—to create functional-en-
cryption systems supporting the richest 
possible families of functions and un-
derstand what limitations are inherent 
for functional-encryption systems. 

Functional Encryption 
Recall that public-key encryption sys-
tems (such as RSA and El-Gamal) con-
sist of three algorithms: 

Setup. Outputs a secret key denoted 
sk and a public key pk; anyone can en-
crypt message using pk, but only the 
secret key holder is able to decrypt; 

Encryption E. Takes a public key pk 
and a message as input and outputs a 
ciphertext; and 

Decryption D. Takes a secret key sk 
and a ciphertext as input and outputs 
a message. 

A functional-encryption system in-
cludes the same three algorithms but 
also includes a fourth algorithm called 
KeyGen. Here, the secret key output by 
the Setup algorithm is called the mas-
ter key, denoted by mk. The KeyGen al-
gorithm takes as input mk and the de-
scription of some function f. It outputs 
a key that is specific to the function f 
and denoted sk[f]. More precisely, if c 
is the result of encrypting data x with 
public key pk, then 

D(sk[f]; c) outputs f(x)

We emphasize that sk[f] does not fully 
decrypt c, outputting only a function f 
of the full decryption. To fully decrypt c 
the authorized user can use a secret key 
sk[g], where g is the identity function, 
namely g(x) = x for all x. 

Informally, security of a functional-
encryption system means an attacker 
with a set of secret keys sk[f1],…,sk[fe] 
can learn nothing about the decryp-
tion of some ciphertext c other than 
what is revealed by the keys at the at-
tacker’s disposal. 

To illustrate the power of func-
tional encryption, the following sec-
tion covers how it naturally captures 
many advanced encryption concepts in 
cryptography. First, it should be clear 
that traditional public-key encryption 
is a very special case of functional en-
cryption, where the only supported 

function is the identity function; the 
decryptor learns either the complete 
decryption or nothing at all. 

Identity-based encryption. A more 
advanced public-key concept called 
“identity-based encryption,” or IBE, 
is an encryption system where any 
string can serve as a public key; a 
user’s email address, a date, an IP 
address, a location, or even the num-
bers 1, 2, and 3 are all potential pub-
lic keys. IBE public keys are often 
called “identities” and denoted by id. 
To obtain the secret key for a particu-
lar identity the user communicates 
with an authority holding a master 
key. The authority verifies the user is 
authorized to receive the requested 
secret key, and, if so, it generates the 
secret key using its master key. IBE 
was proposed by Shamir29 in 1984, 
and the first implementations of IBE 
were proposed by Boneh and Frank-
lin6 and Cocks10 in 2001; notable con-
structions include Agrawal et al.,1 
Boneh and Boyen,4 Gentry,15 Gentry 
et al.,16 Waters,30 and Waters.31 

Using the terminology of functional 
encryption the IBE problem can be re-
cast as an equality testing functional-
ity. Let pk and mk be the output of the 
functional encryption setup algorithm. 
To encrypt a message m to identity id 
the encryptor calls the encryption algo-
rithm as 

E(pk; (id, m) ) 

and obtains a ciphertext c. Note the 
data being encrypted is the pair (id, m).a 
A recipient with identity id * obtains a 
secret key for id * by asking the authori-
ty for a secret key sk[fid*] where the func-
tion fid* is definedb as 

fid* ( (id, m) ) := {�m if id = id*, 
⊥ otherwise

The authority generates sk[fid*] us-
ing its functional master key mk. Us-
ing this secret key the user can decrypt 
messages intended for identity id* but 
learns nothing about messages en-
crypted for other identities. 

Recall that IBE systems reduce reli-
ance on certificate directories needed 

a	 Using our earlier notation we would have x = (id, m), 
though we omit x for readability.

b	 We use the ⊥ symbol as a special symbol to de-
note failure to decrypt.

A filtering server 
can use the user’s  
functional secret 
key to test if  
an encrypted  
email message 
is spam without 
learning anything 
else about  
the plaintext.
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The authority generates sk[fu] us-
ing its functional master key mk. Us-
ing this secret key the user can decrypt 
ciphertexts where the user’s attributes 
satisfy the decryption policy but learns 
nothing about the decryption of other 
ciphertexts. 

A related concept called “key-policy 
attribute-based encryption” places the 
access policy ϕ in the key and the vector 
u∈{0, 1}n in the ciphertext. The secret 
key sk[fϕ] decrypts all encryptions E(pk, 
(u, m) ) for which ϕ(u) = 1. 

Security 
Here we turn to constructing function-
al-encryption systems but first explain 
what it means for a functional system 
to be secure. The full definition is a bit 
technical, and we give only high-level 
intuition; for more, see Boneh et al.7 

Roughly speaking, a functional-
encryption system is secure if an at-
tacker with a set of secret keys sk[f1],…
,sk[ft] can learn nothing about the 
decryption of some ciphertext c other 
than what is revealed by the keys at 
the attacker’s disposal. If c is the en-
cryption of some data x, then the at-
tacker can use the attacker’s secret 
keys to learn f1(x),…,ft(x). However, the 
attacker must be unable to learn any-
thing else about x; for example, if the 
attacker has secret keys that reveal the 
first three bits of x, then clearly the at-
tacker can learn these bits, given an 
encryption of x but would be unable 
to learn anything about the remaining 
bits of x. 

To give a bit more detail about se-
curity requirements, let A be a polyno-
mial-time adversary that takes as input 
three things: the public key pk, a set of 
secret keys sk[f1],…,sk[ft] for functions 
f1,…, ft of its choice, and a ciphertext c 
= E(pk, x). This A might output some 
information about the decryption of c 
(such as the least significant bit of x). 
We say the system is secure if for every 
such A there is a another polynomial-
time algorithm B, called a simulator, 
that, given pk and f1(x),…, ft (x) but not 
given c is able to output the same infor-
mation about x that A output. Since B 
never got to see c it must have deduced 
the information about x strictly from 
f1(x),…, ft(x). Since A and B output the 
same information about x, the exis-
tence of B means the only information 
A can learn about x from the cipher-

for traditional public-key encryption; 
to encrypt to identity id, the encryptor 
needs only the global public key pk 
and the recipient’s identity id. General 
functional encryption systems have 
the same property: they require no on-
line certificate directory. An encryptor 
needs only the global public key pk 
and the payload x to be encrypted and 
no other information about the in-
tended recipient(s). 

Attribute-based encryption. An-
other encryption concept called “attri-
bute-based encryption,” or ABE, lets 
the encryptor specify more abstractly 
who is authorized to decrypt a specific 
ciphertext. ABE was proposed by Sahai 
and Waters28 and later refined by Goy-
al et al.19 into two different formula-
tions: key-policy ABE and ciphertext-
policy ABE. 

In the ciphertext-policy system the 
encryptor specifies a policy ϕ on recipi-
ent attributes that determines who can 
decrypt the ciphertext; for example, the 
encryptor can encrypt messages to any-
one who is a 

(“U.S. citizen” and “female”)  
or (“over 30”) 

which is a Boolean formula ϕ on three 
variables. To encrypt a message m with 
decryption policy ϕ the encryptor calls 

E(pk, (ϕ, m) ) 

and obtains a ciphertext c. 
Now, consider a recipient who wants 

to decrypt the ciphertext. The recipient 
has a number of attributes, say, 

“U.S. citizen,” “Rhodes Scholar,”  
“female,” “under 30” 

Let n be the total number of attributes, 
and we represent the set of user attri-
butes as a Boolean vector of length n; 
the vector is 1 at positions that corre-
spond to attributes that are true and 0 
everywhere else. With this setup each 
user has an attribute vector u in {0, 1}n. 

A recipient with attribute vector u 
obtains a secret key for his attribute 
vector by asking the authority for a se-
cret key sk[fu] where the function fu is 
defined as 

fu ( (ϕ, m) ) := {�m if ϕ(u) = 1, 
⊥ otherwise

A tantalizing 
question is whether 
techniques from 
lattices, which  
have been so useful 
in the context of 
fully homomorphic 
encryption, can  
help achieve  
greater functionality 
for functional 
encryption. 
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text c is information it can learn from 
f1(x),…, ft (x) but cannot learn anything 
else about x. Hence, A can learn from c 
whatever is revealed by the secret keys 
at its disposal but nothing else.c 

Challenge: Preventing collusion attacks. 
Attacks on functional encryption us-
ing multiple functional secret keys are 
called collusion attacks, and prevent-
ing them is the main obstacle to con-
structing secure functional systems. To 
illustrate the problem consider again 
the functionality described earlier and 
suppose the encryptor wishes to en-
crypt a message m to this policy 

“U.S. citizen” and “over 30” 

A simple implementation is to associate 
a public key pk1 with the attribute “U.S. 
citizen” and a public key pk2 with the 
attribute “over 30” and double-encrypt 
the message m as 

c = E(pk1, E(pk2, m )) 

where here E(·,·) is a regular public-key-
encryption algorithm. To decrypt c the 
recipient—call her Alice—must possess 
both secret keys corresponding to pk1 
and pk2, implementing the conjunction 
policy specified by the encryptor. 

Now, suppose another user, Bob, 
has attributes “U.S. citizen” and 
“male” where the attribute “male” is 
associated with a public key pk3. He 
would be given the secret keys corre-
sponding to pk1 and pk3, letting him 
decrypt messages encrypted for some 
policies (such as (“U.S. citizen” and 
“male”)). In addition, suppose Alice 
has the attribute “over 30” and is then 
given only the secret key correspond-
ing to pk2. Thus, she cannot decrypt 
the message associated with the origi-
nal policy on her own. 

The problem is Alice and Bob can 
collude to combine their secret keys 
and create new secret keys neither one 
should have; for example, Alice and 
Bob working together can decrypt ci-
phertexts intended for policy “over 30” 
and “male,” even though neither can 
decrypt the ciphertext by themselves. 
In this example, collusion enabled Al-
ice and Bob to decrypt a ciphertext to 

c	 Note our security model does not rely on any 
assumption about trusted hardware or online 
servers needed during decryption.

which neither should have access. 
Secure constructions. Secure con-

structions for complex functionalities 
must prevent collusion attacks. Col-
lusion attacks are prevented by bind-
ing together all secret keys for a set of 
attributes, so mixing the keys given to 
distinct users does not help. As a vi-
sual metaphor, one can imagine that 
all the keys given to Alice are colored 
blue, while all the keys given to Bob are 
colored red. Decryption succeeds only 
when the decryptor uses a set of keys of 
the same color. The colors ensure Alice 
and Bob cannot combine their keys to 
decrypt ciphertexts they should not be 
able to decrypt. 

In practical terms, the colors are 
implemented through randomiza-
tion values. All the keys given to Alice 
are blinded by the same random val-
ue, while all the keys given to Bob are 
blinded by a different random value. 
Decryption with keys blinded by the 
same randomizer produces the correct 
decrypted message. Decryption with 
keys blinded by different randomizers 
results in a random value unrelated to 
the correct decryption. 

State of the Art 
The state of the art in functional encryp-
tion can be understood by considering 
what information about the plaintext x 
is exposed by the ciphertext to all par-
ticipants. We refer to this information 
as the result of the “empty functional-
ity” denoted fε(·); for example, it is in-
herent in any encryption scheme that 
the empty functionality exposes some 
information about x (such as a bound 
on the size of the plaintext). When the 
exact plaintext length is leaked by the 
ciphertext we write fε (x) = |x| to indi-
cate that anyone can learn the plaintext 
length from the ciphertext. 

Public index: ABE. In general, we 
can consider the problem of functional 
encryption where the data to be en-
crypted is decomposed into two parts 
x = (ind, m), where ind denotes a pub-
lic index the encryptor does not mind 
revealing to all participants in the sys-
tem. That is, we define the empty func-
tionality as fε (ind, m) = (ind, |m|). 

Now consider the specific case of 
ABE, where the access policy ϕ is now 
considered a public index. In it, where 
access policy does not require protec-
tion, we have fairly broad and efficient 

constructions of secure ABE schemes; 
secure ABE schemes exist that sup-
port any access policy ϕ that can be 
expressed as a Boolean formula over 
the attributes (as in the earlier exam-
ples).3,19,22,23,25,26,32 Going beyond poli-
cies expressible as Boolean formulas 
remains a vexing open problem for 
researchers, with the ultimate goal of 
supporting policies expressible as ar-
bitrary Boolean circuits or Turing Ma-
chines. 

Non-public index. A more challeng-
ing setting arises where we insist the 
empty functionality reveals as little 
as possible, namely fε (x) = |x|. Here, 
our current understanding of func-
tional encryption is extremely lim-
ited. The state of the art is limited to 
the inner-product functionality over 
prime fields.2,21,22,25 Because this func-
tionality is somewhat technical (and 
before we describe it more formally), 
we briefly discuss some applications: 
First, consider the question of search-
ing on encrypted data, where the data 
is encrypted based on a public key and 
stored on a public server.5 The secu-
rity challenge in this setting is to hide 
the specific nature of the search query 
from the public server while still allow-
ing the public server to send back only 
data entries that match the search que-
ry. The inner-product functionality we 
describe in the following paragraphs 
allows a user to perform such a search 
based on disjunction queries and more 
generally searches defined by CNF and 
DNF formulae or by checking whether 
a univariate search polynomial evalu-
ates to zero on a particular input value. 

The functionality we consider is de-
fined over a prime field Fp where p is a 
large prime chosen randomly during 
the setup of the functional-encryption  
scheme. Messages and keys will cor-
respond to vectors of a fixed arbitrary 
dimension n over Fp. Let us denote the 
message by the vector v and the vector 
underlying a secret key by u. We then 
have 

fu (v) := {�1 if ∑ i = 1,…,nui · vi = 0, 
⊥ otherwise

To see how this functionality can be 
applied, consider again the example of 
disjunction queries: Suppose a cipher-
text is meant to encrypt a single key-
word we hash down to a value a in our 
finite field Fp. Then to encrypt this val-
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block encrypted spam. With FHE, the 
spam filter can likewise run the spam 
predicate f on encrypted email mes-
sages, but the filter learns only the 
encrypted output of the predicate; it 
does not and cannot learn whether an 
encrypted email message is spam. In 
particular, with FHE, the filter can tag 
an encrypted email message with only 
an encrypted tag indicating “spam” 
or “not spam” but cannot block spam 
email messages for the end user. This 
example illustrates the potential 
power of functional encryption over 
FHE. However, constructing a fully 
functional encryption scheme is still 
an open problem, whereas FHE con-
structions exist.

Generalizations 
Here, we cover a few generalizations, 
variants, and extensions of function-
al encryption that are motivated in 
practice: 

Delegating keys. Users might some-
times want to delegate a limited set of 
their capabilities to another user or de-
vice; for example, a medical researcher 
with a secret key able to decrypt raw 
medical records might want to dis-
tribute to a grad student a key that can 
output only certain statistics (such as 
averages over the data). As another ex-
ample, suppose users are planning to 
travel with their mobile devices but are 
concerned the devices might be lost or 
stolen; they might then want to copy 
a key to the devices that decrypts only 
the data that was encrypted during the 
travel time or restrict the key to capa-
bilities related only to the purpose of 
the trip. 

A simple approach is for users with 
a key sk[f] to query the authority for 
a more restrictive key sk[f ′] anytime 
they wish to delegate a key for a more 
restrictive function f ′. However, involv-
ing the authority in every delegation 
is cumbersome, exposes an online au-
thority to more risk, and will not work 
if the authority is unreachable. There-
fore, we would like the delegation op-
eration to be autonomous. Roughly, a 
user with sk[f] can create sk[f ′] if f ′ is 
more limited than the function f; what-
ever we can learn from f ′ we can learn 
from f. 

The concept of delegation arose in 
identity-based encryption in Gentry 
and Silverberg17 and in Horwitz and 

ue a, the system actually encrypts the 
vector v = (1, a, a2,…,an–1). Now, suppose 
we have to create a key corresponding 
to a disjunction query “a1 OR a2 OR 
a3”. We do this by first considering the 
polynomial p(x) = (x – a1)(x – a2)(x – a3), 
writing it out in standard form as p(x) 
= c0 + c1x + c2x2 + c3x3, where the ci are 
the appropriate coefficients. We then 
issue a key for the vector u = (c0, c1, c2, 
c3, 0,…,0). Glancing at the functionality, 
we see our key will indeed match the ci-
phertext for value a if and only if p(a) = 
0; that is, if the value a is a root of our 
polynomial p(x), which was designed 
to have roots only at the three values 
a1, a2, a3 in our desired disjunction. 
Other special cases of inner products, 
including conjunctions and range test-
ing functionalities, were considered in 
Boneh and Waters.8 

Unfortunately, the exact crypto-
graphic mechanisms by which the re-
sults work in Katz et al.,21 Lewko et al.,22 
and Okamoto and Takashima25 are too 
technically involved to describe here; 
we encourage all to look into these 
sources for further technical detail. 

Current limitations. Current func-
tional-encryption schemes, especially 
in non-public index settings, are lim-
ited. From a technical standpoint, cur-
rent techniques for building function-
al-encryption schemes are all based on 
elliptic-curve groups equipped with 
efficiently computable bilinear pair-
ings that map into the multiplicative 
structure of a finite field. At a very high 
level of design abstraction a pairing 
operation allows for a single multipli-
cation between the exponents of two 
“source” group elements. However, 
the result of a pairing operation is a 
“target” group for which the operation 
cannot be repeated. 

The reason we can handle inner 
products of two vectors is because this 
operation requires only one parallel 
call to the multiplication operation, 
which is all that bilinear maps pro-
vide. A tantalizing question is whether 
techniques from lattices, which have 
been so useful in the context of fully 
homomorphic encryption,14 can help 
achieve greater functionality for func-
tional encryption. 

Efficiency. The efficiency of func-
tional-encryption systems varies sig-
nificantly with specific cryptographic 
constructions. However, we can offer 

an approximate sense of the efficiency 
of the ABE where the ciphertext is asso-
ciated with any access policy ϕ that can 
be expressed as a Boolean formula over 
attributes. In current systems, the size 
of the ciphertext scales with the size of 
the Boolean formula ϕ; for example, in 
Waters,32 a ciphertext consisted of two 
group elements for every leaf node of ϕ, 
and encryption took three exponentia-
tions for every leaf node. Decryption re-
quires two of the aforementioned pair-
ing operations for each attribute used 
in the formula. While difficult to pre-
dict how future functional-encryption 
systems might evolve, developers could 
expect that the number of public-key 
operations required will scale with the 
complexity of the functionality. 

Functional Encryption vs. Fully 
Homomorphic Encryption 
Fully homomorphic encryption (FHE) 
is arguably the most impressive devel-
opment in cryptography over the past 
few years, enabling one to compute 
on ciphertexts in the following sense: 
Given a public key pk, encryptions of 
messages x1,…,xt under pk, and the de-
scription of a function f as input, any 
user can construct an encryption of the 
message f(x1,…,xt); see Gentry13 for a 
detailed discussion. A more restricted 
version of FHE, called univariate FHE, 
allows any user to construct an encryp-
tion of f(x) from an encryption of x for 
all univariate functions f. 

While both FHE and functional 
encryption support some form of 
computation on ciphertexts, it is not 
known how to construct functional 
encryption from FHE; FHE does not 
even seem to imply basic functional-
ities (such as identity-based encryp-
tion). The reason for this limitation 
is that the output of an FHE computa-
tion on encrypted data is an encrypt-
ed result; in contrast, the output of a 
functional-encryption computation is 
available in the clear. 

To further illustrate the difference 
between FHE and functional encryp-
tion recall the spam-filtering example 
discussed at the beginning of the ar-
ticle. In it, the spam filter was given a 
secret key sk = sk[f], where f is a func-
tion that outputs 1 if an email is spam 
and 0 otherwise. The key sk lets the 
spam filter run the spam predicate 
f on encrypted email messages and 
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Lynn17,20 and can be realized in attri-
bute-based encryption.19 

Functionality over multiple authori-
ties. In a standard functional-encryp-
tion system, one authority is respon-
sible for issuing private keys, though 
some systems might require more 
flexibility. Returning to the example 
of (ciphertext-policy) attribute-based 
encryption, in a standard system, one 
authority is responsible for both deter-
mining what attributes/credentials to 
issue to each user and creating the keys. 

While a single-authority solution 
is likely workable for smaller organi-
zations, in many applications a user 
might want to create policies spanning 
many trust domains; for instance, sup-
pose we wish to encrypt a document 
for all military personnel who are also 
members of the ACM, asking who 
should manage the system? Using a 
central authority creates several prob-
lems; for one, no single party is always 
able to speak authoritatively for mul-
tiple trust domains or organizations. 
Indeed, a user might wish to create a 
policy that spans organizations that 
are not even aware of one another. 
Another core limitation is that a cen-
tral authority creates a central perfor-
mance bottleneck and consolidates 
trust in one entity. Are any two differ-
ent organizations able to agree who to 
trust in this role? 

Recent work in decentralized attri-
bute-based encryption9,24 has sought 
to overcome these limitations so us-
ers are able to encrypt according to an 
ABE policy issued as a formula over at-
tributes issued from different authori-
ties. An interesting direction is to see 
what other functionalities beyond ABE 
might arise from the use of multiple 
authorities in functional-encryption 
systems. 

Functional encryption with public-
key infrastructure. Finally, we consider 
how ideas from functional encryption 
can be applied to other scenarios; spe-
cifically, consider a scenario involving 
the following conditions: 

Per-user infrastructure. There exists 
a per-user public-key infrastructure 
where every user u obtains a secret key 
sku[f] for some function fu appropriately 
chosen by the user and also establishes 
a public key pku unique to the user; this 
public key should also not leak infor-
mation about the function fu. Such a 

key is established through interaction 
between an authority and the user; 

Targeting a specific key. Encryptions 
are always targeted at a specific user’s 
public key pku. However, the encryptor 
does not know the function fu corre-
sponding to the user hidden by the 
public key pku. At the same time, if a 
user u obtains an encryption of x under 
the user’s public key pku, then decryp-
tion allows the user to learn fu(x) but 
nothing else. Users should also not be 
able to obtain additional capabilities 
by combining secret keys correspond-
ing to different public keys; and 

Misbehaving central authority. A mis-
behaving central authority must not be 
able to decrypt encryptions intended 
for honest users in the system. 

We stress this scenario is quite dif-
ferent from the functional-encryp-
tion scenario we have considered 
here. One of the key properties of 
functional encryption is it does not 
require public-key directories, thus 
enabling a variety of applications (such 
as secure storage in the cloud and secure 
searching on encrypted data). At the 
same time, the support comes at the 
cost of users needing to trust a key-
generation authority (or set of such 
authorities) capable of breaking the 
security of ciphertexts. 

This scenario was considered in re-
cent work27 where it was shown that in 
this setting, called “worry-free encryp-
tion,” the system can support func-
tions (in the non-public index setting) 
specified by any arbitrary polynomial-
size circuit—significantly beyond what 
is possible with standard functional 
encryption today. However, it must be 
stressed that this setting does not cover 
motivating applications of functional 
encryption (such as secure storage in 
the cloud and searching on encrypted 
data); see Sahai and Seyalioglu27 for 
more detail on this setting. 

Future of Functional Encryption 
What will functional encryption look 
like in 10 years? While existing func-
tional-encryption systems are remark-
ably expressive, the central challenge 
is to construct a system that supports 
creation of keys for any function in 
both public and non-public index set-
tings. If we could create such systems 
we could imagine embedding anything 
from arbitrarily complex spam filters 

While existing 
functional-
encryption systems 
are remarkably 
expressive, the 
central challenge 
is to construct 
a system that 
supports creation 
of keys for any 
function in  
both public and 
non-public index 
settings.
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to image-recognition algorithms into 
encryption systems. Imagine an en-
cryption system that lets a user view 
only an image if a facial-recognition 
algorithm matches a picture of the 
user to a face in the encrypted image. 
Moreover, the output of the decryption 
could show the area immediately sur-
rounding the identified user and blur 
out the rest of the image. 

Current progress on building func-
tional encryption systems is dominat-
ed by the tool of groups with bilinear 
maps mentioned earlier. However, as 
also mentioned earlier there are rea-
sons to suspect there might be funda-
mental barriers to realizing more ad-
vanced functional encryption systems 
from this tool. 

Cryptography researchers need to 
search further out, though a reason for 
optimism is the recent dramatic leap 
in what we can achieve in homomor-
phic encryption systems. Hopefully, 
such a leap will be achieved in the not-
too-distant future (perhaps using re-
lated techniques) in the realm of func-
tional encryption. 

Finally, more applied research is 
needed to build functional encryption 
into real-world systems, as well as to 
specify formats for attribute spaces 
and languages for expressing access 
policies. Due to the expressive power 
of these systems we hope to see real-
world deployments of functional en-
cryption over the next decade. The 
end result is much greater flexibility in 
specifying who can and cannot access 
protected data. 
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