
56 communications of the acm | november 2012 | vol. 55 | no. 11

contributed articles

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 N
a

n
e

t
t

e
 H

o
o

g
s

l
a

g

E ncryption is a method for users to securely share
data over an insecure network or storage server. Before
the advent of public-key cryptography, a widely held
view was that for two users to communicate data
confidentially they would have to first establish a
mutually held secret key k. While acceptable, perhaps,
for some small or tight-knit organizations, such
a solution is clearly infeasible for larger networks
(such as today’s Internet). More than 30 years ago,
Diffie and Hellman11,12 introduced the concept of
public-key cryptography, where two parties securely
communicate with each other without having a prior
mutual secret, radically challenging the conventional
wisdom of the time.

Today, public-key encryption is in-
valuable, ubiquitous in securing Web
communication (such as HTTPS and
SSH), voice traffic, and storage sys-
tems. However, within the technical
community, there is an ingrained view
that:

˲˲ Access to the encrypted data is “all
or nothing”; one either decrypts the en-
tire plaintext or learns nothing about
the plaintext (other than a bound on its
length); and

˲˲ Encryption is a method to encode
data so a single secret key can decrypt
that data.

However, for many applications, this
notion of public-key encryption is insuf-
ficient; for example, the encryptor may
want to encrypt data so anyone satisfy-
ing a certain policy can then decrypt
it. Consider encrypting a message to
a company so the only users who can
decrypt it are employees in, say, the ac-
counting or sales departments whose
office is in the company’s main build-
ing. Realizing this application using
existing public-key encryption raises
several questions:

˲˲ How do we discover the public
keys of all individuals who satisfy this
policy?;

˲˲ What if someone joins the system
or receives certain credentials well af-
ter the data is encrypted and stored?;

˲˲ What if we want to give someone a
partial view of the plaintext depending
on their credentials?; and

˲˲ Should a given user even be al-

Functional
Encryption:
A New Vision
for Public-Key
Cryptography

doi:10.1145/2366316.2366333

Decryption keys allow users to learn a specific
function of the encrypted data and nothing else.

By Dan Boneh, Amit Sahai, and Brent Waters

 key insights

 � �Unlike traditional encryption, where
decryption is all or nothing, in a functional
encryption system decryption keys may
reveal only partial information about
the plaintext; for example, decrypting
an encrypted image with a cropping
key will reveal a cropped version of
the image and nothing else.

 � �Many advances in public-key encryption
over the past decade can be viewed as
special cases of functional encryption.

 � �Current functional encryption systems are
quite expressive, yet much work remains
in expanding the set of functionalities
supported by existing constructions.

november 2012 | vol. 55 | no. 11 | communications of the acm 57

58 communications of the acm | november 2012 | vol. 55 | no. 11

contributed articles

identification of each user, as well as
the overhead of encrypting to each
one individually. Moreover, this user-
specific encryption does not cover us-
ers who do not meet the criteria today
but will in the future.

Using functional encryption a user
can directly express how the user (or
organization) wishes to share the
data in the encryption process. In par-
ticular, the user can encrypt x = (P,m)
where m is the data the user wishes to
share, and P is the access policy that
describes how the user wants to share
it. The user’s secret-key function sk[f]
will then check whether the user’s cre-
dentials or attributes match the policy
and reveal only m in this case. Cor-
responding to the example of an ac-
counting or sales department with an
office in the company’s main building,
P could embed the policy (“ACCOUNT-
ING” OR “SALES”) AND “MAIN BUILD-
ING.” A recipient’s function f would
embed the attributes of the particular
user and check if they satisfy the for-
mula and if so return m.

Mining large datasets. Data mining
is used in medical research, social net-
works, network security, and financial
fraud detection. Administrators often
want to give users the ability to mine
datasets for certain types of queries
but not let them learn anything else.
Consider a medical researcher who
wants to test if there is a link between a
genotype and a type of cancer in a par-
ticular ethnic group. If the administra-
tor has data consisting of patient gene
sequences and medical history, the
administrator would like to give the re-
searcher the ability to test for this link-
age, without revealing the details of all
patients’ medical conditions.

Note that in practice, an adminis-
trator typically does not know the que-
ries that will be of interest until well
after the data is created and stored.
Functional encryption provides an el-
egant solution. When data is created
it is simply encrypted in a functional-
encryption system. Later, a user re-
quests to be allowed to learn a certain
query or function f of the data. If data
access is authorized, the user is given
sk[f] and can apply this key to (attempt
to) decrypt existing or future encrypted
data. Thus, in a functional-encryption
system supporting a class of functions
F a user could be given the ability to

lowed to learn the identities of all indi-
viduals who have certain credentials?

Functional encryption. It is time to
adopt a new broad vision of encryp-
tion that takes into account such con-
cerns. To this end, we advocate the
concept of “functional encryption”
where a decryption key enables a user
to learn a specific function of the en-
crypted data and nothing else. Briefly,
in a functional-encryption system, a
trusted authority holds a master secret
key known only to the authority. When
the authority is given the description
of some function f as input, it uses its
master secret key to generate a derived
secret key sk[f] associated with f. Now
anyone holding sk[f] can compute f(x)
from an encryption of any x. In sym-
bols, if E(pk; x) is an encryption of x,
then decryption accomplishes

� given E(pk; x) and sk[f],
decryption outputs f(x).

Note it is f(x) that is made available
to the secret key holder, even though
x was the value that was encrypted. A
functional-encryption system can sup-
port a variety of functions this way. In-
tuitively, the security of the functional-
encryption system should guarantee
the secret-key holder can learn nothing
else about x beyond f(x). We thus envi-
sion functional encryption as analo-
gous to secure computation18,33 but
with the critical difference that func-
tional encryption is completely non-
interactive once a recipient obtains the
recipient’s own secret key.

Consider what is possible if func-
tional encryption would be realized for
a broad set of functions:

Spam filtering on encrypted mail. A
user wishes to leverage a partially trust-

ed proxy to filter out all encrypted email
messages identified as spam according
to the user’s criteria. The user wants to
achieve the seemingly conflicting goals
of hiding the message’s contents from
the proxy while allowing the proxy to
determine if the message is spam ac-
cording to some arbitrary criteria. The
user can achieve these goals by setting
up a functional-encryption system,
then giving the proxy a key sk[f] where
f is the user-specified program that
outputs 1 if the plaintext is spam and
0 otherwise. The proxy can use sk[f] to
test if an encrypted message is spam
without learning anything more about
the plaintext (see the figure here).

One can naturally consider gener-
alizations of this idea; for instance,
the proxy might selectively send im-
portant email messages (as deemed
by the function f) to the user’s mobile
device. Taking things further we can
imagine the destination of a packet is
encrypted, and the secret key sk[f] al-
lows a router to learn the next hop and
nothing more.

Expressive access control. In large
organizations a user will often think
of sharing data according to some ac-
cess policy. In addition to our corpo-
rate example, this might also occur in
other domains (such as health care,
insurance companies, government in-
stitutions, and universities). Bridging
the gap between how a user thinks of
sharing data and discovering the pub-
lic keys of all other users who match
or will match such sharing can be dif-
ficult and is subject to the problems
outlined earlier; for example, a system
might try to encrypt data separately to
the public key of every user matching a
certain policy. However, as also noted,
this user-specific encryption requires

The email recipient, who has a master secret key sk, gives a spam-filtering service a key
sk[f] for the functionality f; this f satisfies f(x) = 1 whenever message x is marked as spam
by a specific spam predicate, otherwise f(x) = 0. A sender encrypts an email message x to
the recipient, but the spam filter blocks the message if it is spam. The spam filter learns
nothing else about the contents of the message.

pk KeyGen sk

sk[f]
encrypted mail

c = E(pk, x)
forward if

D(sk[f], c) = f(x) = 0
spam
filter

contributed articles

november 2012 | vol. 55 | no. 11 | communications of the acm 59

compute any function from this class
on the dataset.

These three examples of functional-
ity motivate the research agenda we put
forward here—to create functional-en-
cryption systems supporting the richest
possible families of functions and un-
derstand what limitations are inherent
for functional-encryption systems.

Functional Encryption
Recall that public-key encryption sys-
tems (such as RSA and El-Gamal) con-
sist of three algorithms:

Setup. Outputs a secret key denoted
sk and a public key pk; anyone can en-
crypt message using pk, but only the
secret key holder is able to decrypt;

Encryption E. Takes a public key pk
and a message as input and outputs a
ciphertext; and

Decryption D. Takes a secret key sk
and a ciphertext as input and outputs
a message.

A functional-encryption system in-
cludes the same three algorithms but
also includes a fourth algorithm called
KeyGen. Here, the secret key output by
the Setup algorithm is called the mas-
ter key, denoted by mk. The KeyGen al-
gorithm takes as input mk and the de-
scription of some function f. It outputs
a key that is specific to the function f
and denoted sk[f]. More precisely, if c
is the result of encrypting data x with
public key pk, then

D(sk[f]; c) outputs f(x)

We emphasize that sk[f] does not fully
decrypt c, outputting only a function f
of the full decryption. To fully decrypt c
the authorized user can use a secret key
sk[g], where g is the identity function,
namely g(x) = x for all x.

Informally, security of a functional-
encryption system means an attacker
with a set of secret keys sk[f1],…,sk[fe]
can learn nothing about the decryp-
tion of some ciphertext c other than
what is revealed by the keys at the at-
tacker’s disposal.

To illustrate the power of func-
tional encryption, the following sec-
tion covers how it naturally captures
many advanced encryption concepts in
cryptography. First, it should be clear
that traditional public-key encryption
is a very special case of functional en-
cryption, where the only supported

function is the identity function; the
decryptor learns either the complete
decryption or nothing at all.

Identity-based encryption. A more
advanced public-key concept called
“identity-based encryption,” or IBE,
is an encryption system where any
string can serve as a public key; a
user’s email address, a date, an IP
address, a location, or even the num-
bers 1, 2, and 3 are all potential pub-
lic keys. IBE public keys are often
called “identities” and denoted by id.
To obtain the secret key for a particu-
lar identity the user communicates
with an authority holding a master
key. The authority verifies the user is
authorized to receive the requested
secret key, and, if so, it generates the
secret key using its master key. IBE
was proposed by Shamir29 in 1984,
and the first implementations of IBE
were proposed by Boneh and Frank-
lin6 and Cocks10 in 2001; notable con-
structions include Agrawal et al.,1
Boneh and Boyen,4 Gentry,15 Gentry
et al.,16 Waters,30 and Waters.31

Using the terminology of functional
encryption the IBE problem can be re-
cast as an equality testing functional-
ity. Let pk and mk be the output of the
functional encryption setup algorithm.
To encrypt a message m to identity id
the encryptor calls the encryption algo-
rithm as

E(pk; (id, m))

and obtains a ciphertext c. Note the
data being encrypted is the pair (id, m).a
A recipient with identity id * obtains a
secret key for id * by asking the authori-
ty for a secret key sk[fid*] where the func-
tion fid* is definedb as

fid* ((id, m)) := {�m if id = id*,
⊥ otherwise

The authority generates sk[fid*] us-
ing its functional master key mk. Us-
ing this secret key the user can decrypt
messages intended for identity id* but
learns nothing about messages en-
crypted for other identities.

Recall that IBE systems reduce reli-
ance on certificate directories needed

a	 Using our earlier notation we would have x = (id, m),
though we omit x for readability.

b	 We use the ⊥ symbol as a special symbol to de-
note failure to decrypt.

A filtering server
can use the user’s
functional secret
key to test if
an encrypted
email message
is spam without
learning anything
else about
the plaintext.

60 communications of the acm | november 2012 | vol. 55 | no. 11

contributed articles

The authority generates sk[fu] us-
ing its functional master key mk. Us-
ing this secret key the user can decrypt
ciphertexts where the user’s attributes
satisfy the decryption policy but learns
nothing about the decryption of other
ciphertexts.

A related concept called “key-policy
attribute-based encryption” places the
access policy ϕ in the key and the vector
u∈{0, 1}n in the ciphertext. The secret
key sk[fϕ] decrypts all encryptions E(pk,
(u, m)) for which ϕ(u) = 1.

Security
Here we turn to constructing function-
al-encryption systems but first explain
what it means for a functional system
to be secure. The full definition is a bit
technical, and we give only high-level
intuition; for more, see Boneh et al.7

Roughly speaking, a functional-
encryption system is secure if an at-
tacker with a set of secret keys sk[f1],…
,sk[ft] can learn nothing about the
decryption of some ciphertext c other
than what is revealed by the keys at
the attacker’s disposal. If c is the en-
cryption of some data x, then the at-
tacker can use the attacker’s secret
keys to learn f1(x),…,ft(x). However, the
attacker must be unable to learn any-
thing else about x; for example, if the
attacker has secret keys that reveal the
first three bits of x, then clearly the at-
tacker can learn these bits, given an
encryption of x but would be unable
to learn anything about the remaining
bits of x.

To give a bit more detail about se-
curity requirements, let A be a polyno-
mial-time adversary that takes as input
three things: the public key pk, a set of
secret keys sk[f1],…,sk[ft] for functions
f1,…, ft of its choice, and a ciphertext c
= E(pk, x). This A might output some
information about the decryption of c
(such as the least significant bit of x).
We say the system is secure if for every
such A there is a another polynomial-
time algorithm B, called a simulator,
that, given pk and f1(x),…, ft (x) but not
given c is able to output the same infor-
mation about x that A output. Since B
never got to see c it must have deduced
the information about x strictly from
f1(x),…, ft(x). Since A and B output the
same information about x, the exis-
tence of B means the only information
A can learn about x from the cipher-

for traditional public-key encryption;
to encrypt to identity id, the encryptor
needs only the global public key pk
and the recipient’s identity id. General
functional encryption systems have
the same property: they require no on-
line certificate directory. An encryptor
needs only the global public key pk
and the payload x to be encrypted and
no other information about the in-
tended recipient(s).

Attribute-based encryption. An-
other encryption concept called “attri-
bute-based encryption,” or ABE, lets
the encryptor specify more abstractly
who is authorized to decrypt a specific
ciphertext. ABE was proposed by Sahai
and Waters28 and later refined by Goy-
al et al.19 into two different formula-
tions: key-policy ABE and ciphertext-
policy ABE.

In the ciphertext-policy system the
encryptor specifies a policy ϕ on recipi-
ent attributes that determines who can
decrypt the ciphertext; for example, the
encryptor can encrypt messages to any-
one who is a

(“U.S. citizen” and “female”)
or (“over 30”)

which is a Boolean formula ϕ on three
variables. To encrypt a message m with
decryption policy ϕ the encryptor calls

E(pk, (ϕ, m))

and obtains a ciphertext c.
Now, consider a recipient who wants

to decrypt the ciphertext. The recipient
has a number of attributes, say,

“U.S. citizen,” “Rhodes Scholar,”
“female,” “under 30”

Let n be the total number of attributes,
and we represent the set of user attri-
butes as a Boolean vector of length n;
the vector is 1 at positions that corre-
spond to attributes that are true and 0
everywhere else. With this setup each
user has an attribute vector u in {0, 1}n.

A recipient with attribute vector u
obtains a secret key for his attribute
vector by asking the authority for a se-
cret key sk[fu] where the function fu is
defined as

fu ((ϕ, m)) := {�m if ϕ(u) = 1,
⊥ otherwise

A tantalizing
question is whether
techniques from
lattices, which
have been so useful
in the context of
fully homomorphic
encryption, can
help achieve
greater functionality
for functional
encryption.

contributed articles

november 2012 | vol. 55 | no. 11 | communications of the acm 61

text c is information it can learn from
f1(x),…, ft (x) but cannot learn anything
else about x. Hence, A can learn from c
whatever is revealed by the secret keys
at its disposal but nothing else.c

Challenge: Preventing collusion attacks.
Attacks on functional encryption us-
ing multiple functional secret keys are
called collusion attacks, and prevent-
ing them is the main obstacle to con-
structing secure functional systems. To
illustrate the problem consider again
the functionality described earlier and
suppose the encryptor wishes to en-
crypt a message m to this policy

“U.S. citizen” and “over 30”

A simple implementation is to associate
a public key pk1 with the attribute “U.S.
citizen” and a public key pk2 with the
attribute “over 30” and double-encrypt
the message m as

c = E(pk1, E(pk2, m))

where here E(·,·) is a regular public-key-
encryption algorithm. To decrypt c the
recipient—call her Alice—must possess
both secret keys corresponding to pk1
and pk2, implementing the conjunction
policy specified by the encryptor.

Now, suppose another user, Bob,
has attributes “U.S. citizen” and
“male” where the attribute “male” is
associated with a public key pk3. He
would be given the secret keys corre-
sponding to pk1 and pk3, letting him
decrypt messages encrypted for some
policies (such as (“U.S. citizen” and
“male”)). In addition, suppose Alice
has the attribute “over 30” and is then
given only the secret key correspond-
ing to pk2. Thus, she cannot decrypt
the message associated with the origi-
nal policy on her own.

The problem is Alice and Bob can
collude to combine their secret keys
and create new secret keys neither one
should have; for example, Alice and
Bob working together can decrypt ci-
phertexts intended for policy “over 30”
and “male,” even though neither can
decrypt the ciphertext by themselves.
In this example, collusion enabled Al-
ice and Bob to decrypt a ciphertext to

c	 Note our security model does not rely on any
assumption about trusted hardware or online
servers needed during decryption.

which neither should have access.
Secure constructions. Secure con-

structions for complex functionalities
must prevent collusion attacks. Col-
lusion attacks are prevented by bind-
ing together all secret keys for a set of
attributes, so mixing the keys given to
distinct users does not help. As a vi-
sual metaphor, one can imagine that
all the keys given to Alice are colored
blue, while all the keys given to Bob are
colored red. Decryption succeeds only
when the decryptor uses a set of keys of
the same color. The colors ensure Alice
and Bob cannot combine their keys to
decrypt ciphertexts they should not be
able to decrypt.

In practical terms, the colors are
implemented through randomiza-
tion values. All the keys given to Alice
are blinded by the same random val-
ue, while all the keys given to Bob are
blinded by a different random value.
Decryption with keys blinded by the
same randomizer produces the correct
decrypted message. Decryption with
keys blinded by different randomizers
results in a random value unrelated to
the correct decryption.

State of the Art
The state of the art in functional encryp-
tion can be understood by considering
what information about the plaintext x
is exposed by the ciphertext to all par-
ticipants. We refer to this information
as the result of the “empty functional-
ity” denoted fε(·); for example, it is in-
herent in any encryption scheme that
the empty functionality exposes some
information about x (such as a bound
on the size of the plaintext). When the
exact plaintext length is leaked by the
ciphertext we write fε (x) = |x| to indi-
cate that anyone can learn the plaintext
length from the ciphertext.

Public index: ABE. In general, we
can consider the problem of functional
encryption where the data to be en-
crypted is decomposed into two parts
x = (ind, m), where ind denotes a pub-
lic index the encryptor does not mind
revealing to all participants in the sys-
tem. That is, we define the empty func-
tionality as fε (ind, m) = (ind, |m|).

Now consider the specific case of
ABE, where the access policy ϕ is now
considered a public index. In it, where
access policy does not require protec-
tion, we have fairly broad and efficient

constructions of secure ABE schemes;
secure ABE schemes exist that sup-
port any access policy ϕ that can be
expressed as a Boolean formula over
the attributes (as in the earlier exam-
ples).3,19,22,23,25,26,32 Going beyond poli-
cies expressible as Boolean formulas
remains a vexing open problem for
researchers, with the ultimate goal of
supporting policies expressible as ar-
bitrary Boolean circuits or Turing Ma-
chines.

Non-public index. A more challeng-
ing setting arises where we insist the
empty functionality reveals as little
as possible, namely fε (x) = |x|. Here,
our current understanding of func-
tional encryption is extremely lim-
ited. The state of the art is limited to
the inner-product functionality over
prime fields.2,21,22,25 Because this func-
tionality is somewhat technical (and
before we describe it more formally),
we briefly discuss some applications:
First, consider the question of search-
ing on encrypted data, where the data
is encrypted based on a public key and
stored on a public server.5 The secu-
rity challenge in this setting is to hide
the specific nature of the search query
from the public server while still allow-
ing the public server to send back only
data entries that match the search que-
ry. The inner-product functionality we
describe in the following paragraphs
allows a user to perform such a search
based on disjunction queries and more
generally searches defined by CNF and
DNF formulae or by checking whether
a univariate search polynomial evalu-
ates to zero on a particular input value.

The functionality we consider is de-
fined over a prime field Fp where p is a
large prime chosen randomly during
the setup of the functional-encryption
scheme. Messages and keys will cor-
respond to vectors of a fixed arbitrary
dimension n over Fp. Let us denote the
message by the vector v and the vector
underlying a secret key by u. We then
have

fu (v) := {�1 if ∑ i = 1,…,nui · vi = 0,
⊥ otherwise

To see how this functionality can be
applied, consider again the example of
disjunction queries: Suppose a cipher-
text is meant to encrypt a single key-
word we hash down to a value a in our
finite field Fp. Then to encrypt this val-

62 communications of the acm | november 2012 | vol. 55 | no. 11

contributed articles

block encrypted spam. With FHE, the
spam filter can likewise run the spam
predicate f on encrypted email mes-
sages, but the filter learns only the
encrypted output of the predicate; it
does not and cannot learn whether an
encrypted email message is spam. In
particular, with FHE, the filter can tag
an encrypted email message with only
an encrypted tag indicating “spam”
or “not spam” but cannot block spam
email messages for the end user. This
example illustrates the potential
power of functional encryption over
FHE. However, constructing a fully
functional encryption scheme is still
an open problem, whereas FHE con-
structions exist.

Generalizations
Here, we cover a few generalizations,
variants, and extensions of function-
al encryption that are motivated in
practice:

Delegating keys. Users might some-
times want to delegate a limited set of
their capabilities to another user or de-
vice; for example, a medical researcher
with a secret key able to decrypt raw
medical records might want to dis-
tribute to a grad student a key that can
output only certain statistics (such as
averages over the data). As another ex-
ample, suppose users are planning to
travel with their mobile devices but are
concerned the devices might be lost or
stolen; they might then want to copy
a key to the devices that decrypts only
the data that was encrypted during the
travel time or restrict the key to capa-
bilities related only to the purpose of
the trip.

A simple approach is for users with
a key sk[f] to query the authority for
a more restrictive key sk[f ′] anytime
they wish to delegate a key for a more
restrictive function f ′. However, involv-
ing the authority in every delegation
is cumbersome, exposes an online au-
thority to more risk, and will not work
if the authority is unreachable. There-
fore, we would like the delegation op-
eration to be autonomous. Roughly, a
user with sk[f] can create sk[f ′] if f ′ is
more limited than the function f; what-
ever we can learn from f ′ we can learn
from f.

The concept of delegation arose in
identity-based encryption in Gentry
and Silverberg17 and in Horwitz and

ue a, the system actually encrypts the
vector v = (1, a, a2,…,an–1). Now, suppose
we have to create a key corresponding
to a disjunction query “a1 OR a2 OR
a3”. We do this by first considering the
polynomial p(x) = (x – a1)(x – a2)(x – a3),
writing it out in standard form as p(x)
= c0 + c1x + c2x2 + c3x3, where the ci are
the appropriate coefficients. We then
issue a key for the vector u = (c0, c1, c2,
c3, 0,…,0). Glancing at the functionality,
we see our key will indeed match the ci-
phertext for value a if and only if p(a) =
0; that is, if the value a is a root of our
polynomial p(x), which was designed
to have roots only at the three values
a1, a2, a3 in our desired disjunction.
Other special cases of inner products,
including conjunctions and range test-
ing functionalities, were considered in
Boneh and Waters.8

Unfortunately, the exact crypto-
graphic mechanisms by which the re-
sults work in Katz et al.,21 Lewko et al.,22
and Okamoto and Takashima25 are too
technically involved to describe here;
we encourage all to look into these
sources for further technical detail.

Current limitations. Current func-
tional-encryption schemes, especially
in non-public index settings, are lim-
ited. From a technical standpoint, cur-
rent techniques for building function-
al-encryption schemes are all based on
elliptic-curve groups equipped with
efficiently computable bilinear pair-
ings that map into the multiplicative
structure of a finite field. At a very high
level of design abstraction a pairing
operation allows for a single multipli-
cation between the exponents of two
“source” group elements. However,
the result of a pairing operation is a
“target” group for which the operation
cannot be repeated.

The reason we can handle inner
products of two vectors is because this
operation requires only one parallel
call to the multiplication operation,
which is all that bilinear maps pro-
vide. A tantalizing question is whether
techniques from lattices, which have
been so useful in the context of fully
homomorphic encryption,14 can help
achieve greater functionality for func-
tional encryption.

Efficiency. The efficiency of func-
tional-encryption systems varies sig-
nificantly with specific cryptographic
constructions. However, we can offer

an approximate sense of the efficiency
of the ABE where the ciphertext is asso-
ciated with any access policy ϕ that can
be expressed as a Boolean formula over
attributes. In current systems, the size
of the ciphertext scales with the size of
the Boolean formula ϕ; for example, in
Waters,32 a ciphertext consisted of two
group elements for every leaf node of ϕ,
and encryption took three exponentia-
tions for every leaf node. Decryption re-
quires two of the aforementioned pair-
ing operations for each attribute used
in the formula. While difficult to pre-
dict how future functional-encryption
systems might evolve, developers could
expect that the number of public-key
operations required will scale with the
complexity of the functionality.

Functional Encryption vs. Fully
Homomorphic Encryption
Fully homomorphic encryption (FHE)
is arguably the most impressive devel-
opment in cryptography over the past
few years, enabling one to compute
on ciphertexts in the following sense:
Given a public key pk, encryptions of
messages x1,…,xt under pk, and the de-
scription of a function f as input, any
user can construct an encryption of the
message f(x1,…,xt); see Gentry13 for a
detailed discussion. A more restricted
version of FHE, called univariate FHE,
allows any user to construct an encryp-
tion of f(x) from an encryption of x for
all univariate functions f.

While both FHE and functional
encryption support some form of
computation on ciphertexts, it is not
known how to construct functional
encryption from FHE; FHE does not
even seem to imply basic functional-
ities (such as identity-based encryp-
tion). The reason for this limitation
is that the output of an FHE computa-
tion on encrypted data is an encrypt-
ed result; in contrast, the output of a
functional-encryption computation is
available in the clear.

To further illustrate the difference
between FHE and functional encryp-
tion recall the spam-filtering example
discussed at the beginning of the ar-
ticle. In it, the spam filter was given a
secret key sk = sk[f], where f is a func-
tion that outputs 1 if an email is spam
and 0 otherwise. The key sk lets the
spam filter run the spam predicate
f on encrypted email messages and

contributed articles

november 2012 | vol. 55 | no. 11 | communications of the acm 63

Lynn17,20 and can be realized in attri-
bute-based encryption.19

Functionality over multiple authori-
ties. In a standard functional-encryp-
tion system, one authority is respon-
sible for issuing private keys, though
some systems might require more
flexibility. Returning to the example
of (ciphertext-policy) attribute-based
encryption, in a standard system, one
authority is responsible for both deter-
mining what attributes/credentials to
issue to each user and creating the keys.

While a single-authority solution
is likely workable for smaller organi-
zations, in many applications a user
might want to create policies spanning
many trust domains; for instance, sup-
pose we wish to encrypt a document
for all military personnel who are also
members of the ACM, asking who
should manage the system? Using a
central authority creates several prob-
lems; for one, no single party is always
able to speak authoritatively for mul-
tiple trust domains or organizations.
Indeed, a user might wish to create a
policy that spans organizations that
are not even aware of one another.
Another core limitation is that a cen-
tral authority creates a central perfor-
mance bottleneck and consolidates
trust in one entity. Are any two differ-
ent organizations able to agree who to
trust in this role?

Recent work in decentralized attri-
bute-based encryption9,24 has sought
to overcome these limitations so us-
ers are able to encrypt according to an
ABE policy issued as a formula over at-
tributes issued from different authori-
ties. An interesting direction is to see
what other functionalities beyond ABE
might arise from the use of multiple
authorities in functional-encryption
systems.

Functional encryption with public-
key infrastructure. Finally, we consider
how ideas from functional encryption
can be applied to other scenarios; spe-
cifically, consider a scenario involving
the following conditions:

Per-user infrastructure. There exists
a per-user public-key infrastructure
where every user u obtains a secret key
sku[f] for some function fu appropriately
chosen by the user and also establishes
a public key pku unique to the user; this
public key should also not leak infor-
mation about the function fu. Such a

key is established through interaction
between an authority and the user;

Targeting a specific key. Encryptions
are always targeted at a specific user’s
public key pku. However, the encryptor
does not know the function fu corre-
sponding to the user hidden by the
public key pku. At the same time, if a
user u obtains an encryption of x under
the user’s public key pku, then decryp-
tion allows the user to learn fu(x) but
nothing else. Users should also not be
able to obtain additional capabilities
by combining secret keys correspond-
ing to different public keys; and

Misbehaving central authority. A mis-
behaving central authority must not be
able to decrypt encryptions intended
for honest users in the system.

We stress this scenario is quite dif-
ferent from the functional-encryp-
tion scenario we have considered
here. One of the key properties of
functional encryption is it does not
require public-key directories, thus
enabling a variety of applications (such
as secure storage in the cloud and secure
searching on encrypted data). At the
same time, the support comes at the
cost of users needing to trust a key-
generation authority (or set of such
authorities) capable of breaking the
security of ciphertexts.

This scenario was considered in re-
cent work27 where it was shown that in
this setting, called “worry-free encryp-
tion,” the system can support func-
tions (in the non-public index setting)
specified by any arbitrary polynomial-
size circuit—significantly beyond what
is possible with standard functional
encryption today. However, it must be
stressed that this setting does not cover
motivating applications of functional
encryption (such as secure storage in
the cloud and searching on encrypted
data); see Sahai and Seyalioglu27 for
more detail on this setting.

Future of Functional Encryption
What will functional encryption look
like in 10 years? While existing func-
tional-encryption systems are remark-
ably expressive, the central challenge
is to construct a system that supports
creation of keys for any function in
both public and non-public index set-
tings. If we could create such systems
we could imagine embedding anything
from arbitrarily complex spam filters

While existing
functional-
encryption systems
are remarkably
expressive, the
central challenge
is to construct
a system that
supports creation
of keys for any
function in
both public and
non-public index
settings.

64 communications of the acm | november 2012 | vol. 55 | no. 11

contributed articles

16.	G entry, C., Peikert, C., and Vaikuntanathan, V.
Trapdoors for hard lattices and new cryptographic
constructions. In Proceedings of STOC, ACM Press,
New York, 2008, 197–206.

17.	G entry, C. and Silverberg, A. Hierarchical id-based
cryptography. In Proceedings of ASIACRYPT 2002,
Lecture Notes in Computer Science, Springer, 2002,
548–566.

18.	G oldreich, O., Micali, S., and Wigderson, A. How to
play any mental game or a completeness theorem
for protocols with honest majority. In Proceedings of
STOC, ACM Press, New York, 1987, 218–229.

19.	G oyal, V., Pandey, O., Sahai, A., and Waters, B.
Attribute-based encryption for fine-grained access
control of encrypted data. In Proceedings of the
ACM Conference on Computer and Communications
Security, ACM Press, New York, 2006, 89–98.

20.	H orwitz, J. and Lynn, B. Toward hierarchical identity-
based encryption. In Proceedings of EUROCRYPT,
Lecture Notes in Computer Science, Springer, 2002,
466–481.

21.	K atz, J., Sahai, A., and Waters, B. Predicate encryption
supporting disjunctions, polynomial equations, and
inner products. In Proceedings of EUROCRYPT,
Lecture Notes in Computer Science, Springer, 2008,
146–162.

22.	L ewko, A.B., Okamoto, T., Sahai, A., Takashima, K.,
and Waters, B. Fully secure functional encryption:
Attribute-based encryption and (hierarchical) inner
product encryption. In Proceedings of EUROCRYPT,
Lecture Notes in Computer Science, Springer, 2010,
62–91.

23.	L ewko, A.B., Sahai, A., and Waters, B. Revocation
systems with very small private keys. In Proceedings
of the IEEE Symposium on Security, IEEE Computer
Society, 2010, 273–285.

24.	L ewko, A.B. and Waters, B. Decentralizing attribute-
based encryption. In Proceedings of EUROCRYPT,
Lecture Notes in Computer Science, Springer, 2011,
568–588.

25.	O kamoto, T. and Takashima, K. Fully secure functional
encryption with general relations from the decisional
linear assumption. In Proceedings of CRYPTO, Lecture
Notes in Computer Science, Springer, 2010, 191–208.

26.	O strovsky, R., Sahai, A., and Waters, B. Attribute-based
encryption with non-monotonic access structures.
In Proceedings of the ACM Conference on Computer
and Communications Security, ACM Press, New York,
2007, 195–203.

27.	S ahai, A. and Seyalioglu, H. Worry-free encryption:
Functional encryption with public keys. In
Proceedings of the ACM Conference on Computer
and Communications, ACM Press, New York, 2010,
463–472.

28.	S ahai, A. and Waters, B. Fuzzy identity-based
encryption. In Proceedings of EUROCRYPT, Lecture
Notes in Computer Science, Springer, 2005, 457–473.

29.	S hamir, A. Identity-based cryptosystems and signature
schemes. In Proceedings of CRYPTO, Lecture Notes in
Computer Science, Springer, 1984, 47–53.

30.	 Waters, B. Efficient identity-based encryption without
random oracles. In Proceedings of EUROCRYPT,
Lecture Notes in Computer Science, Springer, 2005,
114–127.

31.	 Waters, B. Dual-system encryption: Realizing fully
secure ibe and hibe under simple assumptions. In
Proceedings of CRYPTO, Lecture Notes in Computer
Science, Springer, 2009, 619–636.

32.	 Waters, B. Ciphertext-policy attribute-based
encryption: An expressive, efficient, and provably
secure realization. In Proceedings of the Public Key
Cryptography Conference, Lecture Notes in Computer
Science, Springer, 2011, 53–70.

33.	Y ao, A.C.-C. Protocols for secure computations
(extended abstract). In Proceedings of FOCS, IEEE
Computer Society, 1982, 160–164.

Dan Boneh (dabo@cs.stanford.edu) is a professor of
computer science and electrical engineering at Stanford
University.

Amit Sahai (sahai@cs.ucla.edu) is a professor of
computer science at the University of California, Los
Angeles.

Brent Waters (bwaters@cs.utexas.edu) is an assistant
professor of computer science at the University of Texas
at Austin.

© 2012 ACM 0001-0782/12/11 $15.00

to image-recognition algorithms into
encryption systems. Imagine an en-
cryption system that lets a user view
only an image if a facial-recognition
algorithm matches a picture of the
user to a face in the encrypted image.
Moreover, the output of the decryption
could show the area immediately sur-
rounding the identified user and blur
out the rest of the image.

Current progress on building func-
tional encryption systems is dominat-
ed by the tool of groups with bilinear
maps mentioned earlier. However, as
also mentioned earlier there are rea-
sons to suspect there might be funda-
mental barriers to realizing more ad-
vanced functional encryption systems
from this tool.

Cryptography researchers need to
search further out, though a reason for
optimism is the recent dramatic leap
in what we can achieve in homomor-
phic encryption systems. Hopefully,
such a leap will be achieved in the not-
too-distant future (perhaps using re-
lated techniques) in the realm of func-
tional encryption.

Finally, more applied research is
needed to build functional encryption
into real-world systems, as well as to
specify formats for attribute spaces
and languages for expressing access
policies. Due to the expressive power
of these systems we hope to see real-
world deployments of functional en-
cryption over the next decade. The
end result is much greater flexibility in
specifying who can and cannot access
protected data.

Acknowledgments
Dan Boneh is supported by the Nation-
al Science Foundation, the Defense
Advanced Projects Agency PROgram-
ming Computation on EncryptEd Data
(PROCEED) program, the Air Force Of-
fice of Scientific Research under the
Multidisciplinary University Research
Initiative award for “Collaborative
policies and assured information shar-
ing” (Project PRESIDIO), a Google Fac-
ulty Research Award, Samsung, and
the Packard Foundation.

Amit Sahai is supported by a De-
fense Advanced Research Projects
Agency/Office of Naval Research PRO-
CEED award, NSF grants 1228984,
1136174, 1118096, 1065276, 0916574,
and 0830803, a Xerox Foundation

Award, a Google Faculty Research
Award, an equipment grant from Intel,
and an Okawa Foundation Research
Grant. This material is based on work
supported by DARPA through the U.S.
Office of Naval Research under Con-
tract N00014-11-1-0389.

Brent Waters is supported by NSF
CNS-0915361 and CNS-0952692, Air
Force Office of Scientific Research
Grant No: FA9550-08-1-0352, DAR-
PA PROCEED, DARPA N11AP20006,
Google Faculty Research award, an
Alfred P. Sloan Fellowship, Microsoft
Faculty Fellowship, and the Packard
Foundation.

Any opinions, findings, and conclu-
sions or recommendations expressed
in this material are those of the authors
and do not necessarily reflect the views
of the U.S. Department of Defense or
the U.S. government. 	

References
1.	A grawal, S., Boneh, D., and Boyen, X. Efficient lattice

(H)IBE in the standard model. In Proceedings of
EUROCRYPT, Lecture Notes in Computer Science,
Springer, 2010, 553–572.

2.	A grawal, S., Freeman, D.M., and Vaikuntanathan, V.
Functional encryption for inner product predicates
from learning with errors. In Proceedings of
ASIACRYPT, Lecture Notes in Computer Science,
Springer, 2011, 21–40.

3.	B ethencourt, J., Sahai, A., and Waters, B. Ciphertext-
policy attribute-based encryption. In Proceedings of
the IEEE Symposium on Security and Privacy, IEEE
Computer Society, 2007, 321–334.

4.	B oneh, D. and Boyen, X. Efficient selective-id secure
identity-based encryption without random oracles.
In Proceedings of EUROCRYPT, Lecture Notes in
Computer Science, Springer, 2004, 223–238.

5.	B oneh, D., Crescenzo, G.D., Ostrovsky, R., and Persiano,
G. Public-key encryption with keyword search.
In Proceedings of EUROCRYPT, Lecture Notes in
Computer Science, Springer, 2004, 506–522.

6.	B oneh, D. and Franklin, M.K. Identity-based encryption
from the weil pairing. In Proceedings of Crypto,
Lecture Notes in Computer Science, Springer, 2001,
213–229.

7.	B oneh, D., Sahai, A., and Waters, B. Functional
encryption: Definitions and challenges. In Proceedings
of TCC, Lecture Notes in Computer Science, Springer,
2011, 253–273.

8.	B oneh, D. and Waters, B. Conjunctive, subset, and
range queries on encrypted data. In Proceedings of
TCC, Lecture Notes in Computer Science, Springer,
2007, 535–554.

9.	C hase, M. Multi-authority attribute-based encryption.
In Proceedings of TCC, Lecture Notes in Computer
Science, Springer, 2007, 515–534.

10.	C ocks, C. An identity-based encryption scheme based
on quadratic residues. In Proceedings of the Institute
of Mathematics and Its Applications, Lecture Notes in
Computer Science, Springer, 2001, 360–363.

11.	D iffie, W. and Hellman, M.E. Multiuser cryptographic
techniques. In Proceedings of AFIPS National
Computer Conference, AFIPS Press, 1976, 109–112.

12.	D iffie, W and Hellman, M.E. New directions in
cryptography. IEEE Transactions on Information
Theory 22 (1976), 644–654.

13.	G entry, C. Computing arbitrary functions of encrypted
data. Commun. ACM 53, 3 (Mar. 2010), 97–105.

14.	G entry, C. Fully homomorphic encryption using ideal
lattices. In Proceedings of STOC 2009, ACM Press,
New York, 2009, 169–178.

15.	G entry, C. Practical identity-based encryption without
random oracles. In Proceedings of EUROCRYPT,
Lecture Notes in Computer Science, Springer, 2006,
445–464.

