1. Assume that a company called NSC (“No such Company”) starts a web service such that given a cyclic group G and a generator g of group G, it calculates $DL_{g,G}(a)$ for any $a \in G$. Assume that you do not want the NSC to learn $DL_{g,G}(a)$. Devise a scheme such that you can use the NSC discrete logarithm service without letting NSC know which a you want to learn the discrete logarithm for.

2. Let $p; q$ be distinct primes with $p = q = 3 \mod 4$. Consider the following encryption scheme based on the quadratic residuosity assumption: the public key is $N = pq$ and to encrypt a 0 the sender sends a random quadratic residue, while to encrypt a 1 she sends a random non-quadratic residue with Jacobi symbol $+1$. (a) Assuming that given N and an element a in \mathbb{Z}_N^* with Jacobi symbol $+1$, predicting whether a is a quadratic residue or not is a trapdoor predicate. Prove that the above scheme is semantically secure public key encryption. (Hint: You can use any theorem from the book. Your proof should not be longer than 3 lines)

(b) Assume that bit b_1 is encrypted as C_1 and bit b_2 is encrypted as C_2, show how to calculate $E(b_1 \oplus b_2)$ just using C_1 and C_2. (Note that you do not know b_1 or b_2)

(c) Assume that you are given an encryption C of bit b. Show how to generate an another C' using C without knowing b such that C' is also an encryption of b.

3. Assume that you have given an algorithm A that can invert the RSA function with given N and public key e if the ciphertext C where $C = m^e \mod N$ is an element of some set S. Assume that $|S|$ is small compared to \mathbb{Z}_N^* (i.e., $\frac{|S|}{|\mathbb{Z}_N^*|} = 0.01$). In other words, if $C \in S$, A will find the correct m such that $A(C) = C^d = m \mod N$ else A will not be successful.

(a) First show that if we can invert RSA function on C'' for $C'' = C.r^e \mod N$ then we can invert C

(b) Using the Question ??, devise a randomized algorithm that uses the algorithm A as a subroutine to invert RSA on any ciphertext.
4. Consider the FDH-RSA signature scheme. Assume that Alice wants Bob to sign a message such that Bob does not have any idea about the message he signed. Devise a scheme such that given any message \(M \), Alice generates some \(M' \), Bob returns \(C' = M'^d \mod N \) to Alice, and finally Alice applies some function \(g \) where \(g(C') = H(M)^d \mod N \). Precisely define how to generate \(M' \) such that Bob learns nothing about \(M \) or \(H(M) \) from \(M' \). Also define the function \(g \) and show that \(g(C') = H(M)^d \mod N \).

5. Suppose Bob is using the ElGamal signature scheme. Bob signs \(m_1 \) and \(m_2 \) and gets signatures \((r, s_1)\) and \((r, s_2)\) (i.e., the same \(r \) occurs in both of them). Also assume that \(\gcd(s_1 - s_2, p - 1) = 1 \).

(a) Show how to efficiently compute \(k \) (as defined in class) given the above information

(b) Show how to break the signature scheme completely using the given information