Elgamal CryptoSystem

Murat Kantarcioglu

Cryptosystems Based on DL

• DL is the underlying one-way function for
 – Diffie-Hellman key exchange
 – DSA (Digital signature algorithm)
 – ElGamal encryption/digital signature algorithm
 – Elliptic curve cryptosystems

• DL is defined over finite groups
Discrete Logarithm Problem

- Let p be a prime and α and β be nonzero integers in \mathbb{Z}_p and suppose
 $$\beta \equiv \alpha^x \text{ mod } p.$$
- The problem of finding x is called the discrete logarithm problem.
- We can denote it as
 $$x = \log_\alpha \beta$$
 - Often, α is a primitive root mod p
- Reminder: \mathbb{Z}_p is a field $\{0, 1, ..., p-1\}$
- Addendum: \mathbb{Z}_p^* is a cyclic finite group $\{1, ..., p-1\}$

Example: Discrete Log

- **Example:**
 - Let $p = 11$, $\alpha = 2$, and $\beta = 9$.
 - By exhaustive search,

 \[
 \begin{array}{cccccccccc}
 x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
 \alpha^x & 1 & 2 & 4 & 8 & 5 & 10 & 9 & 7 & 3 & 6 & 1 \\
 \end{array}
 \]
 - $\log_2 9 = 6$.
 - $\beta \equiv \alpha^x \text{ mod } p$.
Computing Discrete Log

- When \(p \) is small, it is easy to compute discrete logarithms by exhaustive search.

- However, it is a hard problem to solve for primes \(p \) with more than 200 digit.

- One-way function.
 - It is easy to compute modular exponentiation
 - But, it is hard to compute the inverse operation of the modular exponentiation, i.e. discrete log.

The ElGamal PKC

- Based on the difficulty of discrete logarithm, was invented by Tahir ElGamal in 1985.
- Alice wants to send a message \(m \) to Bob.
- Bob chooses a large prime \(p \) and a primitive root \(\alpha \).
 - Assume \(m \) is an integer \(0 < m < p \).
- Bob also picks a secret integer \(a \) and computes
 - \(\beta \equiv \alpha^a \mod p \).
- \((p, \alpha, \beta)\) is Bob’s public key.
- \((a)\) is his private key
The ElGamal PKC: Protocol

<table>
<thead>
<tr>
<th>Alice</th>
<th>Bob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chooses a secret integer k</td>
<td>Computes $t \cdot r^{-a} \equiv m \mod p$</td>
</tr>
<tr>
<td>Computes $r \equiv \alpha^k \mod p$</td>
<td></td>
</tr>
<tr>
<td>Computes $t \equiv \beta^k \cdot m \mod p$</td>
<td></td>
</tr>
<tr>
<td>Sends (r, t) to Bob.</td>
<td></td>
</tr>
</tbody>
</table>

This works since

$$t \cdot r^{-a} \equiv \beta^k \cdot (\alpha^k)^{-a} \equiv (\alpha^a)^k \cdot (\alpha^k)^{-a} \equiv m \mod p$$

Analysis of ElGamal PKC

- a must be kept secret.
- k is a random integer,
 - β^k is also a random nonzero integer $\mod p$.
 - Therefore, $t \equiv \beta^k \cdot m \mod p$ is the message m multiplied by a random integer.
 - t is also a random integer
- Knowing r does not help either.
- If Eve knows k,
 - she can calculate $t \cdot \beta^{-k} \equiv m \mod p$.
 - k must be secret
Analysis of ElGamal PKC

- A different random k must be used for each message m.
 - Assume Alice uses the same k for two different messages \(m_1 \) and \(m_2 \),
 - the corresponding ciphertexts are \((r, t_1)\) and \((r, t_2)\).
 - If Eve finds out the plaintext \(m_1 \), she can also determine \(m_2 \) as follows
 - \(t_1/m_1 \equiv \beta^k \equiv t_2/m_2 \pmod{p} \Rightarrow m_2 \equiv (t_2m_1)/t_1 \)

Semantic Security (IND-CPA for Public Key Encryption)

- The IND-CPA game

 Challenger
 - picks a random key pair \((K, K^{-1})\), and picks random \(b \in \{0,1\} \)

 Adversary
 - picks \(M_0, M_1 \) of equal length
 - \(C = E_K[M_b] \)
 - \(b' \in \{0,1\} \)
 - Attacker wins game if \(b = b' \)
Semantic Security of ElGamal

- Note that the generic ElGamal encryption scheme is not semantically secure.
- We can infer whether a ciphertext is quadratic residue or not.
- We can use the above fact to come up with two messages where one of them is a quadratic residue and the other one is a quadratic non-residue so that attacker has high advantage in distinguishing encryptions.
- The above attack does not work if β, every plaintext is quadratic residue and $p=2q+1$ where q is prime.
 - It can be shown that this version is semantically secure if DL is infeasible.

CDH and DDH

- **Computational Diffie-Hellman** (CDH)
 - Given a multiplicative group (G, \cdot), an element $g \in G$ having order q, given α^x and α^y, find α^{xy}
- **Decision Diffie-Hellman** (DDH)
 - Given a multiplicative group (G, \cdot), an element $g \in G$ having order q, given $\alpha^x, \alpha^y,$ and α^z, determine if $g^{xy} \equiv g^z \mod n$
- Discrete Log is at least as hard as CDH, which at least as hard as DDH.
CDH and ElGamal

- Prove that any algorithm that solves CDH can be used to decrypt ElGamal ciphertexts
- Proof Sketch: “=>” Assume that algorithm OracleCHD solves CDH and let \((y_1, y_2)\) be an ElGamal encryption and let public key \((p, \alpha, \beta)\) and \(y_1 = \alpha^k \mod p\)
 \[\gamma = \text{OracleCDH}(\alpha, \beta, y_1)\]

DDH => ElGamal

- Given DDH oracle, find two messages whose ElGamal encryptions can be distinguished
- For any two \(x_0, x_1\): \((\beta = \alpha^a)\)
 - \(E(x_0) = \alpha', x_0 \beta', E(x_1) = \alpha', x_1 \beta'\)
 - Suppose receive ciphertext \((y_1, y_2)\)
 - Feed \(<y_1, \beta \alpha^b, y_2 y_1^b / x_0>\)
 - when \((y_1, y_2)\) is \(E(x_0)\), this is \(<\alpha', \alpha^a + b, x_0 \alpha^b \alpha^r \beta/x_0> = <\alpha', \alpha^a + b, \alpha^{(a+b)}>\)
 - when \((y_1, y_2)\) is \(E(x_1)\), this is \(<\alpha', \alpha^a + b, \alpha^{(a+b)} x_1/x_0>\)
 - if the DDH oracle say yes, we say 0, otherwise we say 1