Modes of Operation

Murat Kantarcioglu

Block Ciphers

- Block length is fixed (n-bit)
- How to encrypt large messages?
 - Partition into n-bit blocks
 - Choose mode of operation
 - Electronic Codebook (ECB),
 - Cipher-Block Chaining (CBC),
 - Cipher Feedback (CFB),
 - Output Feedback (OFB),
 - Counter (CTR)
- Padding schemes
Evaluation criteria

- **Identical messages**
 - under which conditions ciphertext of two identical messages are the same
- **Chaining dependencies**
 - how adjacent plaintext blocks affect encryption of a plaintext block
- **Error propagation**
 - resistance to channel noise
- **Efficiency**
 - preprocessing
 - parallelization: random access

Notation

- Message x consists of plaintext blocks of size n
 - $x = x_1 // x_2 // ... // x_t$
- Ciphertext of plaintext block x_i denoted as c_i

- Chaining requires an initialization vector that first plaintext block x_1 will depend on. Initialization vector denoted as IV.
 - IV should be selected randomly for each message (x)
Electronic Codebook (ECB)

- Each block encrypted independently
- Identical plaintexts encrypted similarly
- No chaining, no error propagation

Electronic Codebook (ECB)

- Does not hide data patterns, unsuitable for long messages
 - Wiki example: pixel map using ECB

- Susceptible to replay attacks
 - Example: a wired transfer transaction can be replayed by re-sending the original message)
Cipher-Block Chaining (CBC)

- Allows random access to ciphertext
- Decryption is parallelizable
 - Plaintext block x_j requires ciphertext blocks c_j and c_{j-1}

- Identical messages: changing IV or the first plaintext block results in different ciphertext
- Chaining: Ciphertext block c_j depends on x_j and all preceding plaintext blocks (dependency contained in c_{j-1})
- Error propagation: Single bit error on c_j may flip the corresponding bit on x_{j+1}, but changes x_j significantly.
- IV need not be secret, but its integrity should be protected
Cipher Feedback (CFB)

- Allows random access to ciphertext
- Decryption is parallelizable
 - Plaintext block x_j requires ciphertext blocks c_j and c_{j-1}

- Identical messages: as in CBC
- Chaining: Similar to CBC
- Error propagation: Single bit error on c_j may flip the corresponding bit on x_j, but changes x_{j+1} significantly.
- IV need not be secret (XORed with x_1)
Output Feedback (OFB)

- Preprocessing possible (keep enc/decrypting previous output block)
- No random access, not parallelizable

- Identical messages: same as CBC
- No chaining dependencies
- Error propagation: Single bit error on c_j may only affect the corresponding bit of x_j
- IV need not be secret, but should be changed if a previously used key is to be used again
Counter (CTR)

- Preprocessing possible (inc/decrement and enc/decrypt counter)
- Allows random access

Counter (CTR)

- Both encryption & decryption are parallelizable
 - Encrypted counter is sufficient to enc/decrypt
- Identical messages: changing nonce results in different ciphertext
- No chaining dependencies
- No error propagation
- Nonce should be random, and should be changed if a previously used key is to be used again
Summary

• Choice of encryption mode affects
 – Encryption/decryption speed
 – Security against active adversaries (bit flips)
 – Security against passive adversaries (ECB)
 – Error propagation