Unconditional Secrecy

Murat Kantarcioglu

Secure Communication

- Our goal is to provide secure channel between Alice and Bob so that they can securely communicate with each other remotely even if malicious Malory is eavesdropping on their communication.
- We will assume that Alice and Bob shares a common secret in this setting.
Definitions of Security

• Computational Security
 – Assuming that Malory has limited computational resources, it will be infeasible for Malory to infer anything useful from the communication between Alice and Bob
 – In practice, we will prove that if a certain problem is hard (e.g. factoring large integers) than breaking a certain cryptographic primitive will be computationally infeasible (also known as provable security)

• Unconditional Security (i.e. Perfect Security)
 – Even if Malory has infinite amount of computational resources, he cannot learn anything from the communication

• Pros: Better Protection compared Computational Security
• Cons: Secret keys have to be as large as the message size
Review of Elementary Probability

★ A discrete random variable X is defined by specifying
 ► A finite set X
 (e.g. the possible values a tossed dice can take.)
 ► A probability distribution on X such that
 the probability of X takes on the value x
 is denoted as $Pr[X = x]$ (e.g. the probability that
 we get tails after a coin flip)
★ If X is fixed define $Pr[X = x]$ as $Pr[x]$
★ $Pr[x] \geq 0$ for all $x \in X$
★ $(\sum_{x \in X} Pr[x]) = 1$

Review of Elementary Probability Theory

★ Given an event $E \subset X$, define
 $Pr[x \in E] = \sum_{x \in E} Pr[x]$

★ Example:
 ► Random variable Z: result of throwing a pair of dice
 ► Defined on set $Z = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$
 ► Define event S_4 as the sum of the dices is 4.
 ► $S_4 = \{(1, 3), (2, 2), (3, 1)\}$
 ► $Pr[S_4] = 1/12$
Review of Elementary Probability Theory

★ Given two random variables X and Y
 ► $Pr[x, y]$ is the joint probability
 ► $Pr[x|y]$ is the conditional probability
★ Random variables X and Y are independent if
 ► $Pr[x, y] = Pr[x].Pr[y]$
 ► $Pr[x, y] = Pr[x|y].Pr[y]$
★ Bayes Theorem
 ► If $Pr[y] > 0$ then $Pr[x|y] = \frac{Pr[y|x].Pr[x]}{Pr[y]}$

Formal Definitions of Perfect Secrecy

★ A CryptoSystem Definition:
 ► A cryptosystem is a five tuple (P, C, K, E, D) where
 1. P is a finite set of plaintexts
 2. C is a finite set of ciphertexts
 3. K is a finite set of possible keys
 4. E is the set of encryption rules for each key
 5. D is the set of correct decryption rules for each key
Perfect Secrecy

★ **Perfect Secrecy:** A cryptosystem has perfect secrecy if \(\Pr[x|y] = \Pr[x] \) for all \(x \in \mathcal{P} \) and \(y \in \mathcal{C} \).

★ This definition states that a **posteriori** probability that the plaintext is \(x \) given that ciphertext is \(y \) is equal to the **a priori** probability that the plaintext is \(x \).

★ Perfectly Secure CryptoSystem Example (Onetime Pad):
 - \(\mathcal{P} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n \) where \(n \geq 1 \), \(x \in \mathcal{P} \), \(y \in \mathcal{C} \)
 - Define encryption with one-time random key \(K \), \(e_K(x) = x \oplus K \) (i.e., bitwise xor)
 - Define decryption with one-time random key \(K \), \(d_K(y) = y \oplus K \) (i.e., bitwise xor)

Perfect Secrecy Proof for One-Time Pad

★ We need to prove that perfect secrecy definition is satisfied
★ We need to show \(\Pr[x|y] = \Pr[x] \) for all \(x \in \mathcal{P} \) and \(y \in \mathcal{C} \).

★ Note that

\[
\Pr[x|y] = \frac{\Pr[x].\Pr[y|x]}{\Pr[y]} = \frac{\Pr[x].\Pr[K = y \oplus x]}{\Pr[y]} = \frac{\Pr[x].2^{-n}}{\sum_{k \in \mathcal{K}} \Pr[K = k].\Pr[x = d_k(y)]} = \frac{2^{-n}.\sum_{k \in \mathcal{K}} \Pr[x = d_k(y)]}{\Pr[x]}
\]
Properties of Cryptosystems that have Perfect Secrecy

★ A cryptosystem \((\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})\) that has perfect secrecy satisfies \(Pr[x|y] = Pr[x]\) for all \(x \in \mathcal{P}\) and \(y \in \mathcal{C}\).

★ This implies (assuming \(Pr[y] > 0\) (why can we assume this??))

\[
\Rightarrow \forall x \in \mathcal{P}, Pr[y] = Pr[y|x] > 0 \\
\Rightarrow \forall x \in \mathcal{P}, \exists k \in \mathcal{K} \text{s.t.} \mathcal{E}_k(x) = y \\
\Rightarrow |\mathcal{K}| \geq |\mathcal{C}| \geq |\mathcal{P}|
\]

★ We can also show other properties about perfectly secure cryptosystems. See Thm 2.4 in the book.