
1

Message Authentication
Codes

Murat Kantarcioglu

Based on Prof. Ninghui Li’s Slides

Lecture Outline

• Message
Authentication Code

2

Limitation of Using Hash
Functions for Authentication

• Require an authentic channel to transmit
the hash of a message
– anyone can compute the hash value of a

message, as the hash function is public

– not always possible

• How to address this?
– use more than one hash functions

– use a key to select which one to use

Hash Family

• A hash family is a four-tuple (X,Y,K,H),
where
– X is a set of possible messages

– Y is a finite set of possible message digests

– K is the keyspace
– For each K∈�, there is a hash function hK∈H �

Each hK: � →�

• Alternatively, one can think of H as a
function K×X→Y

3

Message Authentication
Code

• A MAC scheme is a hash family, used for
message authentication

• MAC = CK(M)
• The sender and the receiver share K
• The sender sends (M, Ck(M))
• The receiver receives (X,Y) and verifies that

CK(X)=Y, if so, then accepts the message as
from the sender

• To be secure, an adversary shouldn’t be able to
come up with (X,Y) such that CK(X)=Y.

Constructing MAC from Hash
Functions

• Given a cryptographic (iterative) hash
function h,

• Define CK(M) to be h(M) with K as IV
• Is this secure?
• Given a message x and its MAC CK(x), the

adversary can construct x’ and CK(x’)
– let pad(x) be the padding added to x

– let x’=x || pad(x) || w, y’=x’ || pad(x’)

– then CK(x’) can be computed from CK(x)

4

Model for Iterated Hash
Functions

preprocessingoriginal input x

append padding bits

append length

ƒ

g

Hi
H0=IV
Hi=f(Hi-1,xi)

xi

Ht

Hi-1

formatted
input x1, x2... xn

each xi a t-bit
block

iterated
processing

compression function
f: {0,1}m+t →{0,1}m

output h(x)=g(Hn)

Existential Forgery Attack
against MAC

• Let C be a MAC function CK(M) is the
MAC for M under K.

Challenger Adversary
Picks K at random

xi

CK(xi)

x,y

Attacker wins game if x∉{x1,…,xq}
and CK(x)=y

q times

5

Selective Forgery Attack
Against MAC

• Let C be a MAC function CK(M) is the
MAC for M under K.

Challenger AdversaryPicks K at random,
Picks a random x

xi≠x
CK(xi)

y

Attacker wins game if and CK(x)=y

q times

x

MAC Security

• The pair (x, z) is called a forgery

• A (ε,q) forger
– can produce a forgery with probability ε, after

making q queries

– generally talks about existential forgery

• The attacker against the MAC scheme
CK(M)=h(M) with K as IV is a (1,1) forger

6

Constructing MAC using Hash
Functions

• Are the following MAC schemes secure?
What kind of forgers exist for them?
– CK(M) = h(K || M), where h is a cryptographic

hash function

HMAC Goals

• Use available hash functions without modification.
• Preserve the original performance of the hash function

without incurring a significant degradation.
• Use and handle keys in a simple way.
• Allow easy replacement of the underlying hash

function in the event that faster or more secure hash
functions are later available.

• Have a well-understood cryptographic analysis of the
strength of the authentication mechanism based on
reasonable assumptions on the underlying hash
function.

7

HMAC

• K+ is the key padded out to input block
size of the hash function and opad,
ipad are specified padding constants

• Key size: L/2 < K < L

• MAC size: at least L/2, where L is the
hash output

HMACK = Hash[(K+ ⊕ opad) || Hash[(K+ ⊕ ipad)||M)]]

HMAC Overview

8

HMAC Security

• Security of HMAC relates to that of the underlying hash
algorithm

• If used with a secure hash functions (s.t. SHA1) and
according to the specification (key size, and use
correct output), not known practical attacks against
HMAC

• In general, HMAC be attacked as follows:
– brute force on the key space
– attacks on the hash function itself

• birthday attack, although the use of key makes
this attack more difficult

• attacks against the compression function

CBC-MAC

• Given a block cipher E with block size m
• Given message M = M1 | |M2 || … || Mn

• MAC of M is Ek(M)
– z0=IV=0m

– zi = Ek(zi-1⊕Mi) for 1 ≤ i ≤ n

– MAC=zn

• Random IV is needed in CBC encryption to
prevent codebook attack on first block, not
needed here.

9

Encryption Modes: CBC

� ���	
��
������	���������
���next input
depends of previous output
– Plaintext is M1, M2, M3, M4,
– Ciphertext is: C1 = IV ⊕ Ek(M1) C2=C1 ⊕ Ek(M2)

C3=C2 ⊕ Ek(M3) C4=C3 ⊕ Ek(M4)

M1 M2 M3

IV ⊕ ⊕
Ek

C1

Ek

C2

Ek

⊕

Security of CBC-MAC

• Secure for messages of a fixed number of
blocks assuming the block cipher is PRP

• Not secure with variable lengths, example
attack
– given three pairs of messages/MACs (x1,y1)

(x2,y2), (x1||z,y3), then
• y1= EK[IV⊕x1]
• y2= EK[IV⊕x2]
• y3= EK[y1⊕z]=EK[y2 ⊕ (z ⊕y1⊕y2)]
• let z’=(z ⊕y1⊕y2), (x2||z’,y3) is also a valid pair

10

Optional Security
Enhancement for CBC-MAC

• MAC of M is
– z0=IV=0m

– zi = EK1(zi-1⊕Mi) for 1 ≤ i ≤ n
– MAC=EK1DK2[zn]

• Reduces threat of exhaustive key search
• Defends against the previous attack

Data Integrity Combined with
Encryption

• Encryption alone does not guarantee data
integrity

• Combining encryption with hash
– C=EK[x || h(x)]

– breaking encryption also compromises
integrity

– may be vulnerable to known-plaintext attack

11

MAC with Encryption

• C=EK[x || hK’(x)]
– separate keys used for encryption & for MAC
– the algorithms E and h should be independent
– precludes exhaustive key search on MAC key

• Alternative 1: C=EK[x], hK’(EK[x])
– allows message authentication without knowing x or K
– authenticates only the ciphertext

• Alterative 2: EK[x],hK’(x)
– requires hK’(x) does not leak information about x

CCM Mode

• CCM mode is a NIST standard that provides an
authenticated encryption

• MAC is produced as a part of the encryption
process

• CCM mode uses CTR mode for encryption and
CBC-MAC for authentication
– Given message M = M1 ||M2 || … || Mn

– Ci= Mi ⊕ Ek(ctr+i mod 2m)
– temp=CBC-Mac(M,k) and C’= temp ⊕ Ek(ctr)

– Return C1||…. ||Cn||C’

12

Next Lectures..

• Number theory
• Readings:

– Stingson: 5.1, 5.2, 5.4

