

Rabin Crypto System

Murat Kantarcioglu

Rabin's Public Key System

- \star For Rabins system $G(1^k)$ outputs n = pq, p and q
- \bigstar Define $f_n(m) = m^2 \bmod n$
- ★ Define $f^{-1}(m^2) = x \text{ s.t. } x^2 = m^2 \mod n$
- Note that inverse of rabin function has four outputs $x^2 = m^2 \mod p \text{ has two solutions}$ $x^2 = m^2 \mod q \text{ has two solutions}$

 - ► Total four solutions due to CRT
- ★ In practice, some additional information is needed for unique inverse It is easy if Message space M is sparse in Z_n^*

Rabins's Public Key Cryptosystem

- ★ Inverting Rabins function is as hard as factoring
- \star Note if p, q is known inverting the Rabins function is easy
- \star Assume you have an adversary A that inverts Rabins function
- \star Defining adversary B for factorization using A is easy
 - ightharpoonup Adversary B(n)
 - $i \stackrel{\$}{\leftarrow} \mathbf{Z}_n^*$
 - $y \leftarrow A(i^2 \mod n, n)$
 - 3 if $y^2 = i^2 \mod n$ and $y \neq \pm i$ then
 - return $gcd(i \pm y, n)$

 - jump to [1]

Rabin's Public Key Cryptosystem

- \bigstar Note if $y^2 = i^2 \mod n$ and $y \neq \pm i$ then

 - $y i \neq 0 \text{ and } y + i \neq 0$ $y^2 = i^2 \Rightarrow (y i)(y + i) = 0 \text{ mod } n$
 - \Rightarrow eitheir $gcd(y+i,n) \neq 0$ or $gcd(y-i,n) \neq 0$
- \star Also existence of B implies chosen ciphertext attacks