urD

Security Properties of
Symmetric Key Encryption

Murat Kantarcioglu

urD

* Formalize what we mean by “security” in
the context of symmetric encryption that
involves block ciphers.

» Analyze the security properties of various
modes of operation.

» Discuss possible attacks.

* Provide proofs of security for CTR mode
under chosen plaintext attacks.

Our Goal

hm Preliminaries

We will focus on computational security.

We model the adversary as a polynomial
time probabilistic TM

Given the input and the internal coin
tosses of the A, we denote the output as :

a<+ A(xy1,x2,...,2p)
Note that output is a !

hm Symmetric Encryption

We represent symmetric encryption by
specifying possibly randomized algorithms. Note
that this time we are concerned about the
efficiency as well.

Key generation Algorithm: & & iC(k)
Encryption Algorithm: c & Exc (M)
Algorithm: M < Dg (M)
Symmetric Encryption:
S€ = (K,,D) and Dx(Ex(M)) =M
Note that decryption should deterministic (why?)

hm Possible Attacks...

* Try to recover the key by analyzing the
plaintext/ciphertext pairs.

— Not enough!

— Even though keys may be hard to recover,
important partial information could be
revealed.

» Try to recover plaintext from ciphertext

* Try to obtain partial information by looking
plaintext/ciphertext pairs.

hm Security Definitions: Informal

« We will try to formalize a security definition
that is similar in the sprit of Shannon’s
perfect secrecy.

* Intuitively, we will say that adversary does
not learn given the ciphertext.

» There are various formalizations that
captures the above intuition.

Security Under Chosen
Plaintext Attack: Informal

» Adversary will choose any two messages M, and
I\/|2

It will be pass those two messages to an oracle.

» Oracle will encrypt one of the messages (always
either the first message or the second message)
and will return the encrypted message to
adversary.

» Adversary repeats the first three steps and
finally tries to predict which of the messages are
encrypted by the oracle.

Security Under Chosen

Plaintext Attack

« Given a symmetric encryption system:
SE = (K,E,D)

» Let A, be an adversary that has an
access to oracle £x(LR(.,.,b)) where
b={0,1}

« Consider the following

FEzperiment Ea:pl;;;‘ii ‘:_b(k)

K & K(k)
d «— ASK(E'R(.,.,b))(k)

cpa

Return d

hm Security Under Chosen
Plaintext Attack

* The size of the messages passed to the
oracle is the same for both messages.

» We define the advantage of adversary as:

Advg! (k) =
Pr[Bapg! ™" (k) = 1] — Pr(Bapg. ;7" (k) = 1]

» Given k, among all adversaries that runs
with time t, at most ¢. queries, total #e

bits, define:
AdVTTPY (Kt g, o) = max{Adv?;,;if:(k‘)}

urD

« We will prove that ECB is not secure by
providing an adversary that has very high
advantage. Consider the following
adversary:

Security of ECB

Adversary ."FKI: LR{--B))
My — 027 Mg — O® | 1"
C[1C[2] « Ex(LR(Mjy, My.b))
If C[1] = C2] then return 1 else return 0

hm Security of ECB

 Let us calculate the advantage of the
above adversary.

* Note that Pr[Ezpg. 7" (k) =1] =1

e Also note that Pr[Ezps. (k) =1 =0

 We can conclude that ECB is not secure
Advgl 7 (k) =
(Pr[Ezpl 2 (k) = 1] — Pr[Eapgl ™ (k) =1]) =1

hm Pseudo-random Functions and
Permutations

We model block ciphers (e.g. DES,AES)
as a pseudo-random permutations and/or
functions.

We formally define pseudo-random

function family as:F : Keys(F) x Dom(F) — Ran(F)
We will choose a random element of the
family as: Kk &Keys (F) f+ Fx

In short f & (F)

AES: {0,1}'*® x {0,1}'*8 — {0,1}'*8

hm Pseudo-random Functions and
Permutations

» We consider the family of all functions from | bit strings to
L bit strings Rand!—L

» Similarly, we consider the family of permutations from |
bit strings to | bit strings Perm!

* Let F be function family with input-length | and output-
length L

P be a permutation family with length .
« be{0,1}.

e D¢, Dpn be distinguishers that have access to
the oracle Os(.)

hm Pseudo-random Functions and
Permutations

* Now, we consider the following experiments:

. _ . prp—>b
Ezxperiment Ea:p%r{)fg Ezperiment Expp Dy

00 ﬁRandl%L; 01 & F OO (EPerml; Ol ﬁ P
d < D%t d Dpob(')

n

Return d Return d

hm Pseudo-random Functions and
Permutations
« Consider the advantages of the

distinguishers D¢., Dy that have access
to the oracle Oy(.)

Advi], =
Pr[Emp%f{);i =1] - Pr[Empgf{);g =1]
Advih =

Pr[Ewp%pr;i =1]— Pr[Ewp%pr;g =1]

hm Pseudo-random Functions and
Permutations

* Now consider the best possible performance of
a distinguisher.

Adv? (t,q) = max{Adv%f{)fn}
Din
Advy?(t,q) = maz{Advy],

pn

» We informally say a block-cipher is secure if the
best possible advantage of a distinguisher is low
under reasonable time and query constraints

hm Pseudo-random Functions and
Permutations
* In practice we can bound the difference
between PRF and PRP advantages.

* More specifically:

Proposition 8 [PRPs are PRFs]:
For any permutation family P with length [,

Adv’l’ff (t,q) < AdviP(t,q) +¢*27 !

hm XOR and CTR Encryption

 First, we fix a pseudo-random function
family from | bits to L bits with k bits key.

» Using an element of the pseudo-random
function family, we can define the XOR
encryption by specifying key generation,
encryption and decryption algorithms:

XOR[F] = (E-XOR, D-XOR, K-XOR)

» Key generation is simple, just generate a
key for the pseudo-random function family

hm XOR Encryption/Decryption

function E-XOR/ (z)
r+ {0,1}!
fori=1,..mndoy; = f(r+1i) ® x;

return r||y1y2---Yn

function D-XOR/ (2)
Parse z as r||y1y2---Yn
fori=1,..ndox; = f(r+1i)®y;
return x=x;s...Z,

Security Analysis of XOR

D
Scheme

» First we will prove a lower bound on the security
of the XOR scheme assuming that F is pseudo-
random family

» Then, we will analyze the security properties of
the XOR scheme when F belongs to a random
family Rand' =%

* Finally, we will conclude that if there exists an
adversary that attacks the XOR scheme
successfully, then we can find a
that can distinguish the pseudo-random function

10

hm Lower Bound on Insecurity

Proposition 9 [Lower bound on insecurity of
XOR using a random function]:

Suppose R = Rand"%. Then, for

any e, pte such that p.q./L < 2!,

Advl;;’"a‘;{;g](.,t, Ges o) > 0.316. 2exlde 1),

hm Lower Bound on Insecurity

* To prove the claim, we specify an adversary:

Algorithm AYU+)(k)

(1) Let n=p/(Lg). (This will be the number of blocks in all queried messages.)

(2) Choose messages Ni,..., Ny, all n blocks long, such that Ni[k] # N[k for all i,j = 1,...,q
and k& = 1,...,n satisfying (i,k) # (7,). (For example, set N;[k| to the L-bit binary
encoding of the integer n(i — 1)+ kfori=1,....qand k=1,...,n.)

(3) Fori=1,...,qdo: (ri,p[1]...4n]) « O(U"I,-I\’,-]. We call r; the ©’th nonce.

(4) If there is some i # j that |r; —rj| < n (treal ri,r; as integers here!) then determine the values
k. k' € {L...,n} such that r; + k = r; + K. Output Oif y[k] = y;[¥] an(flotlmrwise.
(5) If there is no i # j that |r; — r;| < n, output a coin flip.

11

hm Lower Bound on Insecurity

 First, let us denote the probability that the
condition on the line 4 is satisfied as p

* Note that the advantage of the adversary
Is p. Pry|A =1] denotes the probability
that Adversary outputs 1 when itis in
world b.

Advf,gg;g],A(.) = Pri[A=1]- Pro[A=1]

hm Lower Bound on Insecurity

* We need to find a lower bound on p
» Consider the probability D, that ith query does not cause
any overlap.
Pr[D;1|D;] < 25in =1 — in,

2! 2!

Fact For any real number x with
0<z<lwehave (1—-e 1)z <l-e®<uzx

» Let us calculate an upper bound on prob. that no query
overlaps.
Pr[Dy] =
-1 -1 in -1 _—in/2!
1= PriDia| D] <TIZ (1= %) <TIiZ, e /2

—e—nalg—1)/2'*!

12

hm Lower Bound on Insecurity

* Now using the Fact given above. We can
conclude that
p = Pr[OverlapNonce]

1 — Pr[D,]

1_ e—ﬂQ(q—l)/QlH

| — o= (1/2)-n(a-1)/(L2")
1.1 —1

1-1 u(g—1)

e’ 2" L2

AVAR VAR

1V

hm Upper bound on insecurity of XOR
scheme using Random Function

« Again we fix R= Rand'~’ and forany t, q,
K. We prove that

lor— e-(ge—1
Adv)?TORCﬁg]('ataQeaﬂe) S %

13

hm Upper bound on insecurity of XOR
scheme using Random Function

* Let D be the event that no collusion occurs in the
inputs to the random function.

* Let Pry[FE] is the probability of event E
occurring game b for any event E.

« Note that Pro[D] = Pri[D]

 Also note that Pro[A = 1|D] = Pri[A = 1|D]

— If there is no collusion and f is random function then
the outputs of function f will be totally random. XOR
scheme becomes like

hm Upper bound on insecurity of XOR
scheme using Random Function

* We can find an upper bound the
advantage of A as follows:

AR5 () = PrifA=1] - Pro[A= 1]
= (Pr1|A =1|D].Pr1[D] + Pri[A = 1|D].Pr1[D]) —
(Pro[A = 1|D].Pro[D] — Pro[A = 1|D].Pry[D))
(Pr1[A =1|D] — Pro[A = 1\D]).Pr1[D]

IN

Prl[l_)]

14

hm Upper bound on insecurity of XOR
scheme using Random Function

To conclude, we need to bound Pr¢[D] = Pry[D]

Let p;, be the probability that ith query’s
random starting number colludes with one

of the previous queries.
Then we know that
< Zisinitnic) =)= D435 n
Di > ol - ol
Also, we know that

Pr[D] = Pr[pr Upa U---Up,g] < 327 pi

hm Upper bound on insecurity of XOR
scheme using Random Function

 Finally,

D ((i-1)(ni—1)+X "1 ny) Bg_1)_ala=1)
PriD] < Y0 pi < X0, DS _ paen -ty

—1
< #laD

« Putting everything together we have

lor—cpa -1
AdVXOR[pR],A(‘) < M(Lq.zl :

15

Security of XOR Using a
Pseudo-random Function

» Suppose F is pseudo-random function
family with input length | and output length
L. Then for any t, q,, 4.=L.q’, we prove
that

Advl;g_lg[%(., ty Qe tte) < 2.Advll);f(t, q) + %

Security of XOR Using a
Pseudo-random Function

* Intuitively, since we know that XORJ[R] is secure,
if XOR[F] were not secure, this would that
F is not a good PRF family.

* Proof Idea: Assume that we have an Adversary
A that attacks XOR][F] successfully under
chosen plaintext attack. Then we show that we
can create a distinguisher that can attack the
pseudo-random function family successfully .
Assuming that pseudo-random function family is
secure, this will create a contradiction.

16

Security of XOR Using a
Pseudo-random Function
» Consider the distinguisher on the next

slide attacking PRF family F that uses an
adversary A that attacks XOR encryption

Security of XOR Using a

Pseudo-random Function

Algorithm D7 (k)
(1) b+ {0,1}. (This represents a
choice to play either left or right oracle for A.)

When A makes an oracle query (M7, Ms), let

z + e-XOR'(M,;), and return

z to A as the answer to the oracle query.

(It is important here that D can implement the
encryption function given an oracle for f.)

(3) Eventually A stops and outputs a guess d

to indicate whether it thought its oracle was the

left oracle or the right oracle. If d = b then output 1,
else output 0.

(2) Run A, responding to its oracle queries as follows.

17

Security of XOR Using a
Pseudo-random Function

» Note that to answer a query (MO, M1)
given by A, D asks |MO|/L queries to f

» D asks total u/L queries
» Let Correct(G) be the probability that A

correctly identifies its oracle when function
underlying the encryption scheme is

f & G where G € {F, R}

* |t is easy to show that
Correct(G) = (1/2).[1+ AdvyGte 4()]

Security of XOR Using a
Pseudo-random Function

* Now we can bound the advantage of
distinguisher as
Advf{}; = Correct(F) — Correct(R)

= (1/2).[AdVGRTE 4 () — Adviyo e ()]
* Now using the above equation

lor—cpa g lor—cpa
Adviypert () = 2.Advi] + AdvioErs ()

:Ule-(qe - 1)

prf
< 2.AdvF’D + 7ol

18

