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Outline 

• Hadoop - Basics 

• HDFS  

– Goals 

– Architecture 

– Other functions 

• MapReduce 

– Basics 

– Word Count Example 

– Handy tools 

– Finding shortest path example 

• Related Apache sub-projects (Pig, HBase,Hive) 
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Hadoop - Why ? 

• Need to process huge datasets on large 

clusters of computers 

• Very expensive to build reliability into each 

application 

• Nodes fail every day 

– Failure is expected, rather than exceptional 

– The number of nodes in a cluster is not constant 

• Need a common infrastructure 

– Efficient, reliable, easy to use 

– Open Source, Apache Licence 
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Who uses Hadoop? 

• Amazon/A9 

• Facebook 

• Google 

• New York Times 

• Veoh 

• Yahoo! 

• …. many more 



FEARLESS engineering 

Commodity Hardware 

• Typically in 2 level architecture 
– Nodes are commodity PCs 

– 30-40 nodes/rack 

– Uplink from rack is 3-4 gigabit 

– Rack-internal is 1 gigabit 

Aggregation switch 

Rack switch 
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Goals of HDFS 

• Very Large Distributed File System 

– 10K nodes, 100 million files, 10PB 

• Assumes Commodity Hardware 

– Files are replicated to handle hardware failure 

– Detect failures and recover from them 

• Optimized for Batch Processing 

– Data locations exposed so that computations can 

move to where data resides 

– Provides very high aggregate bandwidth 
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Distributed File System 

• Single Namespace for entire cluster 

• Data Coherency 

– Write-once-read-many access model 

– Client can only append to existing files 

• Files are broken up into blocks 

– Typically 64MB block size 

– Each block replicated on multiple DataNodes 

• Intelligent Client 

– Client can find location of blocks 

– Client accesses data directly from DataNode 
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HDFS Architecture 
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Functions of a NameNode 

• Manages File System Namespace 

– Maps a file name to a set of blocks 

– Maps a block to the DataNodes where it resides 

• Cluster Configuration Management 

• Replication Engine for Blocks 
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NameNode Metadata 

• Metadata in Memory 

– The entire metadata is in main memory 

– No demand paging of metadata 

• Types of metadata 

– List of files 

– List of Blocks for each file 

– List of DataNodes for each block 

– File attributes, e.g. creation time, replication factor 

• A Transaction Log 

– Records file creations, file deletions etc 
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DataNode 

• A Block Server 

– Stores data in the local file system (e.g. ext3) 

– Stores metadata of a block (e.g. CRC) 

– Serves data and metadata to Clients 

• Block Report 

– Periodically sends a report of all existing blocks to 

the NameNode 

• Facilitates Pipelining of Data 

– Forwards data to other specified DataNodes 
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Block Placement 

• Current Strategy 

– One replica on local node 

– Second replica on a remote rack 

– Third replica on same remote rack 

– Additional replicas are randomly placed 

• Clients read from nearest replicas 

• Would like to make this policy pluggable 
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Heartbeats 

• DataNodes send hearbeat to the NameNode 

– Once every 3 seconds 

• NameNode uses heartbeats to detect 

DataNode failure 
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Replication Engine 

• NameNode detects DataNode failures 

– Chooses new DataNodes for new replicas 

– Balances disk usage 

– Balances communication traffic to DataNodes 
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Data Correctness 

• Use Checksums to validate data 

– Use CRC32 

• File Creation 

– Client computes checksum per 512 bytes 

– DataNode stores the checksum 

• File access 

– Client retrieves the data and checksum from 

DataNode 

– If Validation fails, Client tries other replicas 
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NameNode Failure 

• A single point of failure 

• Transaction Log stored in multiple directories 

– A directory on the local file system 

– A directory on a remote file system (NFS/CIFS) 

• Need to develop a real HA solution 
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Data Pieplining 

• Client retrieves a list of DataNodes on which 

to place replicas of a block 

• Client writes block to the first DataNode 

• The first DataNode forwards the data to the 

next node in the Pipeline 

• When all replicas are written, the Client 

moves on to write the next block in file 
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Rebalancer 

• Goal: % disk full on DataNodes should be 

similar 

– Usually run when new DataNodes are added 

– Cluster is online when Rebalancer is active 

– Rebalancer is throttled to avoid network 

congestion 

– Command line tool 
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Secondary NameNode 

• Copies FsImage and Transaction Log from 

Namenode to a temporary directory 

• Merges FSImage and Transaction Log into a 

new FSImage in temporary directory 

• Uploads new FSImage to the NameNode 

– Transaction Log on NameNode is purged 
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User Interface 

• Commads for HDFS User: 

– hadoop dfs -mkdir /foodir 

– hadoop dfs -cat /foodir/myfile.txt 

– hadoop dfs -rm /foodir/myfile.txt 

• Commands for HDFS Administrator 

– hadoop dfsadmin -report 

– hadoop dfsadmin -decommision datanodename 

• Web Interface 

– http://host:port/dfshealth.jsp 
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MapReduce - What? 

• MapReduce is a programming model for 
efficient distributed computing 

• It works like a Unix pipeline 
– cat input | grep |         sort        |   uniq -c  |  cat > output 

–   Input   | Map | Shuffle & Sort | Reduce  | Output 

• Efficiency from 
– Streaming through data, reducing seeks 

– Pipelining 

• A good fit for a lot of applications 
– Log processing 

– Web index building 
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MapReduce - Dataflow 
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MapReduce - Features 

• Fine grained Map and Reduce tasks 
– Improved load balancing 

– Faster recovery from failed tasks 

• Automatic re-execution on failure 
– In a large cluster, some nodes are always slow or flaky 

– Framework re-executes failed tasks 

• Locality optimizations 
– With large data, bandwidth to data is a problem 

– Map-Reduce + HDFS is a very effective solution 

– Map-Reduce queries HDFS for locations of input data 

– Map tasks are scheduled close to the inputs when 
possible 
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Word Count Example 

• Mapper 
– Input: value: lines of text of input 

– Output: key: word, value: 1 

• Reducer 
– Input: key: word, value: set of counts 

– Output: key: word, value: sum 

• Launching program 
– Defines this job 

– Submits job to cluster 
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Word Count Dataflow 
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Word Count Mapper 

public static class Map extends MapReduceBase implements 
Mapper<LongWritable,Text,Text,IntWritable> { 

   private static final IntWritable one = new IntWritable(1); 

   private Text word  = new Text(); 

 

   public static void map(LongWritable key, Text value, 
OutputCollector<Text,IntWritable> output, Reporter reporter) throws 
IOException { 

      String line = value.toString(); 

      StringTokenizer = new StringTokenizer(line); 

      while(tokenizer.hasNext()) { 

         word.set(tokenizer.nextToken()); 

         output.collect(word,one); 

         } 

      } 

  } 
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Word Count Reducer 

public static class Reduce extends MapReduceBase implements 
Reducer<Text,IntWritable,Text,IntWritable> { 

public static void map(Text key, Iterator<IntWritable> values, 
OutputCollector<Text,IntWritable> output, Reporter reporter) throws 
IOException { 

         int sum = 0; 

         while(values.hasNext()) { 

            sum += values.next().get(); 

         }          

         output.collect(key, new IntWritable(sum)); 

      } 

  } 
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Word Count Example 

• Jobs are controlled by configuring JobConfs 

• JobConfs are maps from attribute names to string values 

• The framework defines attributes to control how the job is 
executed 
– conf.set(“mapred.job.name”, “MyApp”); 

• Applications can add arbitrary values to the JobConf 
– conf.set(“my.string”, “foo”); 

– conf.set(“my.integer”, 12); 

• JobConf is available to all tasks 
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Putting it all together 

• Create a launching program for your application 

• The launching program configures: 
– The Mapper and Reducer to use 

– The output key and value types (input types are 
inferred from the InputFormat) 

– The locations for your input and output 

• The launching program then submits the job and 
typically waits for it to complete 
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Putting it all together 

JobConf conf = new JobConf(WordCount.class); 

conf.setJobName(“wordcount”); 

 

conf.setOutputKeyClass(Text.class); 

conf.setOutputValueClass(IntWritable.class); 

 

conf.setMapperClass(Map.class); 

conf.setCombinerClass(Reduce.class); 

conf.setReducer(Reduce.class); 

 

conf.setInputFormat(TextInputFormat.class); 

Conf.setOutputFormat(TextOutputFormat.class); 

 

FileInputFormat.setInputPaths(conf, new Path(args[0])); 

FileOutputFormat.setOutputPath(conf, new Path(args[1])); 

 

JobClient.runJob(conf); 
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Input and Output Formats 

• A Map/Reduce may specify how it’s input is to be read 
by specifying an InputFormat to be used 

• A Map/Reduce may specify how it’s output is to be 
written by specifying an OutputFormat to be used 

• These default to TextInputFormat and 
TextOutputFormat, which process line-based text data 

• Another common choice is SequenceFileInputFormat 
and SequenceFileOutputFormat for binary data 

• These are file-based, but they are not required to be 
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How many Maps and Reduces 

• Maps 
– Usually as many as the number of HDFS blocks being 

processed, this is the default 

– Else the number of maps can be specified as a hint 

– The number of maps can also be controlled by specifying the 
minimum split size 

– The actual sizes of the map inputs are computed by: 

• max(min(block_size,data/#maps), min_split_size 

• Reduces 
– Unless the amount of data being processed is small 

• 0.95*num_nodes*mapred.tasktracker.tasks.maximum 
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Some handy tools 

• Partitioners 

• Combiners 

• Compression 

• Counters 

• Speculation 

• Zero Reduces 

• Distributed File Cache 

• Tool 
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Partitioners 

• Partitioners are application code that define how keys 
are assigned to reduces 

• Default partitioning spreads keys evenly, but randomly 
– Uses key.hashCode() % num_reduces 

• Custom partitioning is often required, for example, to 
produce a total order in the output 
– Should implement Partitioner interface 

– Set by calling conf.setPartitionerClass(MyPart.class) 

– To get a total order, sample the map output keys and pick 
values to divide the keys into roughly equal buckets and use 
that in your partitioner 
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Combiners 

• When maps produce many repeated keys 

– It is often useful to do a local aggregation following the map 

– Done by specifying a Combiner 

– Goal is to decrease size of the transient data 

– Combiners have the same interface as Reduces, and often are the 
same class 

– Combiners must not side effects, because they run an intermdiate 
number of times 

– In WordCount, conf.setCombinerClass(Reduce.class); 
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Compression 

• Compressing the outputs and intermediate data will often yield 
huge performance gains 

– Can be specified via a configuration file or set programmatically 

– Set mapred.output.compress to true to compress job output 

– Set mapred.compress.map.output to true to compress map outputs 

• Compression Types (mapred(.map)?.output.compression.type) 

– “block” - Group of keys and values are compressed together 

– “record” - Each value is compressed individually 

– Block compression is almost always best 

• Compression Codecs 
(mapred(.map)?.output.compression.codec) 

– Default (zlib) - slower, but more compression 

– LZO - faster, but less compression 
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Counters 

• Often Map/Reduce applications have countable events 

• For example, framework counts records in to and out 
of Mapper and Reducer 

• To define user counters: 
static enum Counter {EVENT1, EVENT2}; 

reporter.incrCounter(Counter.EVENT1, 1); 

• Define nice names in a MyClass_Counter.properties 
file 
CounterGroupName=MyCounters 

EVENT1.name=Event 1 

EVENT2.name=Event 2 
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Speculative execution 

• The framework can run multiple instances of slow 
tasks  
– Output from instance that finishes first is used 

– Controlled by the configuration variable 
mapred.speculative.execution 

– Can dramatically bring in long tails on jobs 
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Zero Reduces 

• Frequently, we only need to run a filter on the input 
data  
– No sorting or shuffling required by the job 

– Set the number of reduces to 0 

– Output from maps will go directly to OutputFormat and disk 
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Distributed File Cache 

• Sometimes need read-only copies of data on the local 
computer 
– Downloading 1GB of data for each Mapper is expensive 

• Define list of files you need to download in JobConf 

• Files are downloaded once per computer 

• Add to launching program: 
DistributedCache.addCacheFile(new URI(“hdfs://nn:8020/foo”), 

conf); 

• Add to task: 
Path[] files = DistributedCache.getLocalCacheFiles(conf); 
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Tool 

• Handle “standard” Hadoop command line options 
– -conf file - load a configuration file named file 

– -D prop=value - define a single configuration property prop 

• Class looks like: 
public class MyApp extends Configured implements Tool { 

 public static void main(String[] args) throws Exception { 

  System.exit(ToolRunner.run(new Configuration(),                  
  new MyApp(), args)); 

} 

public int run(String[] args) throws Exception { 

  …. getConf() …. 

  } 

} 
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Finding the Shortest Path 

• A common graph search 
application is finding the 
shortest path from a start 
node to one or more 
target nodes 

• Commonly done on a 
single machine with 
Dijkstra’s Algorithm 

• Can we use BFS to find 
the shortest path via 
MapReduce? 
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Finding the Shortest Path: Intuition 

• We can define the solution to this problem 
inductively 
– DistanceTo(startNode) = 0 

– For all nodes n directly reachable from startNode, 
DistanceTo(n) = 1 

– For all nodes n reachable from some other set of nodes 
S, 

DistanceTo(n) = 1 + min(DistanceTo(m), m  S) 
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From Intuition to Algorithm 

• A map task receives a node n as a key, and 
(D, points-to) as its value 
– D is the distance to the node from the start 

– points-to is a list of nodes reachable from n 

p  points-to, emit (p, D+1) 

• Reduces task gathers possible distances to a 
given p and selects the minimum one 
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What This Gives Us 

• This MapReduce task can advance the known 
frontier by one hop 

• To perform the whole BFS, a non-MapReduce 
component then feeds the output of this step 
back into the MapReduce task for another 
iteration 
– Problem: Where’d the points-to list go? 

– Solution: Mapper emits (n, points-to) as well 
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Blow-up and Termination 

• This algorithm starts from one node 

• Subsequent iterations include many more 
nodes of the graph as the frontier advances 

• Does this ever terminate? 
– Yes! Eventually, routes between nodes will stop 

being discovered and no better distances will be 
found. When distance is the same, we stop 

– Mapper should emit (n,D) to ensure that “current 
distance” is carried into the reducer 
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Hadoop Related Subprojects 

• Pig 

– High-level language for data analysis 

• HBase 

– Table storage for semi-structured data 

• Zookeeper 

– Coordinating distributed applications 

• Hive 

– SQL-like Query language and Metastore 

• Mahout 

– Machine learning 
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Pig 

• Started at Yahoo! Research 

• Now runs about 30% of Yahoo!’s jobs 

• Features 

– Expresses sequences of MapReduce jobs 

– Data model: nested “bags” of items 

– Provides relational (SQL) operators 

   (JOIN, GROUP BY, etc.) 

– Easy to plug in Java functions 



FEARLESS engineering 

An Example Problem 

• Suppose you have 

user data in a file, 

website data in 

another, and you 

need to find the top 

5 most visited pages 

by users aged 18-25 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 
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In MapReduce 
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In Pig Latin 

Users = load ‘users’ as (name, age); 
Filtered = filter Users by age >= 18 and age <= 

25;  
Pages = load ‘pages’ as (user, url); 
Joined = join Filtered by name, Pages by user; 
Grouped = group Joined by url; 
Summed = foreach Grouped generate group, 

              count(Joined) as clicks; 
Sorted = order Summed by clicks desc; 
Top5 = limit Sorted 5; 
store Top5 into ‘top5sites’; 
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Ease of Translation 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 

Users = load … 
Fltrd = filter …  
Pages = load … 
Joined = join … 
Grouped = group … 
Summed = … count()… 
Sorted = order … 
Top5 = limit … 



FEARLESS engineering 

Ease of Translation 

Load Users Load Pages 

Filter by age 

Join on name 

Group on url 

Count clicks 

Order by clicks 

Take top 5 

Users = load … 
Fltrd = filter …  
Pages = load … 
Joined = join … 
Grouped = group … 
Summed = … count()… 
Sorted = order … 
Top5 = limit … 

Job 1 

Job 2 

Job 3 
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HBase - What? 

• Modeled on Google’s Bigtable 

• Row/column store 

• Billions of rows/millions on columns 

• Column-oriented - nulls are free 

• Untyped - stores byte[] 
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HBase - Data Model 

Row Timestamp 
Column family: 

animal: 

Column 

family 

repairs: 

animal:type animal:size repairs:cost 

enclosure1 
t2 zebra 1000 EUR 

t1 lion big 

enclosure2 … … … … 
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HBase - Data Storage 

Column family animal: 

(enclosure1, t2, animal:type) zebra 

(enclosure1, t1, animal:size) big 

(enclosure1, t1, animal:type) lion 

Column family repairs: 

(enclosure1, t1, repairs:cost) 1000 EUR 
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HBase - Code 

HTable table = … 

Text row = new Text(“enclosure1”); 

Text col1 = new Text(“animal:type”); 

Text col2 = new Text(“animal:size”); 

BatchUpdate update = new BatchUpdate(row); 

update.put(col1, “lion”.getBytes(“UTF-8”)); 

update.put(col2, “big”.getBytes(“UTF-8)); 

table.commit(update); 

 

update = new BatchUpdate(row); 

update.put(col1, “zebra”.getBytes(“UTF-8”)); 

table.commit(update); 
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HBase - Querying 

• Retrieve a cell 

 Cell = table.getRow(“enclosure1”).getColumn(“animal:type”).getValue(); 

• Retrieve a row 

 RowResult = table.getRow( “enclosure1” ); 

• Scan through a range of rows 

 Scanner s = table.getScanner( new String[] { “animal:type” } ); 
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Hive 

• Developed at Facebook 

• Used for majority of Facebook jobs 

• “Relational database” built on Hadoop 

– Maintains list of table schemas 

– SQL-like query language (HiveQL) 

– Can call Hadoop Streaming scripts from HiveQL 

– Supports table partitioning, clustering, complex 

data types, some optimizations 
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Creating a Hive Table 

• Partitioning breaks table into separate files for 

each (dt, country) pair 

 Ex: /hive/page_view/dt=2008-06-08,country=USA 

        /hive/page_view/dt=2008-06-08,country=CA 

CREATE TABLE page_views(viewTime INT, userid BIGINT, 

                   page_url STRING, referrer_url STRING,  

                   ip STRING COMMENT 'User IP address')  

COMMENT 'This is the page view table'  

PARTITIONED BY(dt STRING, country STRING) 

STORED AS SEQUENCEFILE;  
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A Simple Query 

SELECT page_views.*  

FROM page_views  

WHERE page_views.date >= '2008-03-01' 

AND page_views.date <= '2008-03-31' 

AND page_views.referrer_url like '%xyz.com'; 

• Hive only reads partition 2008-03-01,* 

instead of scanning entire table 

• Find all page views coming from xyz.com 

on March 31st: 
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Aggregation and Joins 

• Count users who visited each page by gender: 

 

 

 
 

• Sample output: 

SELECT pv.page_url, u.gender, COUNT(DISTINCT u.id) 

FROM page_views pv JOIN user u ON (pv.userid = u.id) 

GROUP BY pv.page_url, u.gender 

WHERE pv.date = '2008-03-03';  
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Using a Hadoop Streaming Mapper Script 

SELECT TRANSFORM(page_views.userid,                 
           page_views.date) 

USING 'map_script.py' 

AS dt, uid CLUSTER BY dt 

FROM page_views; 

 



UT DALLAS Erik Jonsson School of Engineering & Computer Science 

FEARLESS engineering 

Storm 

Original Slides by 

Nathan Marz 

Twitter 



FEARLESS engineering 

Storm 

• Developed by BackType which was acquired 

by Twitter 

• Lots of tools for data (i.e. batch) processing 

– Hadoop, Pig, HBase, Hive, … 

• None of them are realtime systems which is 

becoming a real requirement for businesses 

• Storm provides realtime computation 

– Scalable 

– Guarantees no data loss 

– Extremely robust and fault-tolerant 

– Programming language agnostic 
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Before Storm 
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Before Storm – Adding a worker 

Deploy 

Reconfigure/Redeploy 
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Problems 

• Scaling is painful 

• Poor fault-tolerance 

• Coding is tedious 
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What we want 

• Guaranteed data processing 

• Horizontal scalability 

• Fault-tolerance 

• No intermediate message brokers! 

• Higher level abstraction than message 

passing 

• “Just works” !! 
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Storm Cluster 

Master node (similar to  

Hadoop JobTracker) 

Used for cluster coordination 

Run worker processes 
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Concepts 

• Streams 

• Spouts 

• Bolts 

• Topologies 
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Streams 

Tuple Tuple Tuple Tuple Tuple Tuple Tuple 

Unbounded sequence of tuples 
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Spouts 

Source of streams 
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Bolts 

Processes input streams and produces new streams: 

Can implement functions such as filters, aggregation, join, etc 
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Topology 

Network of spouts and bolts 
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Topology 

Spouts and bolts execute as 

many tasks across the cluster 
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Stream Grouping 

When a tuple is emitted which task does it go to? 
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Stream Grouping 

• Shuffle grouping: pick a random task 

• Fields grouping: consistent hashing on a 

subset of tuple fields 

• All grouping: send to all tasks 

• Global grouping: pick task with lowest id 


