
UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Cloud Tools Overview

UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Hadoop

FEARLESS engineering

Outline

• Hadoop - Basics

• HDFS

– Goals

– Architecture

– Other functions

• MapReduce

– Basics

– Word Count Example

– Handy tools

– Finding shortest path example

• Related Apache sub-projects (Pig, HBase,Hive)

FEARLESS engineering

Hadoop - Why ?

• Need to process huge datasets on large

clusters of computers

• Very expensive to build reliability into each

application

• Nodes fail every day

– Failure is expected, rather than exceptional

– The number of nodes in a cluster is not constant

• Need a common infrastructure

– Efficient, reliable, easy to use

– Open Source, Apache Licence

FEARLESS engineering

Who uses Hadoop?

• Amazon/A9

• Facebook

• Google

• New York Times

• Veoh

• Yahoo!

• …. many more

FEARLESS engineering

Commodity Hardware

• Typically in 2 level architecture
– Nodes are commodity PCs

– 30-40 nodes/rack

– Uplink from rack is 3-4 gigabit

– Rack-internal is 1 gigabit

Aggregation switch

Rack switch

UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Hadoop Distributed File System

(HDFS)

Original Slides by

Dhruba Borthakur

Apache Hadoop Project Management Committee

FEARLESS engineering

Goals of HDFS

• Very Large Distributed File System

– 10K nodes, 100 million files, 10PB

• Assumes Commodity Hardware

– Files are replicated to handle hardware failure

– Detect failures and recover from them

• Optimized for Batch Processing

– Data locations exposed so that computations can

move to where data resides

– Provides very high aggregate bandwidth

FEARLESS engineering

Distributed File System

• Single Namespace for entire cluster

• Data Coherency

– Write-once-read-many access model

– Client can only append to existing files

• Files are broken up into blocks

– Typically 64MB block size

– Each block replicated on multiple DataNodes

• Intelligent Client

– Client can find location of blocks

– Client accesses data directly from DataNode

FEARLESS engineering

HDFS Architecture

FEARLESS engineering

Functions of a NameNode

• Manages File System Namespace

– Maps a file name to a set of blocks

– Maps a block to the DataNodes where it resides

• Cluster Configuration Management

• Replication Engine for Blocks

FEARLESS engineering

NameNode Metadata

• Metadata in Memory

– The entire metadata is in main memory

– No demand paging of metadata

• Types of metadata

– List of files

– List of Blocks for each file

– List of DataNodes for each block

– File attributes, e.g. creation time, replication factor

• A Transaction Log

– Records file creations, file deletions etc

FEARLESS engineering

DataNode

• A Block Server

– Stores data in the local file system (e.g. ext3)

– Stores metadata of a block (e.g. CRC)

– Serves data and metadata to Clients

• Block Report

– Periodically sends a report of all existing blocks to

the NameNode

• Facilitates Pipelining of Data

– Forwards data to other specified DataNodes

FEARLESS engineering

Block Placement

• Current Strategy

– One replica on local node

– Second replica on a remote rack

– Third replica on same remote rack

– Additional replicas are randomly placed

• Clients read from nearest replicas

• Would like to make this policy pluggable

FEARLESS engineering

Heartbeats

• DataNodes send hearbeat to the NameNode

– Once every 3 seconds

• NameNode uses heartbeats to detect

DataNode failure

FEARLESS engineering

Replication Engine

• NameNode detects DataNode failures

– Chooses new DataNodes for new replicas

– Balances disk usage

– Balances communication traffic to DataNodes

FEARLESS engineering

Data Correctness

• Use Checksums to validate data

– Use CRC32

• File Creation

– Client computes checksum per 512 bytes

– DataNode stores the checksum

• File access

– Client retrieves the data and checksum from

DataNode

– If Validation fails, Client tries other replicas

FEARLESS engineering

NameNode Failure

• A single point of failure

• Transaction Log stored in multiple directories

– A directory on the local file system

– A directory on a remote file system (NFS/CIFS)

• Need to develop a real HA solution

FEARLESS engineering

Data Pieplining

• Client retrieves a list of DataNodes on which

to place replicas of a block

• Client writes block to the first DataNode

• The first DataNode forwards the data to the

next node in the Pipeline

• When all replicas are written, the Client

moves on to write the next block in file

FEARLESS engineering

Rebalancer

• Goal: % disk full on DataNodes should be

similar

– Usually run when new DataNodes are added

– Cluster is online when Rebalancer is active

– Rebalancer is throttled to avoid network

congestion

– Command line tool

FEARLESS engineering

Secondary NameNode

• Copies FsImage and Transaction Log from

Namenode to a temporary directory

• Merges FSImage and Transaction Log into a

new FSImage in temporary directory

• Uploads new FSImage to the NameNode

– Transaction Log on NameNode is purged

FEARLESS engineering

User Interface

• Commads for HDFS User:

– hadoop dfs -mkdir /foodir

– hadoop dfs -cat /foodir/myfile.txt

– hadoop dfs -rm /foodir/myfile.txt

• Commands for HDFS Administrator

– hadoop dfsadmin -report

– hadoop dfsadmin -decommision datanodename

• Web Interface

– http://host:port/dfshealth.jsp

UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

MapReduce

Original Slides by

Owen O’Malley (Yahoo!)

&

Christophe Bisciglia, Aaron Kimball & Sierra Michells-Slettvet

FEARLESS engineering

MapReduce - What?

• MapReduce is a programming model for
efficient distributed computing

• It works like a Unix pipeline
– cat input | grep | sort | uniq -c | cat > output

– Input | Map | Shuffle & Sort | Reduce | Output

• Efficiency from
– Streaming through data, reducing seeks

– Pipelining

• A good fit for a lot of applications
– Log processing

– Web index building

FEARLESS engineering

MapReduce - Dataflow

FEARLESS engineering

MapReduce - Features

• Fine grained Map and Reduce tasks
– Improved load balancing

– Faster recovery from failed tasks

• Automatic re-execution on failure
– In a large cluster, some nodes are always slow or flaky

– Framework re-executes failed tasks

• Locality optimizations
– With large data, bandwidth to data is a problem

– Map-Reduce + HDFS is a very effective solution

– Map-Reduce queries HDFS for locations of input data

– Map tasks are scheduled close to the inputs when
possible

FEARLESS engineering

Word Count Example

• Mapper
– Input: value: lines of text of input

– Output: key: word, value: 1

• Reducer
– Input: key: word, value: set of counts

– Output: key: word, value: sum

• Launching program
– Defines this job

– Submits job to cluster

FEARLESS engineering

Word Count Dataflow

FEARLESS engineering

Word Count Mapper

public static class Map extends MapReduceBase implements
Mapper<LongWritable,Text,Text,IntWritable> {

 private static final IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public static void map(LongWritable key, Text value,
OutputCollector<Text,IntWritable> output, Reporter reporter) throws
IOException {

 String line = value.toString();

 StringTokenizer = new StringTokenizer(line);

 while(tokenizer.hasNext()) {

 word.set(tokenizer.nextToken());

 output.collect(word,one);

 }

 }

 }

FEARLESS engineering

Word Count Reducer

public static class Reduce extends MapReduceBase implements
Reducer<Text,IntWritable,Text,IntWritable> {

public static void map(Text key, Iterator<IntWritable> values,
OutputCollector<Text,IntWritable> output, Reporter reporter) throws
IOException {

 int sum = 0;

 while(values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

 }

FEARLESS engineering

Word Count Example

• Jobs are controlled by configuring JobConfs

• JobConfs are maps from attribute names to string values

• The framework defines attributes to control how the job is
executed
– conf.set(“mapred.job.name”, “MyApp”);

• Applications can add arbitrary values to the JobConf
– conf.set(“my.string”, “foo”);

– conf.set(“my.integer”, 12);

• JobConf is available to all tasks

FEARLESS engineering

Putting it all together

• Create a launching program for your application

• The launching program configures:
– The Mapper and Reducer to use

– The output key and value types (input types are
inferred from the InputFormat)

– The locations for your input and output

• The launching program then submits the job and
typically waits for it to complete

FEARLESS engineering

Putting it all together

JobConf conf = new JobConf(WordCount.class);

conf.setJobName(“wordcount”);

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);

conf.setCombinerClass(Reduce.class);

conf.setReducer(Reduce.class);

conf.setInputFormat(TextInputFormat.class);

Conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));

FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

FEARLESS engineering

Input and Output Formats

• A Map/Reduce may specify how it’s input is to be read
by specifying an InputFormat to be used

• A Map/Reduce may specify how it’s output is to be
written by specifying an OutputFormat to be used

• These default to TextInputFormat and
TextOutputFormat, which process line-based text data

• Another common choice is SequenceFileInputFormat
and SequenceFileOutputFormat for binary data

• These are file-based, but they are not required to be

FEARLESS engineering

How many Maps and Reduces

• Maps
– Usually as many as the number of HDFS blocks being

processed, this is the default

– Else the number of maps can be specified as a hint

– The number of maps can also be controlled by specifying the
minimum split size

– The actual sizes of the map inputs are computed by:

• max(min(block_size,data/#maps), min_split_size

• Reduces
– Unless the amount of data being processed is small

• 0.95*num_nodes*mapred.tasktracker.tasks.maximum

FEARLESS engineering

Some handy tools

• Partitioners

• Combiners

• Compression

• Counters

• Speculation

• Zero Reduces

• Distributed File Cache

• Tool

FEARLESS engineering

Partitioners

• Partitioners are application code that define how keys
are assigned to reduces

• Default partitioning spreads keys evenly, but randomly
– Uses key.hashCode() % num_reduces

• Custom partitioning is often required, for example, to
produce a total order in the output
– Should implement Partitioner interface

– Set by calling conf.setPartitionerClass(MyPart.class)

– To get a total order, sample the map output keys and pick
values to divide the keys into roughly equal buckets and use
that in your partitioner

FEARLESS engineering

Combiners

• When maps produce many repeated keys

– It is often useful to do a local aggregation following the map

– Done by specifying a Combiner

– Goal is to decrease size of the transient data

– Combiners have the same interface as Reduces, and often are the
same class

– Combiners must not side effects, because they run an intermdiate
number of times

– In WordCount, conf.setCombinerClass(Reduce.class);

FEARLESS engineering

Compression

• Compressing the outputs and intermediate data will often yield
huge performance gains

– Can be specified via a configuration file or set programmatically

– Set mapred.output.compress to true to compress job output

– Set mapred.compress.map.output to true to compress map outputs

• Compression Types (mapred(.map)?.output.compression.type)

– “block” - Group of keys and values are compressed together

– “record” - Each value is compressed individually

– Block compression is almost always best

• Compression Codecs
(mapred(.map)?.output.compression.codec)

– Default (zlib) - slower, but more compression

– LZO - faster, but less compression

FEARLESS engineering

Counters

• Often Map/Reduce applications have countable events

• For example, framework counts records in to and out
of Mapper and Reducer

• To define user counters:
static enum Counter {EVENT1, EVENT2};

reporter.incrCounter(Counter.EVENT1, 1);

• Define nice names in a MyClass_Counter.properties
file
CounterGroupName=MyCounters

EVENT1.name=Event 1

EVENT2.name=Event 2

FEARLESS engineering

Speculative execution

• The framework can run multiple instances of slow
tasks
– Output from instance that finishes first is used

– Controlled by the configuration variable
mapred.speculative.execution

– Can dramatically bring in long tails on jobs

FEARLESS engineering

Zero Reduces

• Frequently, we only need to run a filter on the input
data
– No sorting or shuffling required by the job

– Set the number of reduces to 0

– Output from maps will go directly to OutputFormat and disk

FEARLESS engineering

Distributed File Cache

• Sometimes need read-only copies of data on the local
computer
– Downloading 1GB of data for each Mapper is expensive

• Define list of files you need to download in JobConf

• Files are downloaded once per computer

• Add to launching program:
DistributedCache.addCacheFile(new URI(“hdfs://nn:8020/foo”),

conf);

• Add to task:
Path[] files = DistributedCache.getLocalCacheFiles(conf);

FEARLESS engineering

Tool

• Handle “standard” Hadoop command line options
– -conf file - load a configuration file named file

– -D prop=value - define a single configuration property prop

• Class looks like:
public class MyApp extends Configured implements Tool {

 public static void main(String[] args) throws Exception {

 System.exit(ToolRunner.run(new Configuration(),
 new MyApp(), args));

}

public int run(String[] args) throws Exception {

 …. getConf() ….

 }

}

FEARLESS engineering

Finding the Shortest Path

• A common graph search
application is finding the
shortest path from a start
node to one or more
target nodes

• Commonly done on a
single machine with
Dijkstra’s Algorithm

• Can we use BFS to find
the shortest path via
MapReduce?

FEARLESS engineering

Finding the Shortest Path: Intuition

• We can define the solution to this problem
inductively
– DistanceTo(startNode) = 0

– For all nodes n directly reachable from startNode,
DistanceTo(n) = 1

– For all nodes n reachable from some other set of nodes
S,

DistanceTo(n) = 1 + min(DistanceTo(m), m  S)

FEARLESS engineering

From Intuition to Algorithm

• A map task receives a node n as a key, and
(D, points-to) as its value
– D is the distance to the node from the start

– points-to is a list of nodes reachable from n

p  points-to, emit (p, D+1)

• Reduces task gathers possible distances to a
given p and selects the minimum one

FEARLESS engineering

What This Gives Us

• This MapReduce task can advance the known
frontier by one hop

• To perform the whole BFS, a non-MapReduce
component then feeds the output of this step
back into the MapReduce task for another
iteration
– Problem: Where’d the points-to list go?

– Solution: Mapper emits (n, points-to) as well

FEARLESS engineering

Blow-up and Termination

• This algorithm starts from one node

• Subsequent iterations include many more
nodes of the graph as the frontier advances

• Does this ever terminate?
– Yes! Eventually, routes between nodes will stop

being discovered and no better distances will be
found. When distance is the same, we stop

– Mapper should emit (n,D) to ensure that “current
distance” is carried into the reducer

UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Hadoop Subprojects

FEARLESS engineering

Hadoop Related Subprojects

• Pig

– High-level language for data analysis

• HBase

– Table storage for semi-structured data

• Zookeeper

– Coordinating distributed applications

• Hive

– SQL-like Query language and Metastore

• Mahout

– Machine learning

UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Pig

Original Slides by

Matei Zaharia

UC Berkeley RAD Lab

FEARLESS engineering

Pig

• Started at Yahoo! Research

• Now runs about 30% of Yahoo!’s jobs

• Features

– Expresses sequences of MapReduce jobs

– Data model: nested “bags” of items

– Provides relational (SQL) operators

 (JOIN, GROUP BY, etc.)

– Easy to plug in Java functions

FEARLESS engineering

An Example Problem

• Suppose you have

user data in a file,

website data in

another, and you

need to find the top

5 most visited pages

by users aged 18-25

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

FEARLESS engineering

In MapReduce

FEARLESS engineering

In Pig Latin

Users = load ‘users’ as (name, age);
Filtered = filter Users by age >= 18 and age <=

25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = foreach Grouped generate group,

 count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;
store Top5 into ‘top5sites’;

FEARLESS engineering

Ease of Translation

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Fltrd = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

FEARLESS engineering

Ease of Translation

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Fltrd = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

Job 1

Job 2

Job 3

UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

HBase

Original Slides by

Tom White

Lexeme Ltd.

FEARLESS engineering

HBase - What?

• Modeled on Google’s Bigtable

• Row/column store

• Billions of rows/millions on columns

• Column-oriented - nulls are free

• Untyped - stores byte[]

FEARLESS engineering

HBase - Data Model

Row Timestamp
Column family:

animal:

Column

family

repairs:

animal:type animal:size repairs:cost

enclosure1
t2 zebra 1000 EUR

t1 lion big

enclosure2 … … … …

FEARLESS engineering

HBase - Data Storage

Column family animal:

(enclosure1, t2, animal:type) zebra

(enclosure1, t1, animal:size) big

(enclosure1, t1, animal:type) lion

Column family repairs:

(enclosure1, t1, repairs:cost) 1000 EUR

FEARLESS engineering

HBase - Code

HTable table = …

Text row = new Text(“enclosure1”);

Text col1 = new Text(“animal:type”);

Text col2 = new Text(“animal:size”);

BatchUpdate update = new BatchUpdate(row);

update.put(col1, “lion”.getBytes(“UTF-8”));

update.put(col2, “big”.getBytes(“UTF-8));

table.commit(update);

update = new BatchUpdate(row);

update.put(col1, “zebra”.getBytes(“UTF-8”));

table.commit(update);

FEARLESS engineering

HBase - Querying

• Retrieve a cell

 Cell = table.getRow(“enclosure1”).getColumn(“animal:type”).getValue();

• Retrieve a row

 RowResult = table.getRow(“enclosure1”);

• Scan through a range of rows

 Scanner s = table.getScanner(new String[] { “animal:type” });

UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Hive

Original Slides by

Matei Zaharia

UC Berkeley RAD Lab

FEARLESS engineering

Hive

• Developed at Facebook

• Used for majority of Facebook jobs

• “Relational database” built on Hadoop

– Maintains list of table schemas

– SQL-like query language (HiveQL)

– Can call Hadoop Streaming scripts from HiveQL

– Supports table partitioning, clustering, complex

data types, some optimizations

FEARLESS engineering

Creating a Hive Table

• Partitioning breaks table into separate files for

each (dt, country) pair

 Ex: /hive/page_view/dt=2008-06-08,country=USA

 /hive/page_view/dt=2008-06-08,country=CA

CREATE TABLE page_views(viewTime INT, userid BIGINT,

 page_url STRING, referrer_url STRING,

 ip STRING COMMENT 'User IP address')

COMMENT 'This is the page view table'

PARTITIONED BY(dt STRING, country STRING)

STORED AS SEQUENCEFILE;

FEARLESS engineering

A Simple Query

SELECT page_views.*

FROM page_views

WHERE page_views.date >= '2008-03-01'

AND page_views.date <= '2008-03-31'

AND page_views.referrer_url like '%xyz.com';

• Hive only reads partition 2008-03-01,*

instead of scanning entire table

• Find all page views coming from xyz.com

on March 31st:

FEARLESS engineering

Aggregation and Joins

• Count users who visited each page by gender:

• Sample output:

SELECT pv.page_url, u.gender, COUNT(DISTINCT u.id)

FROM page_views pv JOIN user u ON (pv.userid = u.id)

GROUP BY pv.page_url, u.gender

WHERE pv.date = '2008-03-03';

FEARLESS engineering

Using a Hadoop Streaming Mapper Script

SELECT TRANSFORM(page_views.userid,
 page_views.date)

USING 'map_script.py'

AS dt, uid CLUSTER BY dt

FROM page_views;

UT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Storm

Original Slides by

Nathan Marz

Twitter

FEARLESS engineering

Storm

• Developed by BackType which was acquired

by Twitter

• Lots of tools for data (i.e. batch) processing

– Hadoop, Pig, HBase, Hive, …

• None of them are realtime systems which is

becoming a real requirement for businesses

• Storm provides realtime computation

– Scalable

– Guarantees no data loss

– Extremely robust and fault-tolerant

– Programming language agnostic

FEARLESS engineering

Before Storm

FEARLESS engineering

Before Storm – Adding a worker

Deploy

Reconfigure/Redeploy

FEARLESS engineering

Problems

• Scaling is painful

• Poor fault-tolerance

• Coding is tedious

FEARLESS engineering

What we want

• Guaranteed data processing

• Horizontal scalability

• Fault-tolerance

• No intermediate message brokers!

• Higher level abstraction than message

passing

• “Just works” !!

FEARLESS engineering

Storm Cluster

Master node (similar to

Hadoop JobTracker)

Used for cluster coordination

Run worker processes

FEARLESS engineering

Concepts

• Streams

• Spouts

• Bolts

• Topologies

FEARLESS engineering

Streams

Tuple Tuple Tuple Tuple Tuple Tuple Tuple

Unbounded sequence of tuples

FEARLESS engineering

Spouts

Source of streams

FEARLESS engineering

Bolts

Processes input streams and produces new streams:

Can implement functions such as filters, aggregation, join, etc

FEARLESS engineering

Topology

Network of spouts and bolts

FEARLESS engineering

Topology

Spouts and bolts execute as

many tasks across the cluster

FEARLESS engineering

Stream Grouping

When a tuple is emitted which task does it go to?

FEARLESS engineering

Stream Grouping

• Shuffle grouping: pick a random task

• Fields grouping: consistent hashing on a

subset of tuple fields

• All grouping: send to all tasks

• Global grouping: pick task with lowest id

